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Summary 

 The Mellor and Yamada Level 2.5 scheme is analyzed in order to (i) identify the minimum 

conditions that enable satisfactory performance of the scheme in the full range of atmospheric 

forcing, and (ii) develop a robust, consistent, accurate and affordable computational procedure 

for application in synoptic and meso scale models.  In order to achieve the first goal it is 

sufficient to impose an appropriate upper limit on the master length scale in addition to requiring 

that the turbulent kinetic energy (TKE) and the master length scale be positive.  This upper limit 

is proportional to the square root of TKE and a function of buoyancy and shear of the driving 

flow.  In the unstable range this function is defined from the requirement that the TKE 

production be nonsingular in the case of growing turbulence, and in the stable range the function 

is derived from the requirement that the ratio of the vertical velocity deviation variance and TKE 

cannot be smaller than that corresponding to the regime of vanishing turbulence.  Thus, within 

the PBL the master length scale is estimated using the usual diagnostic formula, and above the 

PBL it is computed as a fraction of the vertical grid size.  The values of the master length scale 

are then modified if necessary in order to satisfy the described constraint. 

 The TKE production/dissipation differential equation is solved iteratively over a time step.  

In each iteration, the differential equation obtained by linearizing around the solution from the 

previous iteration is solved.  Two iterations appear to be sufficient for satisfactory accuracy, and 

the computational cost is minor. 

 The empirical constants have been revised.  However, the techniques and methods of the 

study remain general, in the sense that they can be used with any other reasonably chosen set of 

constants. 
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 The modifications have been tested in off-line runs and in an atmospheric model.  

Examples illustrating the performance of the scheme are presented. 

1. Introduction 

 

 Over the last decade the Mellor-Yamada Level 2.5 model [e.g., Mellor and Yamada 1982 

(hereafter referred to as MY82)] has become increasingly popular, presumably because of its 

conceptual appeal and straightforwardness, promising both accuracy in the treatment of the 

turbulent processes and efficient computational algorithm.  Yet, the  Level 2.5 model is known to 

have problems [e.g., MY82; Galperin et al. 1988; Helfand and Labraga 1988 (hereafter referred 

to as HL88); Janjić 1990 (hereafter referred to as J90); Gerrity et al. 1994 (hereafter referred to 

as GBT94)].  One should have in mind that the turbulence closure models are complex physical 

systems, so that the impact of the closure hypotheses on their internal consistency cannot always 

be fully anticipated.  Therefore, the problems come as no surprise. 

 A comprehensive analysis of the Level 2.5 model was performed by HL88.  However, they 

examined the realizability of the model in the space of stability and shear parameters that were 

dependent on both the turbulence variables and the large-scale driving flow.  Although modestly 

stated, an important further step was made by GBT94 who examined the dependence of the 

turbulent kinetic energy (TKE) production on the gradient Richardson number.  The gradient 

Richardson number was computed from the large-scale variables alone, which provided a clearer 

insight into the relationship between the turbulence and the driving flow. 

 An early response to the problems of the Level 2.5 model was to clip the buoyancy and 

shear parameters driving the turbulence [e.g., MY82, Eqs. (33a)-(33b), HL88, J90, Eqs. (3.6)].  

Other possibilities have been examined as well, ranging from a modification of the model 
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(Galperin et al. 1988) to abandoning the Level 2.5 scheme in the case of growing convectively 

driven turbulence (HL88, GBT94). 

 The goals of the present study are (i) to define the minimum condition(s) that enable 

reasonable performance of the Level 2.5 scheme for the full range of atmospheric forcing, and 

(ii) to develop a robust, accurate, consistent and affordable computational procedure for its 

application in atmospheric models.  To this end, the problems of the Level 2.5 model that are felt 

to be most important, and not yet sufficiently understood, will be reconsidered.  Although the 

Richardson number covers the whole range of stability and shear, it has a singularity for the case 

of vanishing wind shear.  In order to avoid a special treatment of this singularity, a two 

dimensional space will be used, with the stability and shear of the driving flow on the coordinate 

axes.  In the context of the second of the stated goals, the question of the method used to solve 

the equation describing the contributions of the TKE production and dissipation will be 

addressed. 

 The results that will be presented have been obtained using a set of empirical constants 

which is different from that proposed in MY82.  The new set of constants is derived in the 

Appendix.  With these constants a better agreement with some important observed data is 

achieved.  Nevertheless, the techniques and methods of the study remain general in the sense that 

they can be used with the MY82, or any other reasonably chosen set of constants, leading to 

analogous results. 

 

2. The Mellor-Yamada Level 2.5 turbulence closure scheme  
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 The Mellor-Yamada Level 2.5 turbulence closure model is governed by the equations 

(MY82): 

   d(q2/2)/dt - (∂/∂z)[l q Sq (∂/∂z)(q2/2)] = Ps + Pb - ε (2.1) 

   Ps = -<wu> (∂U/∂z)-<wu> (∂V/∂z), Pb = β g <wθv>, ε = q3/(B1 l) (2.2) 

   -<wu> = KM ∂U/∂z, -<wv> = KM ∂V/∂z, 

   -<wθv>= KH ∂Θv/∂z, -<ws> = KH ∂S/∂z,  (2.3) 

   KM = l q SM, KH = l q SH, (2.4) 

   SM (6 A1 A2 GM) + SH (1 - 3 A2 B2 GH -12 A1 A2 GH) = A2, (2.5) 

 SM (1 + 6 A12 GM - 9 A1 A2 GH) - SH (12 A12 GH + 9 A1 A2 GH) = A1 (1-3 C1), (2.6) 

   GM = (l2/q2)[(∂U/∂z)2 + (∂V/∂z)2],  GH = - (l2/q2) β g ∂Θv/∂z. (2.7) 

Here, Sq=0.20, β=1/273, and the constants A1, A2, B1, B2 and C1 are determined from 

experimental data and internal relations as discussed in more detail in MY82 and in the 

Appendix.  The turbulent kinetic energy (TKE) is denoted by q2/2, and l is the master length 

scale yet to be determined.  The variables describing the motions resolved by the atmospheric 

model are denoted by capital letters, and the lower case letters are used for the turbulent 

fluctuations.  The subscript v is used to denote virtual potential temperature and S is a passive 

quantity.  Note that the specific humidity is considered as a passive quantity within the 

framework of the model (2.1)-(2.7); the phase changes of atmospheric water affect the 

turbulence indirectly, through changes of the large-scale driving parameters.  KM and KH are the 

vertical turbulent exchange coefficients for momentum and heat respectively and, as indicated by 

the subscript, Ps and Pb are the terms describing the production of the turbulent kinetic energy 
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due to shear and buoyancy.  The dissipation is denoted by ε.  Otherwise, the symbols have their 

usual meaning. 

 Several methods have been proposed for calculating the master length scale l.  However, 

this matter is not directly relevant for the considerations that will follow as long as a diagnostic 

formula is used for that purpose.  A closer look at this problem will be postponed until the 

conditions that l should satisfy are identified.  It will suffice to say here that having defined the 

master length scale l, GM and GH are calculated from (2.7), and SM and SH are then obtained 

solving the system (2.5)-(2.6).  Now the exchange coefficients for momentum and heat (2.4) can 

be evaluated, and consequently the turbulent fluxes (2.3), and the forcing terms (2.2) on the right 

hand side of (2.1) can be obtained. 

 

3. Parameter controlling production/dissipation of TKE 

 

 From (2.2), (2.3), (2.4) and (2.7), the contribution of the production/dissipation term may 

be rewritten in the form [c.f., e.g., J90, Eq. (3.7)] 

   Ps + Pb - ε = [SM GM + SH GH -1/B1] q3/l. (3.1) 

Then, concentrating only to the contribution of the TKE production and dissipation, from (2.1) 

[c.f., J90, Eq. (3.10)-(3.11)] 

   ∂q/∂t = (q2/l) [SM GM + SH GH - 1/B1]. (3.2) 

and, 

   (1/l) ∂q/∂t = (q/l)2 [SM GM + SH GH - 1/B1]. (3.3) 
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After rearrangement, (3.3) may be rewritten as 

   l ∂(1/q)/∂t = - [SM GM + SH GH -1/B1]. (3.4) 

The procedure leading to (3.4) implies that q is positive.  Apparently, an analogous assumption 

should be made for the master length scale l.  These two assumptions will be present throughout 

the considerations that follow. 

 Note that if local changes of the master length scale l are neglected, as is usually done 

when using a separate (diagnostic) method for its computation, the master length scale may be 

placed under the differentiation sign on the left hand side of (3.4).  Interpreting l as a turbulence 

macro scale (e.g. MY82), in the case of well developed turbulence this can be justified by the 

(often implied) assumption that the characteristic time scale of the variation of l is larger than 

that of q2.  A more pragmatic, and perhaps more general interpretation requiring no assumptions 

on the time scales, is that the diagnostic equation for l and the prognostic equation for q2 are 

simply solved in the split mode over the time step ∆t. 

 In (3.4) the contribution of the TKE production terms is reflected by 

   SM GM + SH GH . (3.5) 

Denoting the determinant of the system (2.5)-(2.6) for SM and SH by ∆, and using the symbols 

∆(SM) and ∆(SH) for the determinants obtained, respectively, by replacing the first and the 

second column of ∆ by the right hand side column of (2.5)-(2.6), 

   SM = -∆(SM)/(-∆), (3.6) 

   SH = -∆(SH)/(-∆) . (3.7) 

Thus, the contribution of the TKE production terms (3.5) can be rewritten as 
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   SM GM + SH GH = - [∆(SM) GM + ∆(SH) GH]/(-∆) . (3.9) 

Having in mind the definitions of GM and GH (2.7), and introducing new shear and stability 

parameters, 

   gH = ∂Θv/∂z,  gM = (∂U/∂z)2 + (∂V/∂z)2,  (3.10) 

after considerable, but straightforward algebra one obtains 

 (-∆) = 9 A1 A2 (β g) gH [2 A1 (B2 - 3 A2) gM + A2 (12 A1 + 3 B2)(β g) gH] (l/q)4 + 

   + 3 [2 A12 gM + A2 (7 A1 + B2)(β g) gH] (l/q)2 + 1, (3.11) 

  ∆(SM)= -3 A1 A2 (3 A2+3 B2 C1+12 A1 C1-B2)(β g) gH (l/q)2+A1 (1-3 C1), (3.12) 

 -∆(SM) GM = - [3 A1 A2 (3 A2  + 3 B2 C1 + 12 A1 C1 - B2) gM (β g) gH (l/q)4 - 

   - A1 (1 - 3 C1) gM (l/q)2 ], (3.13) 

   -∆(SH) = A2 + 9 A1 A2 [A2 (β g) gH + 2 A1 C1 gM] (l/q)2, (3.14) 

   -∆(SH) GH=-{A2 (β g) gH (l/q)2+9 A1 A2 [A2 (β g)2 gH2+ 

   +2 A1 C1 gM (β g) gH](l/q)4} (3.15) 

and finally, from (3.13) and (3.15), 

   -[∆(SM) GM + ∆(SH) GH] = 

     [9 A1 A22 (β g)2 gH2+3 A1 A2 (3 A2+3 B2 C1+18 A1 C1-B2) gM (β g) gH] (l/q)4 + (3.16) 

   +[A1 (1 - 3 C1) gM - A2 (β g) gH] (l/q)2. 
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Thus, the numerator and the denominator of the expression on the right hand side of (3.9) are 

given by (3.16) and (3.11), respectively.  Denoting the coefficients of (l/q)4 and (l/q)2 in (3.16) 

and (3.11) by 

     A = - [9 A1 A22 (β g)2 gH2 +3 A1 A2 (3 A2 +3 B2 C1+18 A1 C1-B2) gM (β g) gH], (3.17) 

   B = [A1 (1 - 3 C1) gM - A2 (β g) gH], (3.18) 

 C = 9 [A1 A22 (12 A1 + 3 B2)(β g)2 gH2 + 2 A12 A2 (B2 –3 A2) gM (β g) gH], (3.19) 

   D = 3 [2 A12 gM + A2 (7 A1 + B2)(β g) gH], (3.20) 

(3.4) can be rewritten as an ordinary differential equation 

   l d(1/q)/dt = - {[A (l/q)4 + B (l/q)2]/[C (l/q)4 + D (l/q)2 + 1] - 1/B1}. (3.21) 

Recalling that q and l are positive, the evolution of TKE may have singularities depending on 

the ratio (l/q) appearing as the only independent variable on the right hand side of (3.21).  

Therefore this ratio is the parameter that controls the TKE production in (2.1).  The contribution 

of the dissipation term in (3.21) is reflected by the constant 1/B1, so that the dissipation poses no 

problem.  Note that (l/q) has the dimension of time.  It is sometimes called “return to isotropy 

time” (e.g., Canuto et al. 1994) 

 The stability and shear parameters (3.10) depend entirely on the large-scale driving flow.  

Thus, for the reasons pointed out in the introductory section, the singularity problem will be 

further examined in the gH x gM plane. 

 

 
9 



4. The non-singularity constraint for the TKE production 

 

 The singularity problem of the Mellor-Yamada Level 2.5 model visibly manifests itself 

when trying to solve the algebraic equations (2.5)-(2.6).  In the unstable case, the determinant of 

the system (3.6) may approach zero, so that the denominator (3.11) on the right hand side of 

(3.9) may vanish.  Recalling the definitions of C (3.19), and B (3.20), this condition can be 

written in the form 

   (-∆) = C (l/q)4 + B (l/q)2 + 1 = 0. (4.1) 

Evaluation of the discriminant of (4.1) using the constants A1, A2, B1, B2 and C1 derived in the 

Appendix shows that it is positive in the relevant part of the gH x gM plane, except at the 

coordinate origin gH=gM=0 where it vanishes.  Therefore, (4.1) has two real roots for (l/q)2, 

except at the coordinate origin where it has one. 

 It is also useful to find the equilibrium solution for (l/q)2, i.e., the solution for which the 

TKE production is exactly balanced by the dissipation.  Recall that the Mellor-Yamada Level 2 

turbulence closure scheme is derived from the Level 2.5 model assuming that the production and 

the dissipation are always balanced (MY82).  If an equilibrium solution exists, that will be a non-

singular value of (l/q).  Then, as in GBT94, a root of (4.1) can be assumed to define the 

condition for non-singularity if there are no nonsingular solutions between that root and the 

equilibrium solution. 

 From (3.4), the requirement for the equilibrium has the form 

   SM GM + SH GH - 1/B1 = 0. (4.3) 

Using again (3.11) and (3.16), the condition (4.3) may be rewritten as 

 
10 



   E (l/q)4 + F (l/q)2 + 1 = 0, (4.4) 

where 

   E = [9 A1 A22 B1 + 9 A1 A22 (12 A1 + 3 B2)](β g)2 gH2+ 

       + [3 A1 A2 B1 (3 A2 +3 B2 C1 +18 A1 C1 -B2)+18 A12 A2 (B2 - 3 A2)] gM (β g) gH (4.5) 

  F = [3 A2 (7 A1 + B2) + A2 B1](β g) gH + [6 A12 - A1 B1 (1 - 3 C1)] gM. (4.6) 

As before, evaluation of the discriminant of (4.4) using the constants A1, A2, B1, B2 and C1 

derived in the Appendix shows that it is positive in the relevant part of the gH x gM plane, 

except at the coordinate origin gH=gM=0 where it vanishes.  Therefore, (4.4) has two real roots 

for (l/q)2, except at the coordinate origin where it has one. 

 Analyzing the quadratic equations (4.4) and (4.1), one may notice that their respective 

leading coefficients E, defined by (4.5), and C, defined by (3.19), may vanish within the relevant 

range of the parameters gM and gH with the constants A1, A2, B1, B2 and C1 derived in the 

Appendix.  In order (i) to avoid special treatment of these singularities, and (ii) to facilitate the 

comparison with the results of GBT94, it is more convenient to use the equations equivalent to 

(4.1) and (4.4) for the reciprocal of (l/q)2, i.e., for (q/l)2.  In this way, instead of (4.1) and (4.4) 

one obtains, respectively, 

   (q/l)4 + D (q/l)2 + C = 0, (4.8) 

and 

   (q/l)4 + F (q/l)2 + E=0. (4.9) 

Here, the constants C, D, E and F are defined by (3.19), (3.20), (4.5) and (4.6) as before.  Note 

that the discriminants of the equations (4.8) and (4.9) are the same as those of the equations (4.1) 
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and (4.4).  Therefore, the results obtained analyzing the discriminants of the equations (4.1) and 

(4.4) are also applicable to the equations (4.8) and (4.9). 

 The solutions of the non-singularity condition equation (4.8), p1 (upper panel) and p2 

(lower panel) are shown in Fig. 1 for the constants A1, A2, B1, B2 and C1 derived in the 

Appendix, and a very wide range of gH and gM [±1º K m-1 and (2 m s-1 m-1)2, respectively].  

The solutions p1 and p2 correspond to the roots with the plus and the minus sign in front of the 

square root, respectively. 

 The solutions of the TKE equilibrium equation (4.9) s1 (upper panel) and s2 (lower panel) 

are shown in Fig. 2 for the constants A1, A2, B1, B2 and C1 derived in the Appendix, and the 

same range of gH and gM [±1º K m-1 and (2 m s-1 m-1)2, respectively].  The solutions s1 and s2 

correspond to the roots with the plus and the minus sign in front of the square root, respectively. 

 As can be inferred analyzing the solutions of (4.8), as well as from Fig 2, s1 is greater than 

s2.  In addition, contrary to what one would expect from the equilibrium solution, s2 is negative 

for stable stratification.  In contrast to that, s1 is positive almost everywhere in the considered 

range of gH and gM.  Thus, s1 is identified as the actual equilibrium solution of the Mellor-

Yamada Level 2.5 model.  Also, as can be verified comparing the solutions, s1 is always larger 

than p1 within the considered range. 

 However, s1 can also be negative, i.e., a physically meaningful equilibrium solution may 

not exist in a part of the gH x gM plane corresponding to very strong stability and/or very weak 

wind shear.  Therefore, within the framework of the Level 2.5 model, the turbulence cannot be 

maintained in the range where s1 is negative.  Note that the vanishing equilibrium solution of 

(4.9) s1=(q/l)2=0 implies that the free term in (4.9) must also vanish, i.e., that 

   E = 0. (4.10) 
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Having in mind the definition of E (4.5), and introducing the constants 

   aeH = [9 A1 A22 B1 + 9 A1 A22 (12 A1 + 3 B2)](β g) (4.11) 

 aeM = 3 A1 A2 B1 (3 A2 + 3 B2 C1 + 18 A1 C1 - B2) + 18 A12 A2 (B2 -3 A2), (4.12) 

the condition (4.10) defines a straight line in the gH x gM  plane 

   aeH gH + aeM gM = 0 (4.13) 

with the slope 

   Req = - aeH/aeM , (4.14) 

so that (4.13) can be rewritten as 

   gM = Req gH. (4.15) 

Thus, the turbulence cannot be maintained in the gH x gM plane below the line (4.15).  Note that 

(4.15) also includes the coordinate origin point gH=gM=0.  For the constants A1, A2, B1, B2 and 

C1 derived in the Appendix,  

   Req=0.071139700558869442. (4.16) 

Contrary to the usual practice, the constant (4.16), as well as other constants defined later on, are 

given with a large number of significant digits in order to ensure reproducibility of the numerical 

results.  As a matter of curiosity, having in mind the definitions of gH and gM (3.10), it follows 

from (4.16) that with the new constants the nonzero equilibrium solutions are possible for 

Ri<0.505.  In the case of the original MY82 constants, this limit is 0.193. 

 As can be seen analyzing the solutions of (4.8), as well as from Fig. 1, p1 is nonnegative in 

the unstable and neutral range, and it is always greater than p2.  The root p2 is negative almost 
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everywhere in the considered part of the gH x gM space.  As can be readily verified, with p1 

greater than p2, and s1 greater than p1 in the unstable and neutral ranges, there are no singular 

solutions between p1 and s1, which also points to p1 as the root that defines the non-singularity.  

Thus, p1 is left for imposing a physically meaningful non-singularity condition on (q/l)2 in the 

unstable and neutral ranges. 

 The equilibrium solution s1 being larger than p1 indicates that the singularity related to the 

root p1 is associated with growing turbulence (HL88, GBT94), i.e., with the situation where the 

equilibrium level s1 has not been reached.  For stable stratification, the implied assumptions that 

l and q are positive appear to be sufficient for the non-singularity of the TKE production term.  

Thus, the non-singularity condition for the TKE production term can be written in the form 

   q/l > (p1)1/2, p1 > 0 and q, l > 0, p1 < 0, 

or returning to the reciprocal l/q, 

   l/q < (1/p1)1/2, p1 > 0 and l, q > 0, p1 < 0. (4.17) 

The values of the upper bound 1/p1 for (l/q)2 for p1>0 are displayed in Fig. 3 for the constants 

A1, A2, B1, B2 and C1 derived in the Appendix, and the same wide range of gH and gM as 

before [±1º K m-1 and (2 m s-1 m-1)2, respectively]. 

 

5. The ratio <w2>/q2 in the stable range  

 

 As pointed out in Section 4, the non-singularity condition for the TKE production term has 

been related to the regime of growing turbulence in the unstable range.  It may be interesting to 
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examine whether some useful information about the internal model relationships can be 

extracted in the case of vanishing turbulence in the stable range. 

 Introducing the symbol Rs for the ratio <w2>/q2, one may write [MY82, Eq. (37)], 

   Rs =<w2>/q2 = 1/3 - 2 A1 SM GM + 4 A1 SH GH. (5.1) 

Note that in the stable range both non-constant terms on the right hand side of (5.1) act in the 

direction of reducing the ratio Rs.  Therefore, it may be interesting to find out what is the limit 

on the ratio (5.1) in the case of vanishing TKE along the line (4.15) where the equilibrium 

solution s1 vanishes.  This limit will be denoted by RsL. 

 Substituting (3.6) and (3.7) into (5.1), and using the definitions (3.11), (3.13) and (3.15), 

one obtains 

   [27 A1 A22 B2 (β g)2 gH2 + 54 A12 A2 B2 C1 gM (β g) gH] (l/q)4+ 

   +[18 A12 C1 gM + (9 A1 A2 + 3 A2 B2)(β g) gH] (l/q)2 + 1=3 Rs (-∆) . (5.2) 

All terms on the left hand side of (5.2) are positive in the stable range (gH>0), and, as can be 

readily verified, (-∆) is positive if (4.17) is satisfied.  Therefore, Rs must also be positive under 

the same conditions. 

 Using the definitions of C (3.19), and D (3.20), (3.11) can be rewritten as 

   (-∆) = C (l/q)4 + D (l/q)2 + 1, 

so that (5.2) takes the form 

 {[27 A1 A22 B2 (β g)2 gH2 + 54 A12 A2 B2 C1 gM (β g) gH] - 3 Rs C} (l/q)4 + 

 {[18 A12 C1 gM +(9 A1 A2 +3 A2 B2) (β g) gH] - 3 Rs D} (l/q)2 + (1 - 3 Rs) = 0. (5.3) 
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Defining 

  G = {[27 A1 A22 B2 (β g)2 gH2 + 54 A12 A2 B2 C1 gM (β g) gH] - 3 Rs C}, (5.4) 

   H = {[18 A12 C1 gM + (9 A1 A2 + 3 A2 B2)(β g) gH] - 3 Rs D}, 

   I = (1 - 3 Rs), 

(5.3) can be further rewritten as 

   G (l/q)4 + H (l/q)2 + I = 0, (5.5) 

or in terms of (q/l)2, 

   I (q/l)4 + H (q/l)2 + G = 0. (5.6) 

 Substituting the vanishing solution into (5.6), it is readily seen that the free term (5.4) of 

(5.6) must vanish, i.e., that 

  G = {[27 A1 A22 B2 (β g)2 gH2 + 54 A12 A2 B2 C1 gM (β g) gH]-3 RsL C}=0. (5.7) 

Introducing the constants, 

   auH = 27 A1 A22 B2 (β g)2, 

   auM = 54 A12 A2 B2 C1 (β g), 

(5.7) can be rewritten in a more compact form 

   auH gH2 + auM gM gH = 3 RsL C. (5.8) 

On the other hand, defining 
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   adH = 9 A1 A22 (12 A1 + 3 B2)(β g)2, 

   adM = 18 A12 A2 (B2 - 3A2) (β g), 

(3.19) can be rewritten in the form 

   C = adH gH2 + adM gM gH, 

so that, upon substitution in (5.8), 

   auH gH + auM gM = 3 RsL adH gH + 3 RsL adM gM 

and 

   auH + auM gM/gH = 3 RsL adH + 3 RsL adM gM/gH. (5.9) 

The limit RsL is reached along the line (4.15), so that substituting gM/gH from this equation into 

(5.9), and solving for RsL one obtains 

   RsL = (auH + auM Req)/(3 adH + 3 adM Req). (5.10) 

Thus, (5.10) is the limit on the ratio <w2>/q2 corresponding to vanishing TKE along the line 

(4.15).   For the constants A1, A2, B1, B2 and C1 derived in the Appendix, 

   RsL=0.1435678749111584933. (5.11) 

It will be assumed here that Rs cannot take on values below the limit RsL. 

 With the constants A1, A2, B1, B2 and C1 derived in the Appendix, and Rs close to RsL, 

the discriminant of (5.5) is positive in the relevant part of the stable range of the gH x gM plane 

except at the coordinate origin gH=gM=0 where it vanishes.  Therefore, (5.5) has two real roots 
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for (l/q)2, except at the coordinate origin where it has one.  Apparently, the same applies to the 

roots of (5.6). 

 The solutions of (5.6) t1 (left panel) and t2 (right panel) are shown in Fig. 4 for the 

constants A1, A2, B1, B2 and C1 derived in the Appendix, Rs=(1+10-12)RsL, and a very wide 

range of the stable part of the gH x gM plane [1º K m-1 and (2 m s-1 m-1)2, respectively].  The 

solutions t1 and t2 correspond to the roots with the plus and the minus sign in front of the square 

root, respectively. 

 The solution t2 is negative in the considered region, so that t1 remains as the solution with 

possible physical significance.  In addition, as long as Rs stays close to RsL, s1 is greater than t1 

except in the vicinity of the line (4.15) where the two solutions coincide for Rs=RsL. 

 As can be seen from Fig. 4, the solution t1 can also become negative for strong stability 

and/or weak wind shear.  With the presently chosen constants, this happens along the line in the 

gH x gM space with the slope 

   0.07113970055869619755. (5.12) 

Note that (5.12) is slightly smaller than (4.16), so that the range where t1 is negative is a subset 

of the range where there is no positive equilibrium solution.  As can be verified by direct 

inspection, the larger the value chosen for Rs, the larger is the value obtained for t1.  This 

explains the subtle difference between (4.16) and (5.12), the latter being obtained with Rs 

slightly larger than RsL.  However, as also can be directly verified, RsL is the smallest single 

value of Rs for which t1 remains nonnegative in the considered part of the stable range of the gH 

x gM plane in which the equilibrium solution s1 is nonnegative.  Thus, t1 obtained for a suitably 

chosen value of Rs can again be used to impose a lower boundary on (q/l)2 in the case of stable 

stratification, i.e., one may require that 
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   q/l > (t1)1/2, p1 < 0, 

or returning to the reciprocal l/q, 

   l/q < (1/t1)1/2, p1 < 0. (5.13) 

As can be seen from Fig. 4, (5.13) is strongly affected by the shear, and much less so by the 

stability. 

 Note that HL88 imposed the lower bound of 0.12 on Rs following the MY82 argument that 

the Rotta hypothesis might fail for lower values.  Here, a somewhat stricter criterion following 

from (5.11) has been obtained. 

 

6. Summary of the restrictions on the master length scale following from the non-

singularity condition and other considerations 

 

 Recalling the concluding remarks of Section 4 where p1 was identified as the solution 

defining the non-singularity of the TKE production term in the unstable range, and the restriction 

on (l/q) derived in Section 5 for stable stratification, a criterion of the form (4.17) can be 

extended also to the stable range, i.e., one may require  

   0 < l < a q (6.1a) 

   where  

   a = (1/p1)1/2, for p1 > 0, and  a = (1/t1)1/2, for p1 < 0 (6.1b) 
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The criterion (6.1) is not very strict for weak instability.  In contrast to that, the restriction 

becomes severe in the stable range. 

 The non-singularity condition related to the root p1 in the unstable range is associated with 

growing turbulence (HL88, GBT94), i.e., with the situation where the equilibrium level s1 has 

not been reached.  This condition implies that the master length scale should locally approach 

zero for vanishing turbulent kinetic energy. 

 In the stable range the criterion (6.1) formally resembles the widely used Deardorff's 

(1976) restriction on l.  However, unlike Deardorff's criterion which was based on 

considerations independent of the turbulence closure model, (5.13), and consequently (6.1) in the 

stable range, reflect an internal relationship inherent to the model.  As a more substantive 

difference, one may note that the stability plays the key role in limiting l in the Deardorff's 

criterion, while, as already pointed out, in the case of (5.13), and (6.1), the ratio of (l/q) is 

strongly affected by the shear, and much less so by the stability. 

 If violated, the criterion (6.1) can be satisfied either by reducing the diagnostically 

computed l, or by increasing TKE as was done e.g., by GBT94.  Since the evolution of TKE is 

governed by a differential equation, changing TKE beyond the changes predicted by this 

equation would represent a deviation from the adopted turbulence closure model.  Instead, it is 

postulated that the non-singularity condition should be applied in such a way that this equation 

always remains valid.  Accordingly, the explanation of the problem proposed here is that in the 

case of growing turbulence the diagnostic method for calculating l overestimates the master 

length scale in the unstable and neutral ranges for a given level of turbulent kinetic energy, 

leading to a violation of the criterion (6.1).  The proposed interpretation suggests that the non-

singularity problem in the unstable range should be controlled by restricting the diagnostically 
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computed master length scale l using (6.1).  By analogy, (6.1) is interpreted as the upper bound 

on l in the stable range as well. 

 

7. The time integration of the TKE production and dissipation term 

 

 In addition to the already considered problems, a method for solving (2.1) should be 

developed (c.f., e.g., Yamada 1986) in such a way as to guarantee a reasonable evolution of the 

solution.  The dominating term in (2.1) is by far the TKE production/dissipation.  Therefore, 

attention will be focused only to solving (3.21).  As usual, in solving the equation for TKE, the 

master length scale is kept constant over the time step ∆t.  As already pointed out, this may be 

justified by the implied assumption that in the case of developed turbulence the time scale 

corresponding to the diagnostically computed integral quantity such as the master length scale is 

larger than that corresponding to a local variable such as q2.  A more pragmatic, and as will be 

pointed out later, more accurate interpretation under certain circumstances, is that the equations 

for l and q2 are simply solved in the split mode over the time step ∆t.  In accordance with these 

considerations, and for compactness, the master length scale will be written under the 

differentiation sign on the left hand side of (3.21), i.e., (3.21) will be rewritten in the form 

   d(l/q)/dt = - {[A (l/q)4 + B (l/q)2]/[C (l/q)4 + D (l/q)2 + 1] -1/B1}. (7.1) 

Recall that the constants A, B, C and D are defined by (3.17)-(3.20). 

 The method proposed here is to linearize the right hand side of (7.1) with respect to l/q, 

and then to iterate until the required accuracy is achieved.  If the right hand side of (7.1) is 

denoted by R, 

 
21 



 dR/d(l/q) = R' = - 2 [(A D-B C) (l/q)5 +2 A (l/q)3 +B (l/q)]/[C (l/q)4 +D (l/q)2 +1]2. (7.2) 

The iterative procedure can then be described using the linearized version of (7.1) by 

   d(l/q)i+1/dt = R[(l/q)i] + R'[(l/q)i] [(l/q)i+1 - (l/q)i], (7.3) 

where (l/q)i is the value of l/q around which the linearization is performed.  It seems natural to 

start the iterations linearizing (7.1) around l/q corresponding to the equilibrium solution s1 of the 

equation (4.8).  For this value of l/q, R=0, so that the solution of (7.1) should not go across the 

equilibrium, no matter from which side it tends to it.  As can be easily verified, the solution of 

(7.3) has the form 

   (l/q)i+1 = (l/q)i - R[(l/q)i]/R'[(l/q)i] + 

   {R[(l/q)i]/R'[(l/q)i] + [(l/q)0 - (l/q)i]} exp{∆t R'[(l/q)i]}, (7.4) 

where (l/q)0 is the initial value of l/q at the beginning of the time step ∆t.  Thus, in every 

subsequent iteration, the right hand side is linearized around the solution (7.4) obtained in the 

previous iteration, and the resulting linear differential equation is integrated starting always from 

the same initial value (l/q)0. 

 It is not obvious that the procedure (7.2)-(7.4) converges, and if it does, how fast the 

convergence is.  In order to answer these questions, a numerical test has been set up.  For the 

choice of constants derived in the Appendix, (7.4) is solved starting from 

   (l/q)0 = (1/p1)1/2/(1+10-12)1/2, p1 > 0, 

   (l/q)0=  (1/t1)1/2 with Rs=(1+10-12) RsL, p1 < 0. (7.5) 

at the beginning of the time step ∆t, i.e., at the limits specified by the criterion (7.1).  The 

parameters Rs and RsL, and the solution t1, were discussed in detail in Section 5.  For 
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computational reasons, if |gH|<εH=10-8, gH is set to εH.  The sign chosen for this artificial limit 

does not seem to matter.  Note that its numerical value corresponds to the lapse rate of 1º C per 

one million kilometers.  Similarly, gM is not allowed to drop below εM=ReqεH, where Req is 

defined by (4.14). 

 The number of iterations needed in order to obtain the solution of (7.4) using (7.5) is 

typically quite small.  More iterations are needed if higher accuracy is to be achieved, 

particularly in the vicinity of the line (4.15) where the equilibrium solution s1 vanishes.  

However, no convergence problems have been encountered in severe tests even if the difference 

between (l/q)i+1 and (l/q)i is required to be at the eighth significant digit as the criterion for 

terminating the iterative procedure.  In the range of the gH x gM plane where there is no 

equilibrium solution, the iterations are not made.  For applications in atmospheric models, two 

iterations appear to be more than enough in order to obtain solutions with sufficient accuracy. 

 So far, the accuracy and efficiency of the procedure (7.4) have been commented on, but not 

the solutions obtained.  In the unstable range, as a rule, when the convergence is reached within a 

single iteration, the solution corresponds to the equilibrium solution for the given master length 

scale l and external forcing, measured, e.g., in terms of gH and gM.  This does not necessarily 

mean that a steady equilibrium state is reached.  In accordance with the considerations of Section 

4, in the case of growing turbulence, it is natural to expect that the master length scale (computed 

diagnostically) will grow as well.  Thus, even if the equilibrium solution is reached within the 

current time step, due to increase of l, the equilibrium may again be violated in the next time 

step, so that the turbulence can grow by consecutive, split mode, increases of TKE and l.  Note 

that this scenario contradicts the assumption on different time scales for l and q in the areas of 

fast growing turbulence. 
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8. The implementation 

 

 The described techniques have been implemented in a single column model, and in the 

NCEP Meso model (Chen et al. 1997; Janjić 1979, 1984, 1990, 1994; Mesinger et al. 1988; Zhao 

and Carr 1997).  As in J90, the large-scale variables are defined in the middle of the model 

layers, whereas the turbulence parameters are carried at the interfaces of the layers.  However, 

compared to J90, the order of the computations has been changed.  The master length scale is 

determined first, and then the contribution due to the production and dissipation terms is added 

to TKE.  The diffusion coefficients are computed using the updated TKE, but without 

recomputation of the master length scale.  The vertical diffusion of TKE is postponed until after 

the computation of the turbulent exchange coefficients.  Due to the linearization of the 

production/dissipation equation (7.3) and the iterative procedure used, practically the same 

parameters determine the TKE production/dissipation and the vertical diffusion of the large scale 

variables.  More precisely, qi determines the evolution of TKE, while qi+1 enters the exchange 

coefficients.  However, due to fast convergence of the procedure (7.3)-(7.4), the difference 

between qi and qi+1 should be small. 

 For the preliminary value of the master length scale within the PBL, the diagnostic formula 

of the form (e.g., MY82) 

                                                                    HPBL       HPBL 

   l = l0 kz/(kz + l0) ,  l0 = α ∫( |z| q dz) / ∫( q dz) ,  α=const , (8.1a) 

                                                                       0               0 

is used.  In (8.1a), HPBL is the PBL height, k is the von Karman constant, and α is an empirical 

constant set to 0.25 in the tests.  According to (8.1a), l tends to kz for small z, and to the 
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asymptotic integral value l0 for large z.  The PBL height is defined as the lowest model level 

above the surface at which the equilibrium turbulent energy s1 becomes negative, or 

alternatively, as the height of the lowest model level at which TKE approaches its prescribed 

lower bound.  Following Mason (1989), above the PBL the master length scale is computed as a 

fraction of the model grid distance ∆z, i.e., 

   l = 0.23 ∆z (8.1b) 

The values obtained either from (8.1a), or (8.1b) are then modified if necessary in order to 

satisfy the criterion (7.1). 

 A surface layer formulated following the similarity theory (Monin and Obukhov 1954) is 

used to provide the lower boundary conditions for the Level 2.5 model (Janjić 1996).  The 

Beljaars (1994) correction is applied in order to avoid singularities in the case of free convection 

and vanishing wind speed (and consequently u*).  With this correction, a fraction of the surface 

buoyancy flux is converted into kinetic energy of unorganized flow near the surface, so that the 

friction velocity u* is never identically equal to zero.  Anticipating the use of the radiative skin 

temperature instead of near surface air temperature as the lower boundary condition, a viscous 

sublayer parameterization recently proposed by Zilitinkevitch (1995) is used.  With this 

parameterization, the temperature and humidity roughness height z0T is defined in terms of the 

roughness height for momentum z0M as 

   z0T = z0M exp (- k C Re1/2), (8.2) 

where C is an empirical constant Re=z0Mu*/ν is the Reynolds number, and ν is the molecular 

viscosity for momentum.  Over the ocean, the viscous sublayer is parameterized following Janjić 

(1994).  The Paulson (1970) integral similarity functions are used over land, and the functions 

derived from the Mellor-Yamada Level 2 model by Lobocki (1993) are applied over water. 
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9. The tests 

 

 Emphasis is placed on the convective boundary layers since it is sometimes argued that the 

Mellor-Yamada Level 2.5 scheme has difficulties with unstable stratification.  Generally, with 

the techniques proposed here, the large amplitude high frequency oscillations pointed out by 

HL88 and GBT94 do not characterize the simulated evolution of the turbulent variables.  This 

point will be illustrated later on by an example from a real data run using the Meso model.  In 

the mean time, results obtained in the idealized, single column tests will be examined. 

 

(a) Single column tests 

 In the single column tests, the vertical resolution below 3264 m is chosen in such a way as 

to mimic the vertical resolution of the 38 layer Meso model for the points with no orography.  

Above the 3264 m interface, the depths of the layers used in the off-line tests do not change with 

height. The initial profiles of temperature, humidity and wind are prescribed as piece-wise linear 

functions of height.  The temperature and humidity are constant (220º K and 0 kg/kg) from the 

top of the atmosphere to the first model level below 15000 m respectively, and then increase 

linearly as the height decreases, reaching the values of 290º K and 0.02 kg/kg at the ground 

surface.  Note that such an atmosphere is rather stable.  Similarly, if the wind speed is not 

specified to be zero, the velocity components are constant from the top to the first model level 

below 2000 m, and then decrease linearly with decreasing height, reaching zero at the surface. 

 
26 



 In the tests over land points, the PBL is driven primarily by a cosine shaped diurnal cycle 

in the mean daily surface temperature.  In fact, in order to simulate the extended duration of the 

solar heating on a summer day, the cosine curve is shifted upwards by 2.5º K, thereby increasing 

the mean surface temperature by the same amount.  The amplitude of the cosine wave was 12.5º 

K, so that the full swing of the diurnal cycle was 25º K.  The integrations started with the 

minimum in the cosine forcing, i.e., at the local "midnight".  The surface latent heat flux was 

computed as 15% of the potential surface latent heat flux.  The time step used was 400 s. 

 Since the model resolution is variable in the lower troposphere, and the PBL height 

changes during the day, the vertical distributions that will be shown are mapped at each time step 

from the model grid to a regular 20 point grid using cubic splines.  The mapped data are then 

used to obtain the time averaged profiles. 

 In the free convection case, the initial large-scale wind is set to zero.  Since there is no 

forcing other than the vertical turbulent transports, the large-scale wind field remains zero during 

the integration.  The time averaged vertical distribution of the turbulent exchange coefficient for 

heat KH normalized by the product of w* and HPBL is shown in Fig. 5 as a function of the 

normalized height z/HPBL.  As usual, the scale w* is defined by 

   w* = [β g <wθv>sHPBL]1/3 

where <wθv> is the surface buoyancy flux.  For the data shown in the figure, the time averaging 

was performed over the period with the PBL height and the surface buoyancy flux exceeding 500 

m, and 100 W m-2, respectively.  The PBL height  reached the maximum of 1965 m in this test.  

Strictly speaking, u* must have vanished because of the vanishing wind speed, so that u*/w*=0.  

However due to the Beljaars (1994) correction applied to the surface layer, the modified friction 

velocity u*B is greater than zero, and the average value of the modified ratio for the period 
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considered was u*B/w*=0.139.  Note that the average profile shown in Fig. 5 qualitatively 

agrees with the profiles discussed in a different context e.g. by Holtslag and Moeng (1991).  As 

in their study, the maximum value of about 0.1 is reached at about 0.4 z/HPBL. 

 However, considering that the part of the atmosphere affected by the PBL has considerable 

thermal and dynamical inertia, the question arises as to whether the mean profile shown in Fig. 5 

is stationary, and therefore equally representative for all stages of the diurnal history of a 

convective PBL.  In order to find out what is the response of the model, the normalized profiles 

of KH are plotted in Fig. 6 for more mature stages of the PBL development.  In the figure, the 

average profile obtained for the PBL height and the surface buoyancy flux exceeding 1000 m 

and 100 Wm-2, respectively, is denoted by squares, and the profile obtained for the maximum 

height of the PBL and the surface buoyancy flux greater than 100 W m-2 is denoted by triangles.  

The corresponding average ratios u*B/w* for these two cases were 0.136 and 0.133, 

respectively.  For comparison, the profile of Fig. 5 denoted by circles is also included in the 

figure.  Note that the scale of Fig. 6 has been changed compared to that of Fig. 5 in order to show 

more clearly the features of the profiles.  As can be seen from the figure, the maximum increases, 

and shifts upwards as the PBL reaches maturity.  Therefore, the model predicts nonstationary 

vertical profiles of KH.  It may also be noted in Fig. 6, that the exchange coefficients are taking 

on negative values.  This is entirely an artifact of the spline interpolation.  The values of KH 

prior to the interpolation are always positive. 

 The average vertical buoyancy fluxes normalized by their surface values are shown in Fig. 

7 as functions of normalized height z/HPBL for the three regimes of the PBL considered.  As can 

be seen from the figure, the profiles are reasonably close to a straight line up to about 0.9 

z/HPBL.  At about this height the normalized fluxes become negative, but their absolute values 

are rather small, even though they are amplified by the spline interpolation.  This is perhaps 

 
28 



something that should have been expected.  The PBL height over a grid box of an NWP model is 

inhomogenous, so that the area mean of the vertical buoyancy flux profile should have the 

negative peak smeared. 

 In the case of convective boundary layer with shear, the initial large-scale wind was set to 

10 m s-1 from the top to the first model level below 2000 m, and then the initial wind decreased 

linearly with decreasing height, reaching zero at the surface.  The averaged vertical distribution 

of the turbulent exchange coefficient for heat KH normalized by the product of w* and HPBL is 

shown in Fig. 8 as a function of the normalized height z/HPBL for the PBL height and surface 

buoyancy flux exceeding 500 m and 100 W m-2 (circles), the PBL height and surface buoyancy 

flux exceeding 1000 m and 100 W m-2 (squares), and the PBL height greater than or equal to 

1965 m and the surface buoyancy flux greater than 100 W m-2 (triangles).  In the test HPBL 

reached the maximum value of 2256 m.  The values of the ratio u*B/w* for the three cases 

considered were respectively 0.154, 0.154 and 0.158.  Although, the convection is now modified 

by shear, the profiles shown in Fig. 8 qualitatively agree with those corresponding to the free 

convection case shown in Fig. 6.  As can be seen from Fig. 8, the maximum again increases and 

shifts upwards as the PBL reaches maturity, i.e., the model once more predicts non-stationary 

vertical profiles of KH.  The negative values of KH are again produced by the spline 

interpolation. 

 The average vertical buoyancy flux normalized by its surface value is shown in Fig. 9 as a 

function of the normalized height z/HPBL for the three regimes considered.  As can be seen from 

the figure, the profiles are reasonably close to a straight line up to about 0.8 z/HPBL.  At about 

this height the normalized fluxes become negative, but their values still fall short of - 0.2, even 

though they are larger in absolute value than before since the shear helps to transport heat 

downwards at the top of the mixed layer. 
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(b) A real data example 

 The real data examples shown here were obtained using the Meso model with the step-

mountain representation with coarse horizontal resolution of 80 km and 800 s time step.  In the 

vertical, the model had 38 layers.  The integration domain covered North America and adjacent 

waters.  The only criterion for selecting the point and the time period for which to show the 

results was that a rather normal, preferably convectively driven PBL evolution not obscured by 

other weather phenomena be captured.  This criterion was satisfied at Washington-Dulles airport 

during the first 12 hours of the forecast starting at 1200 UTC, June 14 1991.  The change of the 

near surface temperature during the day was of the order of 15º C.  From the point of view of 

weather phenomena that could interfere with the PBL evolution, the day was rather uneventful.  

It started with a small high over the area, and with the pressure gradually decreasing, the high 

disappeared by the afternoon. 

 The predicted temperature and the dew point temperature as functions of height are shown 

at two hour intervals in Fig. 10.  The period covered by the vertical profiles is from 1200 to 2200 

UTC.  As can be seen from the rightmost panel, the wind changes the direction during the day, 

but remains weak throughout the lower troposphere.  At the point considered, the height of the 

model topography is 182 m and there are 35 layers above the ground with the step-mountain 

representation.  The interface between the lowest, and the second lowest model layer is at about 

270 m, so that the middle of the lowest model layer, i.e., the lowest model level, is located about 

225 m above mean sea level.  The growth and warming of the neutral mixed layer with the 

capping inversion/increased stability layer on top is clearly visible in the figure. 
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 The evolution of TKE over the first 12 hours of the forecast is shown in Fig. 11 for the ten 

lowest interfaces of the model layers.  The lowest interface coincides with the ground surface, 

and at this interface the lower boundary condition is prescribed following MY82.  The heights of 

the interfaces are indicated in the upper left corner of each diagram. 

 Generally, the large amplitude high frequency oscillations do not characterize the time 

evolution of TKE even with the time step as large as 800 s, although episodes of higher 

frequency oscillations can be seen particularly at higher levels.  The wave with a four time step 

period seems to be dominant in the initial overshooting at interfaces 823 through 1219.  

Although this may be a coincidence, this period is comparable with the large eddy turn-over 

time.  Another incidence of smaller amplitude, but higher frequency oscillation is visible in the 

later stages of the PBL development at the interfaces 1219 and 1447.  Note that the oscillations 

at these two levels have opposite phases.  Due to possible interference of other processes, 

however, it is hard to track the exact origin of this oscillation.  Traces of the disturbances 

occurring at about the same time can be seen at all but the lowest level, suggesting that the actual 

cause may not be directly related to the turbulence scheme. 

 

10. Conclusions 

 

 The implementation of the Mellor and Yamada Level 2.5 scheme in the NCEP Washington 

Meso model has been reconsidered in order to (i) identify the minimum conditions that enable 

satisfactory performance of the scheme for the full range of atmospheric forcing, and (ii) develop 

a robust, consistent, accurate and affordable computational procedure for application in synoptic 
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and subsynoptic scale models.  What is meant here by the Level 2.5 scheme is the formulation 

discussed in MY82, and reproduced in Section 2 of this paper. 

 The aspects of the Level 2.5 scheme that were believed to be most relevant and/or most 

important, were carefully analyzed in order to achieve the first goal.  The analysis revealed that it 

is sufficient to impose an appropriate upper limit on the master length scale, in addition to 

requiring that the turbulent kinetic energy (TKE) and the master length scale be positive.  The 

upper limit proposed is proportional to the square root of twice the TKE and a function of large-

scale buoyancy and shear parameters.  In the unstable range this function is defined from the 

requirement that the TKE production be nonsingular in the case of growing turbulence, and in 

the stable range the function is derived from the requirement that the ratio of the vertical velocity 

deviation variance and TKE cannot be smaller than that corresponding to the regime of 

vanishing turbulence.  In addition, a range of too strong stability and too weak shear has been 

identified where the TKE production is unable to balance the dissipation, so that the equilibrium 

solution for TKE becomes negative.  This range is analogous to the range beyond the critical 

Richardson number in lower level models. 

 Accordingly, within the PBL the master length scale is estimated using the usual integral 

formula, and above the PBL it is computed as a fraction of the vertical grid size.  The PBL height 

is defined as the height of the lowest model level at which the TKE production is unable to 

balance the dissipation, or alternatively, as the height of the lowest model level at which TKE 

approaches its prescribed lower bound.  The values of the master length scale are then modified 

if necessary in order not to exceed the upper limit determined as explained. 

 Concerning the second goal, it is proposed that the TKE production/dissipation equation be 

solved iteratively over a time step, keeping the master length scale constant.  In each iteration, 

the differential equation obtained by linearizing around the solution from the previous iteration is 
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solved.  Two iterations appear to be sufficient for satisfactory accuracy, even with very long time 

steps and strong forcing.  The computational cost of this procedure is minor.  In the range where 

the TKE production is unable to balance the dissipation, the TKE and the master length scale are 

simply set to their lower bounds. 

 Finally, the empirical constants have been revised.  The new set of constants is derived in 

the Appendix. 

 The modifications have been tested in off-line single column runs and in the Meso model.  

Choosing the examples illustrating the performance of the scheme, the emphasis was placed on 

convective boundary layers.  It is sometimes argued that the Level 2.5 scheme has difficulties 

with the unstable stratification.  Concerning the growth of the convective boundary layers, and 

the structures that developed, the results very much resemble the observations and textbook 

examples.  No obvious major deficiencies of the scheme have been observed.  The scheme has 

been implemented in the NCEP Meso model, and at other places where the model is used.  The 

scheme is also available as one of the options in the MM5 model (communicated by Dudhia) and 

it has been used in general circulation studies (communicated by Bates). 
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APPENDIX 

 

  Determination of the constants in the Mellor-Yamada Level 2.5 model 

 

 Defining 

   FB2 = [u*2 <θ2>/H2], (A1) 

where u* is the friction velocity, and H is the heat flux, MY82 Eq. (44f) may be rewritten as 

   B2 = (B11/3/Prt) FB2. (A2) 

An additional constraint relating the constants B1 and B2 referred to in MY82 is 

   RB = B1/B2 = 3/2 (A3) 

which follows "from similarity considerations for decaying homogeneous temperature and 

velocity fields."  Starting from the dynamical parameters, MY82 actually arrive at 

   RB = B1/B2 = 16.6/10.1 = 1.64356443564, (A4) 

which agrees qualitatively with (A3).  Note that the two constants, B1 and B2, could be obtained 

from (A2) and the prescription of the form (A3) or (A4).  Then 

   B1 = [(RB FB2)/Prt]3/2, (A5) 

and B2 can be calculated either from (A2) or from (A3) or (A4) and the chosen value of RB. 

 
34 



 Strictly speaking, (A1) is not defined in the neutral limit.  Moreover, as can be seen, e.g., 

from Zilitinkevitch (1970), Fig. 1.25, Yamada (1987), Fig. 4, different values for FB are reached 

if the neutral stratification is approached from the stable and from the unstable side.  The value 

proposed by MY82, and used here, is in between these two values.  An alternative approach 

would be to choose different values of FB for the stable and the unstable ranges, and thus define 

two different sets of constants for each of the two regimes.  However, in order to avoid 

discontinuities, this would require an additional procedure for smooth matching of the two sets 

of constants at the neutral stratification.  This may be a possible future extension of the model.  

In the meantime, however, a less ambitious attempt to specify an adequate set of constants is 

made. 

 Here, as in MY82, 

   γ1 = 1/3-1/9 (A6) 

and 

   FB = (3.167441983)1/2 (A7) 

are chosen.  However, it is assumed that 

   Prt = 1. (A8) 

Using (A4),  

   RB = B1/B2 = 16.6/10.1 = 1.64356443564, 

from (A5) 

   B1 = [(RB FB2)/Prt]3/2 = 11.877992. (A9) 
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From (A2) 

   B2 = (B11/3/Prt) FB2 = 7.226971, (A10) 

and from MY82 Eqs. (42a), (44d) and (44e), respectively, 

   A1 = (B1/2)(1/3 - γ1) = 0.65988838, (A11) 

   C1 = γ1-1/(3A1) B1-1/3 = 0.00083092297, (A12) 

   A2 = [A1 (γ1 - C1)]/(γ1 Prt) = 0.65742096. (A13) 

 The turbulence model is not perfect, and not surprisingly, cannot fit all the observed data 

equally well.  Thus, the velocity component variances obtained in the surface layer limit with the 

constants (A6)-(A13) do not compare with the measured values in the MY82 Table 1 as 

comfortably as the values obtained with the original MY82 constants.  For example, 

   u/u* = 1.700636, 

   v/u* = w/u* = 1.075576, 

   q/u* = 2.2816429. 

On the other hand, the modified set of constants result in other improvements that will be 

illustrated below. 

 The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φM in the 

unstable range are shown in Fig. A1 for the original MY82 constants (empty squares) and the 

constants (A6)-(A13) (diamonds).  As can be seen comparing Fig. 1 with MY82 Fig. 5a, a 

considerable improvement has been achieved with the new constants. 
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 The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φH in the unstable 

range are shown in Fig. A2 for the original MY82 constants (empty squares) and the constants 

(A6)-(A13) (diamonds).  Careful examination of Fig. 2 and MY82 Fig. 5b again reveals an 

improvement with the new constants. 

 The Mellor-Yamada Level 2 equivalents of the Monin-Obukhov functions φM and φH in 

the stable range are shown in Figs. A3 and A4, respectively, for the original MY82 constants 

(empty squares) and the constants (A6)-(A13) (diamonds).  As can be seen from the figures, and 

the MY82 Figs. 5a and 5b, this time the results are almost identical for φM, but considerable 

differences appear in the case of φH. 

 The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada Level 

2 limit in the unstable range is shown in Fig. A5 as a function of the Richardson number Ri for 

the original MY82 constants (empty squares) and the constants (A6)-(A13) (diamonds).  Note 

that there is a controversy about what this ratio should be in the unstable range.  According to 

some Australian measurements (Zilitinkevitch 1970, Fig. 1.22; Garrat 1992) there is a strong 

dependence on stability, about twice stronger than that reached with the new set of constants.  If 

these results are representative, as can be seen from Fig. A5, the constants (A6)-(A13) have still 

brought a considerable improvement.  On the other hand, some Russian measurements indicate 

that the dependence on stability is weak, and that the ratio remains close to unity (Zilitinkevitch 

1970, Fig. 1.22). 

 The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada Level 

2 limit in the stable range is shown in Fig. A6 as a function of Richardson number Ri for the 

original MY82 constants (empty squares) and the constants (A6)-(A13) (diamonds).  As can be 

verified by comparison with the data [e.g., Schumann (1991), Fig. 2; Zilitinkevitch (1970), Fig. 

1.3], the results with the constants (A6)-(A13) agree well with the observations. 
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FIGURE CAPTIONS 

 

Fig. 1.   Solutions of the non-singularity condition equation (4.8) p1 (upper panel) and p2 

(lower panel) for a very wide range of gH and gM [ ±1º K m-1 and (2 m s-1 m-1)2]. 

Fig. 2. Solutions of the equilibrium equation (4.9) s1 (upper panel) and s2 (lower panel) for 

a very wide range of gH and gM [±1º K m-1 and (2 m s-1 m-1)2]. 

Fig. 3. Values of the upper bound 1/ p1 for p1>0.  The values for a very wide range of gH 

and gM are shown  [±1º K m-1 and (2 m -1 m-1)2]. 

Fig. 4 Solutions of (5.6) t1 (left panel) and t2 (right panel) for RsL=(1+10-12 )Rs, and a 

wide range in the stable part of the gH x gM plane [1º K m-1 and (2 m s-1 m-1)2]. 

Fig. 5. Free convection: averaged vertical distribution of the turbulent exchange coefficient 

for heat KH normalized by the product of w* and HPBL as a function of the normalized height 

z/HPBL for BL height and surface buoyancy flux exceeding 500 m, and 100 W m-2. 

Fig. 6. Free convection: average profiles of KH normalized by the product of w* and HPBL 

for PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), 

maximum height of PBL and surface buoyancy flux greater than 100 W m-2 (triangles) and the 

profile of Fig. 5 (circles). 

Fig. 7. Free convection: average profiles of the buoyancy flux normalized by the surface 

buoyancy flux for PBL height and surface buoyancy flux exceeding 500 m and 100 W m-2 

(circles), PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), 

maximum height of PBL and surface buoyancy flux greater than 100 W m-2 (triangles). 
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Fig. 8. Convective PBL with shear: average profiles of KH normalized by the product of w* 

and HPBL for PBL height and surface buoyancy flux exceeding 500 m and 100 W m-2 (circles), 

PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), and PBL 

height  greater than or equal to 1965 m and surface buoyancy flux exceeding 100 W m-2 

(triangles). 

Fig. 9. Convective PBL with shear: average profiles of the buoyancy flux normalized by the 

surface buoyancy flux  for the PBL height and surface buoyancy flux exceeding 500 m and 100 

W m-2 (circles), the PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 

(squares), and the PBL height  greater than or equal to 1965 m and the surface buoyancy flux 

exceeding 100 W m-2 (triangles). 

Fig. 10. The forecast temperature and the dew point profiles at the Washington-Dulles airport 

at two hour intervals from 1200 to 2200 UTC, June 14 1991.  The wind is shown in the rightmost 

panel. 

Fig. 11. Evolution of TKE over 12 hours at ten lowest interfaces of the model layers.  The 

heights of the interfaces are indicated in the upper left corner of each time series. 
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Fig. A1. The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φM in the 

unstable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 

Fig. A2. The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φH in the 

unstable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 

Fig. A3. The Mellor-Yamada Level 2 equivalents of the Monin-Obukhov functions φM in the 

stable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 

Fig. A4. The Mellor-Yamada Level 2 equivalents of the Monin-Obukhov functions φH in the 

stable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 

Fig. A5. The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada 

Level 2 limit in the unstable range as a function of Richardson number Ri for the original MY82 

constants (empty squares) and the constants (A6)-(A13) (diamonds). 

Fig. A6. The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada 

Level 2 limit in the stable range as a function of Richardson number Ri for the original MY82 

constants (empty squares) and the constants (A6)-(A13) (diamonds). 
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Fig. 1.   Solutions of the non-singularity condition equation (4.8) p1 (upper panel) and p2 

(lower panel) for a very wide range of gH and gM [ ±1º K m-1 and (2 m s-1 m-1)2]. 
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Fig. 2. Solutions of the equilibrium equation (4.9) s1 (upper panel) and s2 (lower panel) for 

a very wide range of gH and gM [±1º K m-1 and (2 m s-1 m-1)2]. 
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Fig. 3. Values of the upper bound 1/p1 for p1>0.  The values for a very wide range of gH 

and gM are shown [±1º K m-1 and (2 m -1 m-1)2]. 
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Fig. 4 Solutions of (5.6) t1 (left panel) and t2 (right panel) for RsL=(1+10-12 )Rs, and a 

wide range in the stable part of the gH x gM plane [1º K m-1 and (2 m s-1 m-1)2]. 
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Fig. 5. Free convection: averaged vertical distribution of the turbulent exchange coefficient 

for heat KH normalized by the product of w* and HPBL as a function of the normalized height 

z/HPBL for BL height and surface buoyancy flux exceeding 500 m, and 100 W m-2. 
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Fig. 6. Free convection: average profiles of KH normalized by the product of w* and HPBL 

for PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), 

maximum height of PBL and surface buoyancy flux greater than 100 W m-2 (triangles) and the 

profile of Fig. 5 (circles). 
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Fig. 7. Free convection: average profiles of the buoyancy flux normalized by the surface 

buoyancy flux for PBL height and surface buoyancy flux exceeding 500 m and 100 W m-2 

(circles), PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), 

maximum height of PBL and surface buoyancy flux greater than 100 W m-2 (triangles). 
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Fig. 8. Convective PBL with shear: average profiles of KH normalized by the product of w* 

and HPBL for PBL height and surface buoyancy flux exceeding 500 m and 100 W m-2 (circles), 

PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 (squares), and PBL 

height greater than or equal to 1965 m and surface buoyancy flux exceeding 100 W m-2 

(triangles). 
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Fig. 9. Convective PBL with shear: average profiles of the buoyancy flux normalized by the 

surface buoyancy flux  for the PBL height and surface buoyancy flux exceeding 500 m and 100 

W m-2 (circles), the PBL height and surface buoyancy flux exceeding 1000 m and 100 W m-2 

(squares), and the PBL height  greater than or equal to 1965 m and the surface buoyancy flux 

exceeding 100 W m-2 (triangles).. 
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Fig. 10. The forecast temperature and the dew point profiles at the Washington-Dulles airport 

at two hour intervals from 1200 to 2200 UTC, June 14 1991.  The wind is shown in the rightmost 

panel. 
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Fig. 11. Evolution of TKE over 12 hours at ten lowest interfaces of the model layers.  The 
heights of the interfaces are indicated in the upper left corner of each time series. 
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Fig. A1. The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φM in the 

unstable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 
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Fig. A2. The Mellor-Yamada Level 2 equivalent of the Monin-Obukhov function φH in the 

unstable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 

 
57 



86420
0

10

20

30

40

50
MY
ZJ

M

 
 

Fig. A3. The Mellor-Yamada Level 2 equivalents of the Monin-Obukhov functions φM in the 

stable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 
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Fig. A4. The Mellor-Yamada Level 2 equivalents of the Monin-Obukhov functions φH in the 

stable range for the original MY82 constants (empty squares) and the constants (A6)-(A13) 

(diamonds). 
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Fig. A5. The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada 

Level 2 limit in the unstable range as a function of Richardson number Ri for the original MY82 

constants (empty squares) and the constants (A6)-(A13) (diamonds). 
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Fig. A6. The ratio of the exchange coefficients for heat and momentum in the Mellor-Yamada 

Level 2 limit in the stable range as a function of Richardson number Ri for the original MY82 

constants (empty squares) and the constants (A6)-(A13) (diamonds). 
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