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ABSTRACT

This note describes a simple scheme for analytical estimation of the surface-layer similarity functions
from state variables. What distinguishes this note from the many previous papers on this topic is that this
method is specifically targeted for numerical models in which simplicity and economic execution are critical.
In addition, it has been in use in a mesoscale meteorological model for several years. For stable conditions,
a very simple scheme is presented that compares well to the iterative solution. The stable scheme includes
a very stable regime in which the slope of the stability functions is reduced to permit significant fluxes to
occur, which is particularly important for numerical models in which decoupling from the surface can be an
important problem. For unstable conditions, simple schemes generalized for varying ratios of aerodynamic
roughness to thermal roughness (z0/z0h) are less satisfactory. Therefore, a simple scheme has been empiri-
cally derived for a fixed z0/z0h ratio, which represents quasi-laminar sublayer resistance.

1. Background

Interactive linkages between state variables at the
earth’s surface and in the atmospheric surface layer are
essential components of numerical atmospheric mod-
els. Surface fluxes of heat, moisture, momentum, and
any other modeled quantity (e.g., trace chemical spe-
cies) are determined by gradients across the surface–
atmosphere interface; at the same time, surface fluxes
are critical processes determining the time evolution of
these gradients. Hence, simultaneous solution of the
surface fluxes and the surface layer profiles is required.

Atmospheric models typically use surface-layer simi-
larity theory to describe the flux–profile relationships.
In accord with this theory, nondimensional profiles are
defined for momentum as
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and for potential temperature as
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where the Monin–Obukhov length scale is
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T0u2
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gk�*

. �3�

Here, �m and �h are profile functions derived empiri-
cally from observed data, k is von Kármán’s constant,
and �0 represents the average temperature in the sur-
face layer. Kinematic fluxes of momentum and heat are
defined in terms of the friction velocity u* and the sur-
face temperature scale �* as

Fm � �u2

* and

Fh � �u*�*. �4�

The fluxes can be expressed in terms of state variables
by integrating Eqs. (1) and (2) from roughness height z0

up to z and combining with Eq. (4):

* Additional affiliation: On assignment to the National Expo-
sure Research Laboratory, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina.

Corresponding author address: Jonathan Pleim, Mail Drop
E243-03, Atmospheric Modeling Division/NERL, U.S. EPA, Re-
search Triangle Park, NC 27711.
E-mail: pleim.jon@epa.gov

FEBRUARY 2006 N O T E S A N D C O R R E S P O N D E N C E 341

JAM2339



u* �
kU

ln� z

z0
� � �m� z

L
,
z0

L�
and �5�

�* �
k�� � �o�

�hn�ln� z

z0
� � �h� z

L
,
z0

L��
, �6�

where �hn is the nondimensional temperature profile
constant for neutral conditions [�hn � �h(z/L � 0)], �m

and �h are stability correction functions, and �0 is the
potential temperature at the aerodynamic roughness
height z0. However, because �0 is not generally a known
state variable, it is often approximated by �g, which is
the skin potential temperature. This approximation cre-
ates an inconsistency between momentum flux and heat
flux because the former is defined from the gradient
down to the aerodynamic roughness height z0, whereas
the latter uses the gradient down to the surface.

There are two common approaches for correcting
this inconsistency. One approach is to define thermal
roughness height z0h differently from aerodynamic
roughness height z0 to account for the difference in the
source/sink heights of heat and momentum. Using this
approach, z0 in Eq. (6) would be replaced by z0h. A
difficulty with this approach is that additional rough-
ness parameters would need to be specified for every
quantity to be modeled. Thus, z0q would need to be
specified for water vapor fluxes and specific z0c values
would be needed for dry deposition fluxes of each
chemical species.

Another approach is to add a quasi-laminar bound-
ary layer resistance to the turbulent aerodynamic resis-
tance such that when �0 is replaced by �g, Eq. (6) be-
comes
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which is the aerodynamic resistance, and Rb is the
quasi-laminar boundary layer resistance. A general
form of Rb for any scalar quantity was recommended by
Wesely and Hicks (1977) as

Rb �
B�1

u*
�Sc

Pr�2�3

, �9�

where Sc is the Schmidt number (Sc � 
/D), with 

representing the kinematic molecular viscosity and D

representing the molecular diffusivity of the scalar
quantity. The quantity Pr is the Prandtl number, which
is the analogous quantity for heat (Pr � 
/
�), where 
�

is the molecular thermal diffusivity. The quantity B�1 is
the inverse Stanton number, a dimensionless heat
transfer coefficient. Note that for heat Sc � Pr and thus
Rb � B�1/u*.

Conceptually, Ra accounts for turbulent diffusion,
whereas Rb accounts for molecular diffusion across a
very thin quasi-laminar boundary layer adjacent to the
surface. An advantage of this approach is that different
quantities, such as moisture and trace chemical species,
can be similarly treated by using the appropriate mo-
lecular or Brownian (for aerosol particles) diffusivity to
define Sc.

The two approaches can be reconciled for heat as

ln
z0

z0h
� ku*Rb � kB�1. �10�

Although the value of B�1 may depend on the Reyn-
olds number as well as the type of surface roughness,
we follow the recommendation of Garratt and Hicks
(1973) by assuming a constant value of kB�1 � 2 for
fully turbulent flow over fibrous vegetative canopies.

Although Eqs. (1)–(9) represent a closed system of
equations, solution is not possible without iteration.
Therefore, parameterizations in which the stability pa-
rameter (z/L) is estimated from state variables before
the fluxes are determined are usually used. The bulk
Richardson number is a convenient parameter for this
purpose:

RB �
gz1��1 � �0�

T0�U1
2 	 V1
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, �11�

where the subscript 1 indicates values at the lowest
model level. In a numerical model, however, the poten-
tial temperature at z0 is not known prior to the flux–
profile calculations. Therefore, the bulk Richardson
number is often approximated as

RB �
gz1��1 � �g�

T0�U1
2 	 V1

2�
. �12�

2. Analytical approximation

Many techniques have been proposed for an approxi-
mate analytic solution to the flux–profile equations,
such as Yang et al. (2001), De Bruin et al. (2000),
Holtslag and Ek (1996), Launiainen (1995), and Byun
(1990), to name a few. Van den Hurk and Holtslag
(1997) compared and assessed several techniques. They
found that some of the techniques do well for the sim-
plified case in which z0 � z0h (i.e., Rb � 0) but have

342 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45



more difficulty for the general case in which z0 � z0h.
The goal of the work presented here is to develop an
analytical solution to the above equations, including the
quasi-laminar boundary layer resistance, that is simple
enough for efficient use in numerical meteorological
and air-quality models.

The problem can be separated into stable and un-
stable regimes. For stable conditions, we follow the
scheme outlined by Blackadar (1976) that has been
used in the fifth-generation Pennsylvania State Univer-
sity–National Center for Atmospheric Research Meso-
scale Model (MM5) for many years. For stable condi-
tions, z/L is estimated from RB as

z

L
� ln� z

z0
� RB

1 � RB�Rcrit
, �13�

where Rcrit is the critical Richardson number (�0.25).
Note that Eq. (13) is an exact relationship only where z0

� z0h, but it is a good approximation to the more gen-
eral case in which z0 � z0h. The estimated z/L is then
used with the linear � functions as proposed by Webb
(1970) and Dyer (1974):

��m,h� � ���m,h�

z

L
. �14�

Note that Eq. (14) neglects the dependence of � on z0/L
because z0 � z. Equation (13) results directly from the
definitions of L, u*, �*, RB, and � [Eqs. (3), (5), (6),
(11), and (14)] if �m � �h � 1/Rcrit.

Högström (1988) found that the linear form fits ex-
perimental data very well for 0 
 z/L 
 0.5 but results
in underestimated surface fluxes under more strongly
stable conditions. He suggested that the slope should
begin to flatten somewhere in the range of 0.5 
 z/L 

1.0. Parameterization of strongly stable conditions is
particularly important in numerical models when de-
coupling of the surface and air occurs when the � func-
tions get too negative, causing runaway surface cooling.
To alleviate this problem, Beljaars and Holtslag (1991)
developed � curves for stable conditions that mimic Eq.
(14) for mild stability (0 
 z/L 
 0.5) while flattening
out at greater stabilities. We have adopted a simpler
solution using Eq. (14) for z/L between 0 and 1 and a
linear function with reduced slope at greater stabilities
such that

��m,h� � 1 � ��m,h� �
z

L
, for z�L � 1. �15�

To account for the reduced slope of the � functions for
very stable conditions (z/L � 1), Eq. (13) becomes
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which is the solution of Eq. (13) for RB when z/L � 1.
For unstable conditions, a simple linear function of

RB gives a good estimate of z/L:

z

L
� �a ln� z

z0
� � b�RB, �18�

where a and b are constants. However, the introduction
of a quasi-laminar boundary layer results in a more
nonlinear relationship, which becomes more pro-
nounced at lower wind speeds (larger RB) and greater
roughness lengths. Numerical comparison studies by
van den Hurk and Holtslag (1997) and by Lo (1996)
show that application of schemes that do not consider
the quasi-laminar boundary layer (z0 � z0h), such as
Eq. (18) or more complicated schemes such as de-
scribed by Byun (1990), to cases in which z0 � z0h will
result in serious errors. Launiainen (1995) proposed a
simple scheme that allows for z0 � z0h:

z

L
� �ln�z�z0�2

ln�z�z0h�
� 0.55�RB. �19�

However, for z0/z0h constant over varying stabilities,
Eq. (19) is just a specific form of Eq. (18); therefore,
this expression still has difficulty at large roughness
lengths.

Another difficulty for unstable conditions is the
arithmetic complexity of the Dyer functions. Therefore,
De Bruin et al. (2000) derived simplified expressions
that approximate the Dyer functions in the form

�� z

L� � a ln�1 � b
z

L�, �20�

where a and b are constants that differ for heat and
momentum. Instead of using one empirical expression
to approximate z/L and then another to approximate �,
a single empirical expression could be derived that re-
lates � directly to RB:

�h,m � ah,m ln�1 � bh,m�ln� z

z0
��1�2

RB�,

�21a�

where
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ah,m � ch,m 	 dh,m ln�ln� z

z0
��. �21b�

For our application in MM5, using the Dyer (1974)
functions for � with Högström’s (1988) recommended �
values, we empirically determined values of bh � 15.7,
bm � 13.0, ch � 0.04, cm � 0.031, dh � 0.355, and dm �
0.276. Note that we use the quasi-laminar boundary
layer resistance Rb [Eq. (9)], which is equivalent to z0/
z0h � 7.4. For other values of z0/z0h, the b, c, and d
coefficients would need to be rederived.

3. Testing

The new method for approximation of the � func-
tions computed from bulk Richardson number without
iteration has different stable and unstable parts. For
stable conditions, z/L is approximated by analytical
functions of bulk Richardson number according to Eq.
(13) for slightly stable conditions (0 
 z/L 
 1) and
Eqs. (16) and (17) for strongly stable conditions (z/L �
1). Then �(z/L) is computed from Eqs. (14) or (15),
depending on the degree of stability. For unstable con-
ditions, � functions are estimated directly from RB ac-
cording to Eq. (21). Heat and momentum fluxes are
then computed using Eqs. (4), (5), (7), (8), and (9).

Figure 1 shows normalized heat flux as functions of
bulk Richardson number as computed by the new
method in comparison with the method proposed by
Launiainen (1995) and the exact solution produced by
10 iterations, for z/z0 of 10, 100, 1000, and 10 000 and
wind speed of 1 and 5 m s�1. Note that a height of z �
10z0 is within the roughness sublayer where the Monin–
Obukhov similarity equations are not valid (Garratt
1992). However, we include these results because such
calculations are often required in numerical models.
Thus, it is important to show how the scheme performs
under these conditions.

Following De Bruin et al. (2000), the sensible heat
flux is normalized by

H0 �
k2�� � �g�U

�hn ln2� z

z0
� 	 2 ln� z

z0
� , �22�

where U is the wind speed at z and �hn is given the
value 0.95 as recommended by Högström (1988). Here
H0 represents the heat flux without the effect of the
stability functions. Note that because H0 is zero when
RB is zero the normalized heat flux is undefined at that
point. Thus, in the plots shown in Fig. 1, the lines are
interpolated linearly across the RB � 0 point. The exact
solutions are produced using the Dyer (1974) functions
with the Högström (1988) coefficients and with the

modified � function for very stable conditions [Eq.
(15)].

For stable conditions, we compare our method versus
the iterative solution only. The Launiainen (1995)
method for unstable conditions compares well to the
iterative solution for small roughness lengths but be-
comes increasingly inaccurate for rougher surfaces, es-
pecially at greater instabilities. This result agrees with
the assessment of van den Hurk and Holtslag (1997)
and the limitations discussed by Launiainen (1995).
Our new scheme, however, performs well over the en-
tire range of conditions. The worst agreement is for
high instability, where z/z0 � 10 and wind speed � 1
m s�1, which are extreme conditions for numerical me-
teorological models. This error results from the diffi-
culty of specifying general functions for ah and am [Eq.
(21b)].

On the stable side, the analytical method follows the
double-linear form of Eqs. (14) and (15). The biggest
differences from the iterative solutions are due to the
slower drop toward zero heat flux under very stable
light wind conditions. As noted above, this feature is
desirable for numerical modeling. The other relatively
large difference is for stable, high wind speed condi-
tions, which are unrealistic.

A comparison of friction velocity computed by the
same three methods (Fig. 2) shows very similar results.
The Launiainen (1995) method agrees well with the
iterative solution for small roughness lengths but shows
increasing deviation for rougher surfaces. The largest
deviation of the analytical method from the iterative
solution is for light wind, stable conditions. For all
roughness lengths, the iterative solution goes to zero
for RB � 1 while the analytical solution remains non-
zero out to RB � 3. Such large values of RB are not
unrealistic at these low wind speeds. For example, RB �
2 represents a temperature difference between the
ground and air of about 3 K when wind speed � 1 m s�1

(z � 20 m for this example). Most models ensure non-
zero surface fluxes for all possible conditions by impos-
ing arbitrary minimum values for u* and �h,m. With this
analytical method, such limitations are not necessary, as
demonstrated by application of this method in MM5.

4. Summary

The methods described here provide economical, ac-
curate estimations of the surface flux–profile relation-
ships for use in numerical models. These methods are
designed for specific stability functions. For stable con-
ditions, we use the linear functions of Webb (1970) and
Dyer (1974) with the coefficients recommended by
Högström (1988). For very stable conditions, however,
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a reduced slope is adopted to avoid decoupling with the
surface. For unstable conditions, we approximate the �
functions directly from RB. We account for the differ-
ence between momentum and scalar fluxes by inclusion

of a quasi-laminar sublayer resistance for scalar fluxes
that is a function of molecular diffusivity, which is
equivalent to a fixed z0/z0h ratio for heat.

This method has been applied to the fifth-generation

FIG. 1. Normalized kinematic heat flux computed using the new analytical scheme in comparison with
the scheme of Launiainen (1995) and an iterative solution, for various ratios of z/z0 and two different
wind speeds (WS). Note that the Launiainen scheme is shown only for unstable conditions.
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Pennsylvania State University–National Center for At-
mospheric Research Mesoscale Model, where it is part
of the Pleim–Xiu land surface model (PX LSM) option
(Pleim and Xiu 1995, 2003; Xiu and Pleim 2001). The
PX LSM has been in MM5 since version 3.4, which was

first released in 2001. Thus, the method has proven to
be robust under extensive use. We are currently work-
ing to incorporate the PX LSM into the Weather Re-
search and Forecast (WRF) Model. Note that in WRF
the surface-layer schemes are in a separate module

FIG. 2. As in Fig. 1, but for friction velocity.
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from the planetary boundary layer (PBL) and LSM
modules. Therefore, the surface layer method de-
scribed here will be available for use with any other
PBL or LSM schemes.
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