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Chapter 1

Introduction

This report presents the details of the governing equations, physical parameterizations, and nu-
merical algorithms defining the version of the NCAR Community Atmosphere Model designated
CAM 3.0. The material provides an overview of the major model components, and the way in
which they interact as the numerical integration proceeds. Details on the coding implementa-
tion, along with in-depth information on running the CAM 3.0 code, are given in a separate
technical report entitled “User’s Guide to NCAR CAM 3.0” [Kluzek et al., 2002]. As before, it
is our objective that this model provide NCAR and the university research community with a
reliable, well documented atmospheric general circulation model. This version of the CAM 3.0
incorporates significant improvements to the physics package (e.g. generalized cloud overlap for
radiation calculations), new capabilities such as the incorporation of thermodynamic sea ice, and
a number of enhancements to the implementation (e.g. clean separation between physics and
dynamics). We believe that collectively these improvements provide the research community
with a significantly improved atmospheric modeling capability.

1.1 Brief History

1.1.1 CCM0 and CCM1

Over the last fifteen years, the NCAR Climate and Global Dynamics (CGD) Division has pro-
vided a comprehensive, three-dimensional global atmospheric model to university and NCAR
scientists for use in the analysis and understanding of global climate. Because of its widespread
use, the model was designated a community tool and given the name Community Climate Model
(CCM). The original versions of the NCAR Community Climate Model, CCM0A [Washington,
1982] and CCM0B [Williamson, 1983], were based on the Australian spectral model [Bourke
et al., 1977; McAvaney et al., 1978] and an adiabatic, inviscid version of the ECMWF spectral
model [Baede et al., 1979]. The CCM0B implementation was constructed so that its simulated
climate would match the earlier CCM0A model to within natural variability (e.g. incorporated
the same set of physical parameterizations and numerical approximations), but also provided
a more flexible infrastructure for conducting medium– and long–range global forecast studies.
The major strength of this latter effort was that all aspects of the model were described in a
series of technical notes, which included a Users’ Guide [Sato et al., 1983], a subroutine guide
which provided a detailed description of the code [Williamson et al., 1983] a detailed description
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of the algorithms [Williamson, 1983], and a compilation of the simulated circulation statistics
[Williamson and Williamson, 1984]. This development activity firmly established NCAR’s com-
mitment to provide a versatile, modular, and well–documented atmospheric general circulation
model that would be suitable for climate and forecast studies by NCAR and university scien-
tists. A more detailed discussion of the early history and philosophy of the Community Climate
Model can be found in Anthes [1986].

The second generation community model, CCM1, was introduced in July of 1987, and in-
cluded a number of significant changes to the model formulation which were manifested in
changes to the simulated climate. Principal changes to the model included major modifications
to the parameterization of radiation, a revised vertical finite-differencing technique for the dy-
namical core, modifications to vertical and horizontal diffusion processes, and modifications to
the formulation of surface energy exchange. A number of new modeling capabilities were also
introduced, including a seasonal mode in which the specified surface conditions vary with time,
and an optional interactive surface hydrology that followed the formulation presented by Man-
abe [1969]. A detailed series of technical documentation was also made available for this version
[Williamson et al., 1987; Bath et al., 1987; Williamson and Williamson, 1987; Hack et al., 1989]
and more completely describe this version of the CCM.

1.1.2 CCM2

The most ambitious set of model improvements occurred with the introduction of the third
generation of the Community Climate Model, CCM2, which was released in October of 1992.
This version was the product of a major effort to improve the physical representation of a wide
range of key climate processes, including clouds and radiation, moist convection, the planetary
boundary layer, and transport. The introduction of this model also marked a new philosophy
with respect to implementation. The CCM2 code was entirely restructured so as to satisfy three
major objectives: much greater ease of use, which included portability across a wide range of
computational platforms; conformance to a plug-compatible physics interface standard; and the
incorporation of single-job multitasking capabilities.

The standard CCM2 model configuration was significantly different from its predecessor in
almost every way, starting with resolution where the CCM2 employed a horizontal T42 spectral
resolution (approximately 2.8 x 2.8 degree transform grid), with 18 vertical levels and a rigid
lid at 2.917 mb. Principal algorithmic approaches shared with CCM1 were the use of a semi-
implicit, leap frog time integration scheme; the use of the spectral transform method for treating
the dry dynamics; and the use of a bi-harmonic horizontal diffusion operator. Major changes
to the dynamical formalism included the use of a terrain-following hybrid vertical coordinate,
and the incorporation of a shape-preserving semi-Lagrangian transport scheme [Williamson and
Olson, 1994] for advecting water vapor, as well as an arbitrary number of other scalar fields (e.g.
cloud water variables, chemical constituents, etc.). Principal changes to the physics included
the use of a δ-Eddington approximation to calculate solar absorption [Briegleb, 1992]; the use
of a Voigt line shape to more accurately treat infrared radiative cooling in the stratosphere; the
inclusion of a diurnal cycle to properly account for the interactions between the radiative effects
of the diurnal cycle and the surface fluxes of sensible and latent heat; the incorporation of a
finite heat capacity soil/sea ice model; a more sophisticated cloud fraction parameterization and
treatment of cloud optical properties [Kiehl et al., 1994]; the incorporation of a sophisticated
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non-local treatment of boundary-layer processes [Holtslag and Boville, 1993]; the use of a simple
mass flux representation of moist convection [Hack, 1994], and the optional incorporation of the
Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. [1987]. As with previous
versions of the model, a User’s Guide [Bath et al., 1992] and model description [Hack et al.,
1993] were provided to completely document the model formalism and implementation. Control
simulation data sets were documented in Williamson [1993].

1.1.3 CCM3

The CCM3 was the fourth generation in the series of NCAR’s Community Climate Model. Many
aspects of the model formulation and implementation were identical to the CCM2, although there
were a number of important changes that were incorporated into the collection of parameterized
physics, along with some modest changes to the dynamical formalism. Modifications to the
physical representation of specific climate processes in the CCM3 were motivated by the need
to address the more serious systematic errors apparent in CCM2 simulations, as well as to make
the atmospheric model more suitable for coupling to land, ocean, and sea-ice component models.
Thus, an important aspect of the changes to the model atmosphere was that they address well
known systematic biases in the top-of-atmosphere and surface (to the extent that they were
known) energy budgets. When compared to the CCM2, changes to the model formulation fell
into five major categories: modifications to the representation of radiative transfer through both
clear and cloudy atmospheric columns, modifications to hydrological processes (i.e., in the form
of changes to the atmospheric boundary layer, moist convection, and surface energy exchange),
the incorporation of a sophisticated land surface model, the incorporation of an optional slab
mixed-layer ocean/thermodynamic sea-ice component, and a collection of other changes to the
formalism which did not introduce significant changes to the model climate.

Changes to the clear-sky radiation formalism included the incorporation of minor CO2 bands
trace gases (CH4, N2O, CFC11, CFC12) in the longwave parameterization, and the incorpo-
ration of a background aerosol (0.14 optical depth) in the shortwave parameterization. All-sky
changes included improvements to the way in which cloud optical properties (effective radius and
liquid water path) were diagnosed, the incorporation of the radiative properties of ice clouds,
and a number of minor modifications to the diagnosis of convective and layered cloud amount.
Collectively these modification substantially reduced systematic biases in the global annually
averaged clear-sky and all-sky outgoing longwave radiation and absorbed solar radiation to well
within observational uncertainty, while maintaining very good agreement with global observa-
tional estimates of cloud forcing. Additionally, the large warm bias in simulated July surface
temperature over the Northern Hemisphere, the systematic over-prediction of precipitation over
warm land areas, and a large component of the stationary-wave error in CCM2, were also reduced
as a result of cloud-radiation improvements.

Modifications to hydrological processes included revisions to the major contributing param-
eterizations. The formulation of the atmospheric boundary layer parameterization was revised
(in collaboration with Dr. A. A. M. Holtslag of KNMI), resulting in significantly improved
estimates of boundary layer height, and a substantial reduction in the overall magnitude of the
hydrological cycle. Parameterized convection was also modified where this process was repre-
sented using the deep moist convection formalism of Zhang and McFarlane [1995] in conjunction
with the scheme developed by Hack [1994] for CCM2. This change resulted in an additional
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reduction in the magnitude of the hydrological cycle and a smoother distribution of tropical pre-
cipitation. Surface roughness over oceans was also diagnosed as a function of surface wind speed
and stability, resulting in more realistic surface flux estimates for low wind speed conditions.
The combination of these changes to hydrological components resulted in a 13% reduction in
the annually averaged global latent heat flux and the associated precipitation rate. It should
be pointed out that the improvements in the radiative and hydrological cycle characteristics of
the model climate were achieved without compromising the quality of the simulated equilibrium
thermodynamic structures (one of the major strengths of the CCM2) thanks in part to the
incorporation of a Sundqvist [1988] style evaporation of stratiform precipitation.

The CCM3 incorporated version 1 of the Land Surface Model (LSM) developed by Bonan
[1996] which provided for the comprehensive treatment of land surface processes. This was a
one-dimensional model of energy, momentum, water, and CO2 exchange between the atmosphere
and land, accounting for ecological differences among vegetation types, hydraulic and thermal
differences among soil types, and allowing for multiple surface types including lakes and wetlands
within a grid cell. LSM replaced the prescribed surface wetness, prescribed snow cover, and
prescribed surface albedos in CCM2. It also replaced the land surface fluxes in CCM2, using
instead flux parameterizations that included hydrological and ecological processes (e.g. soil
water, phenology, stomatal physiology, interception of water by plants).

The fourth class of changes to the CCM2 included the option to run CCM3 with a simple
slab ocean-thermodynamic sea ice model. The model employs a spatially and temporally pre-
scribed ocean heat flux and mixed layer depth, which ensures replication of realistic sea surface
temperatures and ice distributions for the present climate. The model allowed for the simplest
interactive surface for the ocean and sea ice components of the climate system.

The final class of model modifications included a change to the form of the hydrostatic matrix
which ensures consistency between ω and the discrete continuity equation, and a more general-
ized form of the gravity wave drag parameterization. In the latter case, the parameterization
was configured to behave in the same way as the CCM2 parameterization of wave drag, but
included the capability to exploit more sophisticated descriptions of this process.

One of the more significant implementation differences with the earlier model was that CCM3
included an optional message-passing configuration, allowing the model to be executed as a
parallel task in distributed-memory environments. This was an example of how the Climate
and Global Dynamics Division continued to invest in technical improvements to the CCM in
the interest of making it easier to acquire and use in evolving computational environments. As
was the case for CCM2, the code was internally documented, obviating the need for a separate
technical note that describes each subroutine and common block in the model library. Thus,
the Users’ Guide, the land surface technical note, the CCM3 technical note [Kiehl et al., 1996],
the actual code and a series of reviewed scientific publications (including a special issue of the
Journal of Climate, Volume 11, Number 6) were designed to completely document CCM3.

1.2 Overview of CAM 3.0

The CAM 3.0 is the fifth generation of the NCAR atmospheric GCM. The name of the model
series has been changed from Community Climate Model to Community Atmosphere Model to
reflect the role of CAM 3.0 in the fully coupled climate system. In contrast to previous genera-
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tions of the atmospheric model, CAM 3.0 has been designed through a collaborative process with
users and developers in the Atmospheric Model Working Group (AMWG). The AMWG includes
scientists from NCAR, the university community, and government laboratories. For CAM 3.0,
the AMWG proposed testing a variety of dynamical cores and convective parameterizations.
The data from these experiments has been freely shared among the AMWG, particularly with
member organizations (e.g. PCMDI) with methods for comparing modeled climates against
observations. The proposed model configurations have also been extensively evaluated using a
new diagnostics package developed by M. Stevens and J. Hack (CMS). The consensus of the
AMWG is to retain the spectral Eulerian dynamical core for the first official release of CAM
3.0, although the code includes the option to run with semi-Lagrange dynamics (section 3.2)
or with finite-volume dynamics (FV; section 3.3). The addition of FV is a major extension to
the model provided through a collaboration between NCAR and NASA Goddard’s Data Assim-
ilation Office (DAO). The AMWG also has decided to retain the Zhang and McFarlane [1995]
parameterization for deep convection (section 4.1) in CAM 3.0.

The major changes in the physics include:

• Treatment of cloud condensed water using a prognostic treatment (section 4.5): The orig-
inal formulation is introduced in Rasch and Kristjánsson [1998]. Revisions to the parame-
terization to deal more realistically with the treatment of the condensation and evaporation
under forcing by large scale processes and changing cloud fraction are described in Zhang
et al. [2003].The parameterization has two components: 1) a macroscale component that
describes the exchange of water substance between the condensate and the vapor phase
and the associated temperature change arising from that phase change [Zhang et al., 2003];
and 2) a bulk microphysical component that controls the conversion from condensate to
precipitate [Rasch and Kristjánsson, 1998].

• A new thermodynamic package for sea ice (chapter 6): The philosophy behind the design
of the sea ice formulation of CAM 3.0 is to use the same physics, where possible, as in the
sea ice model within CCSM, which is known as CSIM for Community Sea Ice Model. In the
absence of an ocean model, uncoupled simulations with CAM 3.0 require sea ice thickness
and concentration to be specified. Hence the primary function of the sea ice formulation
in CAM 3.0 is to compute surface fluxes. The new sea ice formulation in CAM 3.0 uses
parameterizations from CSIM for predicting snow depth, brine pockets, internal shortwave
radiative transfer, surface albedo, ice-atmosphere drag, and surface exchange fluxes.

• Explicit representation of fractional land and sea-ice coverage (section 7.2): Earlier ver-
sions of the global atmospheric model (the CCM series) included a simple land-ocean-sea
ice mask to define the underlying surface of the model. It is well known that fluxes of
fresh water, heat, and momentum between the atmosphere and underlying surface are
strongly affected by surface type. The CAM 3.0 provides a much more accurate rep-
resentation of flux exchanges from coastal boundaries, island regions, and ice edges by
including a fractional specification for land, ice, and ocean. That is, the area occupied
by these surface types is described as a fractional portion of the atmospheric grid box.
This fractional specification provides a mechanism to account for flux differences due to
sub-grid inhomogeneity of surface types.
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• A new, general, and flexible treatment of geometrical cloud overlap in the radiation calcu-
lations (section 4.8.5): The new parameterizations compute the shortwave and longwave
fluxes and heating rates for random overlap, maximum overlap, or an arbitrary combina-
tion of maximum and random overlap. The specification of the type of overlap is identical
for the two bands, and it is completely separated from the radiative parameterizations. In
CAM 3.0, adjacent cloud layers are maximally overlapped and groups of clouds separated
by cloud-free layers are randomly overlapped. The introduction of the generalized overlap
assumptions permits more realistic treatments of cloud-radiative interactions. The param-
eterizations are based upon representations of the radiative transfer equations which are
more accurate than previous approximations in the literature. The methodology has been
designed and validated against calculations based upon the independent column approxi-
mation (ICA).

• A new parameterization for the longwave absorptivity and emissivity of water vapor (sec-
tion 4.9.2): This updated treatment preserves the formulation of the radiative transfer
equations using the absorptivity/emissivity method. However, the components of the
absorptivity and emissivity related to water vapor have been replaced with new terms
calculated with the General Line-by-line Atmospheric Transmittance and Radiance Model
(GENLN3). Mean absolute differences between the cooling rates from the original method
and GENLN3 are typically 0.2 K/day. These differences are reduced by at least a factor
of 3 using the updated parameterization. The mean absolute errors in the surface and
top-of-atmosphere clear-sky longwave fluxes for standard atmospheres are reduced to less
than 1 W/m2. The updated parameterization increases the longwave cooling at 300 mb
by 0.3 to 0.6 K/day, and it decreases the cooling near 800 mb by 0.1 to 0.5 K/day. The
increased cooling is caused by line absorption and the foreign continuum in the rotation
band, and the decreased cooling is caused by the self continuum in the rotation band.

• The near-infrared absorption by water vapor has been updated (section 4.8.2). In the
original shortwave parameterization for CAM [Briegleb, 1992], the absorption by water
vapor is derived from the LBL calculations by Ramaswamy and Freidenreich [1991]. In
turn, these LBL calculations are based upon the 1983 AFGL line data [Rothman et al.,
1983]. The original parameterization did not include the effects of the water-vapor contin-
uum in the visible and near-infrared. In the new version of CAM, the parameterization is
based upon the HITRAN2k line database [Rothman et al., 2003], and it incorporates the
CKD 2.4 prescription for the continuum. The magnitude of errors in flux divergences and
heating rates relative to modern LBL calculations have been reduced by approximately
seven times compared to the old CAM parameterization.

• The uniform background aerosol has been replaced with a present-day climatology of sul-
fate, sea-salt, carbonaceous, and soil-dust aerosols (section 4.8.3). The climatology is
obtained from a chemical transport model forced with meteorological analysis and con-
strained by assimilation of satellite aerosol retrievals. These aerosols affect the shortwave
energy budget of the atmosphere. CAM 3.0 also includes a mechanism for treating the
shortwave and longwave effects of volcanic aerosols. A time history for the mass of strato-
spheric sulfuric acid for volcanic eruptions in the recent past is included with the standard
model.
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• Evaporation of convective precipitation (section 4.1) following Sundqvist [1988]: The en-
hancement of atmospheric moisture through this mechanism offsets the drying introduced
by changes in the longwave absorptivity and emissivity.

• A careful formulation of vertical diffusion of dry static energy (section 4.11).

Other major enhancements include:

• A new, extensible sea-surface temperature boundary data set (section 7.2): This dataset
prescribes analyzed monthly mid-point mean values of SST and ice concentration for the
period 1950 through 2001. The dataset is a blended product, using the global HadISST
OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981. In addition to
the analyzed time series, a composite of the annual cycle for the period 1981-2001 is also
available in the form of a mean “climatological” dataset.

• Clean separation between the physics and dynamics (chapter 2): The dynamical core can
be coupled to the parameterization suite in a purely time split manner or in a purely pro-
cess split one. The distinction is that in the process split approximation the physics and
dynamics are both calculated from the same past state, while in the time split approx-
imations the dynamics and physics are calculated sequentially, each based on the state
produced by the other.
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Chapter 2

Coupling of Dynamical Core and
Parameterization Suite

The CAM 3.0 cleanly separates the parameterization suite from the dynamical core, and makes
it easier to replace or modify each in isolation. The dynamical core can be coupled to the
parameterization suite in a purely time split manner or in a purely process split one, as described
below.

Consider the general prediction equation for a generic variable ψ,

∂ψ

∂t
= D (ψ) + P (ψ) , (2.1)

where ψ denotes a prognostic variable such as temperature or horizontal wind component. The
dynamical core component is denoted D and the physical parameterization suite P .

A three-time-level notation is employed which is appropriate for the semi-implicit Eulerian
spectral transform dynamical core. However, the numerical characteristics of the physical pa-
rameterizations are more like those of diffusive processes rather than advective ones. They are
therefore approximated with forward or backward differences, rather than centered three-time-
level forms.

The Process Split coupling is approximated by

ψn+1 = ψn−1 + 2∆tD(ψn+1, ψn, ψn−1) + 2∆tP (ψ∗, ψn−1) , (2.2)

where P (ψ∗, ψn−1) is calculated first from

ψ∗ = ψn−1 + 2∆tP (ψ∗, ψn−1) . (2.3)

The Time Split coupling is approximated by

ψ∗ = ψn−1 + 2∆tD(ψ∗, ψn, ψn−1) , (2.4)

ψn+1 = ψ∗ + 2∆tP (ψn+1, ψ∗) . (2.5)

The distinction is that in the Process Split approximation the calculations of D and P are
both based on the same past state, ψn−1, while in the Time Split approximations D and P are
calculated sequentially, each based on the state produced by the other.
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As mentioned above, the Eulerian core employs the three-time-level notation in (2.2)-(2.5).
Eqns. (2.2)-(2.5) also apply to two-time-level semi-Lagrangian and finite volume cores by drop-
ping centered n term dependencies, and replacing n-1 by n and 2∆t by ∆t.

The parameterization package can be applied to produce an updated field as indicated in
(2.3) and (2.5). Thus (2.5) can be written with an operator notation

ψn+1 = P (ψ∗) , (2.6)

where only the past state is included in the operator dependency for notational convenience.
The implicit predicted state dependency is understood. The Process Split equation (2.2) can
also be written in operator notation as

ψn+1 = D

(
ψn−1,

P (ψn−1)− ψn−1

2∆t

)
, (2.7)

where the first argument of D denotes the prognostic variable input to the dynamical core and
the second denotes the forcing rate from the parameterization package, e.g. the heating rate in
the thermodynamic equation. Again only the past state is included in the operator dependency,
with the implicit predicted state dependency left understood. With this notation the Time Split
system (2.5) and (2.5) can be written

ψn+1 = P
(
D
(
ψn−1, 0

))
. (2.8)

The total parameterization package in CAM 3.0 consists of a sequence of components, indi-
cated by

P = {M,R, S, T} , (2.9)

whereM denotes (Moist) precipitation processes, R denotes clouds and Radiation, S denotes the
Surface model, and T denotes Turbulent mixing. Each of these in turn is subdivided into various
components: M includes an optional dry adiabatic adjustment (normally applied only in the
stratosphere), moist penetrative convection, shallow convection, and large-scale stable conden-
sation; R first calculates the cloud parameterization followed by the radiation parameterization;
S provides the surface fluxes obtained from land, ocean and sea ice models, or calculates them
based on specified surface conditions such as sea surface temperatures and sea ice distribution.
These surface fluxes provide lower flux boundary conditions for the turbulent mixing T which
is comprised of the planetary boundary layer parameterization, vertical diffusion, and gravity
wave drag.

Defining operators following (2.6) for each of the parameterization components, the couplings
in CAM 3.0 are summarized as:
TIME SPLIT

ψn+1 = T
(
S
(
R
(
M
(
D
(
ψn−1, 0

)))))
(2.10)

PROCESS SPLIT

ψn+1 = D

(
ψn−1,

T (S (R (M (ψn−1))))− ψn−1

2∆t

)
(2.11)
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The labels Time Split and Process Split refer to the coupling of the dynamical core with the
complete parameterization suite. The components within the parameterization suite are coupled
via time splitting in both forms.

The Process Split form is convenient for spectral transform models. With Time Split approx-
imations extra spectral transforms are required to convert the updated momentum variables
provided by the parameterizations to vorticity and divergence for the Eulerian spectral core, or
to recalculate the temperature gradient for the semi-Lagrangian spectral core. The Time Split
form is convenient for the finite-volume core which adopts a Lagrangian vertical coordinate.
Since the scheme is explicit and restricted to small time-steps by its non-advective component,
it sub-steps the dynamics multiple times during a longer parameterization time step. With
Process Split approximations the forcing terms must be interpolated to an evolving Lagrangian
vertical coordinate every sub-step of the dynamical core. Besides the expense involved, it is not
completely obvious how to interpolate the parameterized forcing, which can have a vertical grid
scale component arising from vertical grid scale clouds, to a different vertical grid. [Williamson,
2002] compares simulations with the Eulerian spectral transform dynamical core coupled to the
CCM3 parameterization suite via Process Split and Time Split approximations.
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Chapter 3

Dynamics

3.1 Eulerian Dynamical Core

The hybrid vertical coordinate that has been implemented in CAM 3.0 is described in this
section. The hybrid coordinate was developed by Simmons and Strüfing [1981] in order to
provide a general framework for a vertical coordinate which is terrain following at the Earth’s
surface, but reduces to a pressure coordinate at some point above the surface. The hybrid
coordinate is more general in concept than the modified σ scheme of Sangster [1960], which is
used in the GFDL SKYHI model. However, the hybrid coordinate is normally specified in such
a way that the two coordinates are identical.

The following description uses the same general development as Simmons and Strüfing [1981],
who based their development on the generalized vertical coordinate of Kasahara [1974]. A
specific form of the coordinate (the hybrid coordinate) is introduced at the latest possible point.
The description here differs from Simmons and Strüfing [1981] in allowing for an upper boundary
at finite height (nonzero pressure), as in the original development by Kasahara. Such an upper
boundary may be required when the equations are solved using vertical finite differences.

3.1.1 Generalized terrain-following vertical coordinates

Deriving the primitive equations in a generalized terrain-following vertical coordinate requires
only that certain basic properties of the coordinate be specified. If the surface pressure is π,
then we require the generalized coordinate η(p, π) to satisfy:

1. η(p, π) is a monotonic function of p.

2. η(π, π) = 1

3. η(0, π) = 0

4. η(pt, π) = ηt where pt is the top of the model.

The latter requirement provides that the top of the model will be a pressure surface, simplifying
the specification of boundary conditions. In the case that pt = 0, the last two requirements
are identical and the system reduces to that described in Simmons and Strüfing [1981]. The
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boundary conditions that are required to close the system are:

η̇(π, π) = 0, (3.1)

η̇(pt, π) = ω(pt) = 0. (3.2)

Given the above description of the coordinate, the continuous system of equations can be
written following Kasahara [1974] and Simmons and Strüfing [1981]. The prognostic equations
are:

∂ζ

∂t
= k · ∇ × (n/ cosφ) + FζH , (3.3)

∂δ

∂t
= ∇ · (n/ cosφ)−∇2 (E + Φ) + FδH , (3.4)

∂T

∂t
=

−1

a cos2 φ

[
∂

∂λ
(UT ) + cosφ

∂

∂φ
(V T )

]
+ Tδ − η̇

∂T

∂η
+
R

c∗p
Tv
ω

p

+Q+ FTH
+ FFH

, (3.5)

∂q

∂t
=

−1

a cos2 φ

[
∂

∂λ
(Uq) + cosφ

∂

∂φ
(V q)

]
+ qδ − η̇

∂q

∂η
+ S, (3.6)

∂π

∂t
=

∫ ηt

1

∇·
(
∂p

∂η
V

)
dη. (3.7)

The notation follows standard conventions, and the following terms have been introduced with
n = (nU , nV ):

nU = +(ζ + f)V − η̇
∂U

∂η
R
Tv
p

1

a
− ∂p

∂λ
+ FU , (3.8)

nV = −(ζ + f)U − η̇
∂V

∂η
−R

Tv
p

cosφ

a

∂p

∂φ
+ FV , (3.9)

E =
U2 + V 2

2 cos2 φ
, (3.10)

(U, V ) = (u, v) cosφ , (3.11)

Tv =

[
1 +

(
Rv

R
− 1

)
q

]
T , (3.12)

c∗p =

[
1 +

(
cpv

cp
− 1

)
q

]
cp . (3.13)

The terms FU , FV , Q, and S represent the sources and sinks from the parameterizations for
momentum (in terms of U and V ), temperature, and moisture, respectively. The terms FζH and
FδH represent sources due to horizontal diffusion of momentum, while FTH

and FFH
represent

sources attributable to horizontal diffusion of temperature and a contribution from frictional
heating (see sections on horizontal diffusion and horizontal diffusion correction).
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In addition to the prognostic equations, three diagnostic equations are required:

Φ = Φs +R

∫ p(1)

p(η)

Tvd ln p, (3.14)

η̇
∂p

∂η
= −∂p

∂t
−
∫ η

ηt

∇·
(
∂p

∂η
V

)
dη, (3.15)

ω = V · ∇p−
∫ η

ηt

∇·
(
∂p

∂η
V

)
dη. (3.16)

Note that the bounds on the vertical integrals are specified as values of η (e.g. ηt, 1) or as
functions of p (e.g. p (1), which is the pressure at η = 1).

3.1.2 Conversion to final form

Equations (3.1)-(3.16) are the complete set which must be solved by a GCM. However, in order
to solve them, the function η(p, π) must be specified. In advance of actually specifying η(p, π),
the equations will be cast in a more convenient form. Most of the changes to the equations
involve simple applications of the chain rule for derivatives, in order to obtain terms that will
be easy to evaluate using the predicted variables in the model. For example, terms involving
horizontal derivatives of p must be converted to terms involving only ∂p/∂π and horizontal
derivatives of π. The former can be evaluated once the function η(p, π) is specified.

The vertical advection terms in (3.5), (3.6), (3.8), and (3.9) may be rewritten as:

η̇
∂ψ

∂η
= η̇

∂p

∂η

∂ψ

∂p
, (3.17)

since η̇∂p/∂η is given by (3.15). Similarly, the first term on the right-hand side of (3.15) can be
expanded as

∂p

∂t
=
∂p

∂π

∂π

∂t
, (3.18)

and (3.7) invoked to specify ∂π/∂t.
The integrals which appear in (3.7), (3.15), and (3.16) can be written more conveniently by

expanding the kernel as

∇·
(
∂p

∂η
V

)
= V · ∇

(
∂p

∂η

)
+
∂p

∂η
∇ · V . (3.19)

The second term in (3.19) is easily treated in vertical integrals, since it reduces to an integral
in pressure. The first term is expanded to:

V · ∇
(
∂p

∂η

)
= V · ∂

∂η
(∇p)

= V · ∂
∂η

(
∂p

∂π
∇π
)

= V · ∂
∂η

(
∂p

∂π

)
∇π + V ·∂p

∂π
∇
(
∂π

∂η

)
. (3.20)

15



The second term in (3.20) vanishes because ∂π/∂η = 0, while the first term is easily treated
once η(p, π) is specified. Substituting (3.20) into (3.19), one obtains:

∇·
(
∂p

∂η
V

)
=

∂

∂η

(
∂p

∂π

)
V · ∇π +

∂p

∂η
∇ · V . (3.21)

Using (3.21) as the kernel of the integral in (3.7), (3.15), and (3.16), one obtains integrals of the
form

∫
∇·
(
∂p

∂η
V

)
dη =

∫ [
∂

∂η

(
∂p

∂π

)
V · ∇π +

∂p

∂η
∇ · V

]
dη

=

∫
V · ∇πd

(
∂p

∂π

)
+

∫
δdp. (3.22)

The original primitive equations (3.3)-(3.7), together with (3.8), (3.9), and (3.14)-(3.16) can
now be rewritten with the aid of (3.17), (3.18), and (3.22).

∂ζ

∂t
= k · ∇ × (n/ cosφ) + FζH , (3.23)

∂δ

∂t
= ∇ · (n/ cosφ)−∇2 (E + Φ) + FδH , (3.24)

∂T

∂t
=

−1

a cos2 φ

[
∂

∂λ
(UT ) + cosφ

∂

∂φ
(V T )

]
+ Tδ − η̇

∂p

∂η

∂T

∂p
+
R

c∗p
Tv
ω

p

+Q+ FTH
+ FFH

(3.25)

∂q

∂t
=

−1

a cos2 φ

[
∂

∂λ
(Uq) + cosφ

∂

∂φ
(V q)

]
+ qδ − η̇

∂p

∂η

∂q

∂p
+ S, (3.26)

∂π

∂t
= −

∫ (1)

(ηt)

V · ∇πd
(
∂p

∂π

)
−
∫ p(1)

p(ηt)

δdp, (3.27)

nU = +(ζ + f)V − η̇
∂p

∂η

∂ − U

∂p
−R

Tv
a

1

p

∂p

∂π

∂π

∂λ
+ FU , (3.28)

nV = −(ζ + f)U − η̇
∂p

∂η

∂ − V

∂p
R
Tv cosφ

a

1

p

∂p

∂π

∂π

∂φ
+ FV , (3.29)

Φ = Φs +R

∫ p(1)

p(η)

Tvd ln p, (3.30)

η̇
∂p

∂η
=

∂p

∂π

[∫ (1)

(ηt)

V · ∇πd
(
∂p

∂π

)
+

∫ p(1)

p(ηt)

δdp

]
(3.31)

−
∫ (η)

(ηt)

V · ∇πd
(
∂p

∂π

)
−
∫ p(η)

p(ηt)

δdp,

ω =
∂p

∂π
V · ∇π −

∫ (η)

(ηt)

V · ∇πd
(
∂p

∂π

)
−
∫ p(η)

p(ηt)

δdp. (3.32)

Once η(p, π) is specified, then ∂p/∂π can be determined and (3.23)-(3.32) can be solved in a
GCM.
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In the actual definition of the hybrid coordinate, it is not necessary to specify η(p, π) explic-
itly, since (3.23)-(3.32) only requires that p and ∂p/∂π be determined. It is sufficient to specify
p(η, π) and to let η be defined implicitly. This will be done in section 3.1.7. In the case that
p(η, π) = σπ and ηt = 0, (3.23)-(3.32) can be reduced to the set of equations solved by CCM1.

3.1.3 Continuous equations using ∂ ln(π)/∂t

In practice, the solutions generated by solving the above equations are excessively noisy. This
problem appears to arise from aliasing problems in the hydrostatic equation (3.30). The ln p
integral introduces a high order nonlinearity which enters directly into the divergence equation
(3.24). Large gravity waves are generated in the vicinity of steep orography, such as in the
Pacific Ocean west of the Andes.

The noise problem is solved by converting the equations given above, which use π as a
prognostic variable, to equations using Π = ln(π). This results in the hydrostatic equation
becoming only quadratically nonlinear except for moisture contributions to virtual temperature.
Since the spectral transform method will be used to solve the equations, gradients will be
obtained during the transform from wave to grid space. Outside of the prognostic equation for
Π, all terms involving ∇π will then appear as π∇Π.
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Equations (3.23)-(3.32) become:

∂ζ

∂t
= k · ∇ × (n/ cosφ) + FζH , (3.33)

∂δ

∂t
= ∇ · (n/ cosφ)−∇2 (E + Φ) + FδH , (3.34)

∂T

∂t
=

−1

a cos2 φ

[
∂

∂λ
(UT ) + cosφ

∂

∂φ
(V T )

]
+ Tδ − η̇

∂p

∂η

∂T

∂p
+
R

c∗p
Tv
ω

p
(3.35)

+Q+ FTH
+ FFH

,

∂q

∂t
=

−1

a cos2 φ

[
∂

∂λ
(Uq) + cosφ

∂

∂φ
(V q)

]
+ qδ − η̇

∂p

∂η

∂q

∂p
+ S, (3.36)

∂Π

∂t
= −

∫ (1)

(ηt)

V · ∇Πd

(
∂p

∂π

)
− 1

π

∫ p(1)

p(ηt)

δdp, (3.37)

nU = +(ζ + f)V − η̇
∂p

∂η

∂ − U

∂p
R
Tv
a

π

p

∂p

∂π

∂Π

∂λ
+ FU , (3.38)

nV = −(ζ + f)U − η̇
∂p

∂η

∂ − V

∂p
R
Tv cosφ

a

π

p

∂p

∂π

∂Π

∂φ
+ FV , (3.39)

Φ = Φs +R

∫ p(1)

p(η)

Tvd ln p, (3.40)

η̇
∂p

∂η
=

∂p

∂π

[∫ (1)

(ηt)

πV · ∇Πd

(
∂p

∂π

)
+

∫ p(1)

p(ηt)

δdp

]
(3.41)

−
∫ (η)

(ηt)

πV · ∇Πd

(
∂p

∂π

)
−
∫ p(η)

p(ηt)

δdp,

ω =
∂p

∂π
πV · ∇Π−

∫ (η)

(ηt)

πV · ∇Πd

(
∂p

∂π

)
−
∫ p(η)

p(ηt)

δdp. (3.42)

The above equations reduce to the standard σ equations used in CCM1 if η = σ and ηt = 0.
(Note that in this case ∂p/∂π = p/π = σ.)

3.1.4 Semi-implicit formulation

The model described by (3.33)-(3.42), without the horizontal diffusion terms, together with
boundary conditions (3.1) and (3.2), is integrated in time using the semi-implicit leapfrog scheme
described below. The semi-implicit form of the time differencing will be applied to (3.34) and
(3.36) without the horizontal diffusion sources, and to (3.37). In order to derive the semi-implicit
form, one must linearize these equations about a reference state. Isolating the terms that will
have their linear parts treated implicitly, the prognostic equations (3.33), (3.34), and (3.37) may
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be rewritten as:

∂δ

∂t
= −RTv∇2 ln p−∇2Φ +X1, (3.43)

∂T

∂t
= +

R

c∗p
Tv
ω

p
− η̇

∂p

∂η

∂T

∂p
+ Y1, (3.44)

∂Π

∂t
= − 1

π

∫ p(1)

p(ηt)

δdp+ Z1, (3.45)

where X1, Y1, Z1 are the remaining nonlinear terms not explicitly written in (3.43)-(3.45). The
terms involving Φ and ω may be expanded into vertical integrals using (3.40) and (3.42), while
the ∇2 ln p term can be converted to ∇2Π, giving:

∂δ

∂t
= −RT π

p

∂p

∂π
∇2Π−R∇2

∫ p(1)

p(η)

Td ln p +X2, (3.46)

∂T

∂t
= −R

cp

T

p

∫ p(η)

p(ηt)

δdp−

[
∂p

∂π

∫ p(1)

p(ηt)

δdp−
∫ p(η)

p(ηt)

δdp

]
∂T

∂p
+ Y2, (3.47)

∂Π

∂t
= − 1

pi

∫ p(1)

p(ηt)

δdp+ Z2. (3.48)

Once again, only terms that will be linearized have been explicitly represented in (3.46)-(3.48),
and the remaining terms are included in X2, Y2, and Z2. Anticipating the linearization, Tv and
c∗p have been replaced by T and cp in (3.46) and (3.47). Furthermore, the virtual temperature
corrections are included with the other nonlinear terms.

In order to linearize (3.46)-(3.48), one specifies a reference state for temperature and pressure,
then expands the equations about the reference state:

T = T r + T ′, (3.49)

π = πr + π′, (3.50)

p = pr(η, πr) + p′. (3.51)

In the special case that p(η, π) = σπ, (3.46)-(3.48) can be converted into equations involving
only Π = ln π instead of p, and (3.50) and (3.51) are not required. This is a major difference
between the hybrid coordinate scheme being developed here and the σ coordinate scheme in
CCM1.

Expanding (3.46)-(3.48) about the reference state (3.49)-(3.51) and retaining only the linear
terms explicitly, one obtains:

∂δ

∂t
= −R∇2

[
T r
πr

pr

(
∂p

∂π

)r
Π +

∫ pr(1)

pr(η)

T ′d ln pr +

∫ p′(1)

p′(η)

T r

pr
dp′

]
+X3, (3.52)

∂T

∂t
= −R

cp

T r

pr

∫ pr(η)

pr(ηt)

δdpr −

[(
∂p

∂π

)r ∫ pr(1)

pr(ηt)

δdpr −
∫ pr(η)

pr(ηt)

δdpr

]
∂T r

∂pr
+ Y3, (3.53)

∂Π

∂t
= − 1

πr

∫ pr(1)

pr(ηt)

δdpr + Z3. (3.54)
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The semi-implicit time differencing scheme treats the linear terms in (3.52)-(3.54) by averaging
in time. The last integral in (3.52) is reduced to purely linear form by the relation

dp′ = π′d

(
∂p

∂π

)r
+ x . (3.55)

In the hybrid coordinate described below, p is a linear function of π, so x above is zero.
We will assume that centered differences are to be used for the nonlinear terms, and the

linear terms are to be treated implicitly by averaging the previous and next time steps. Finite
differences are used in the vertical, and are described in the following sections. At this stage only
some very general properties of the finite difference representation must be specified. A layering
structure is assumed in which field values are predicted on K layer midpoints denoted by an
integer index, ηk (see Figure 3.1). The interface between ηk and ηk+1 is denoted by a half-integer
index, ηk+1/2. The model top is at η1/2 = ηt, and the Earth’s surface is at ηK+1/2 = 1. It is
further assumed that vertical integrals may be written as a matrix (of order K) times a column
vector representing the values of a field at the ηk grid points in the vertical. The column vectors
representing a vertical column of grid points will be denoted by underbars, the matrices will be
denoted by bold-faced capital letters, and superscript T will denote the vector transpose. The
finite difference forms of (3.52)-(3.54) may then be written down as:

δn+1 = δn−1 + 2∆tXn

−2∆tRbr∇2

(
Πn−1 + Πn+1

2
− Πn

)
−2∆tRHr∇2

(
(T ′)n−1 + (T ′)n+1

2
− (T ′)n

)
−2∆tRhr∇2

(
Πn−1 + Πn+1

2
− Πn

)
, (3.56)

T n+1 = T n−1 + 2∆tY n − 2∆tDr

(
δn−1 + δn+1

2
− δn

)
, (3.57)

Πn+1 = Πn−1 + 2∆tZn − 2∆t

(
δn−1 + δn+1

2
− δn

)T
1

Πr
∆pr, (3.58)

where ()n denotes a time varying value at time step n. The quantities Xn, Y n, and Zn are
defined so as to complete the right-hand sides of (3.43)-(3.45). The components of ∆pr are
given by ∆prk = pr

k+ 1
2

−pr
k− 1

2

. This definition of the vertical difference operator ∆ will be used in

subsequent equations. The reference matrices Hr and Dr, and the reference column vectors br

and hr, depend on the precise specification of the vertical coordinate and will be defined later.

3.1.5 Energy conservation

We shall impose a requirement on the vertical finite differences of the model that they conserve
the global integral of total energy in the absence of sources and sinks. We need to derive
equations for kinetic and internal energy in order to impose this constraint. The momentum
equations (more painfully, the vorticity and divergence equations) without the FU , FV , FζH and
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FδH contributions, can be combined with the continuity equation

∂

∂t

(
∂p

∂η

)
+∇ ·

(
∂p

∂η
V

)
+

∂

∂η

(
∂p

∂η
η̇

)
= 0 (3.59)

to give an equation for the rate of change of kinetic energy:

∂

∂t

(
∂p

∂η
E

)
= −∇ ·

(
∂p

∂η
EV

)
− ∂

∂η

(
∂p

∂η
Eη̇

)
−RTv

p

∂p

∂η
V · ∇p− ∂p

∂η
V · ∇Φ − . (3.60)

The first two terms on the right-hand side of (3.60) are transport terms. The horizontal integral
of the first (horizontal) transport term should be zero, and it is relatively straightforward to
construct horizontal finite difference schemes that ensure this. For spectral models, the integral
of the horizontal transport term will not vanish in general, but we shall ignore this problem.

The vertical integral of the second (vertical) transport term on the right-hand side of (3.60)
should vanish. Since this term is obtained from the vertical advection terms for momentum,
which will be finite differenced, we can construct a finite difference operator that will ensure
that the vertical integral vanishes.

The vertical advection terms are the product of a vertical velocity (η̇∂p/∂η) and the vertical
derivative of a field (∂ψ/∂p). The vertical velocity is defined in terms of vertical integrals of
fields (3.42), which are naturally taken to interfaces. The vertical derivatives are also naturally
taken to interfaces, so the product is formed there, and then adjacent interface values of the
products are averaged to give a midpoint value. It is the definition of the average that must be
correct in order to conserve kinetic energy under vertical advection in (3.60). The derivation
will be omitted here, the resulting vertical advection terms are of the form:(

η̇
∂p

∂η

∂ψ

∂p

)
k

=
1

2∆pk

[(
η̇
∂p

∂η

)
k+1/2

(ψk+1 − ψk) +

(
η̇
∂p

∂η

)
k−1/2

(ψk − ψk−1)

]
, (3.61)

∆pk = pk+1/2 − pk−1/2. (3.62)

The choice of definitions for the vertical velocity at interfaces is not crucial to the energy con-
servation (although not completely arbitrary), and we shall defer its definition until later. The
vertical advection of temperature is not required to use (3.61) in order to conserve mass or en-
ergy. Other constraints can be imposed that result in different forms for temperature advection,
but we will simply use (3.61) in the system described below.

The last two terms in (3.60) contain the conversion between kinetic and internal (potential)
energy and the form drag. Neglecting the transport terms, under assumption that global in-
tegrals will be taken, noting that ∇p/p = π

p
∂p
∂π
∇Π, and substituting for the geopotential using

(3.40), (3.60) can be written as:

∂

∂t

(
∂p

∂η
E

)
= −RTv

∂p

∂η
V ·

(
π

p

∂p

∂π
∇Π

)
(3.63)

−∂p
∂η

V · ∇Φs −
∂p

∂η
V · ∇

∫ p(1)

p(η)

RTvd ln p+ . . .
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The second term on the right-hand side of (3.64) is a source (form drag) term that can be
neglected as we are only interested in internal conservation properties. The last term on the
right-hand side of (3.64) can be rewritten as

∂p

∂η
V · ∇

∫ p(1)

p(η)

RTvd ln p = ∇ ·

{
∂p

∂η
V

∫ p(1)

p(η)

RTvd ln p

}
−∇ ·

(
∂p

∂η
V

)∫ p(1)

p(η)

RTvd ln p . (3.64)

The global integral of the first term on the right-hand side of (3.64) is obviously zero, so that
(3.64) can now be written as:

∂

∂t

(
∂p

∂η
E

)
= −RTv

∂p

∂η
V ·

(
π

p

∂p

∂π
∇Π

)
+∇ ·

(
∂p

∂η
V

)∫ p(1)

p(η)

RTvd ln p+ ... (3.65)

We now turn to the internal energy equation, obtained by combining the thermodynamic
equation (3.36), without the Q, FTH

, and FFH
terms, and the continuity equation (3.59):

∂

∂t

(
∂p

∂η
c∗pT

)
= −∇ ·

(
∂p

∂η
c∗pTV

)
− ∂

∂η

(
∂p

∂η
c∗pT η̇

)
+RTv

∂p

∂η

ω

p
. (3.66)

As in (3.60), the first two terms on the right-hand side are advection terms that can be neglected
under global integrals. Using (3.16), (3.66) can be written as:

∂

∂t

(
∂p

∂η
c∗pT

)
= RTv

∂p

∂η
V ·

(
π

p

∂p

∂π
∇Π

)
−RTv

∂p

∂η

1

p

∫ η

ηt

∇ ·
(
∂p

∂η
V

)
dη + ... (3.67)

The rate of change of total energy due to internal processes is obtained by adding (3.65) and
(3.67) and must vanish. The first terms on the right-hand side of (3.65) and (3.67) obviously
cancel in the continuous form. When the equations are discretized in the vertical, the terms will
still cancel, providing that the same definition is used for (1/p ∂p/∂π)k in the nonlinear terms of
the vorticity and divergence equations (3.38) and (3.39), and in the ω term of (3.36) and (3.42).

The second terms on the right-hand side of (3.65) and (3.67) must also cancel in the global
mean. This cancellation is enforced locally in the horizontal on the column integrals of (3.65)
and (3.67), so that we require:∫ 1

ηt

{
∇ ·
(
∂p

∂η
V

)∫ p(1)

p(η)

RTvd ln p

}
dη =

∫ 1

ηt

{
RTv

∂p

∂η

1

p

∫ η

ηt

∇ ·
(
∂p

∂η′
V

)
dη′
}
dη. (3.68)

The inner integral on the left-hand side of (3.68) is derived from the hydrostatic equation (3.40),
which we shall approximate as

Φk = Φs +R

K∑
`=k

Hk`Tv`,

= Φs +R

K∑
`=1

Hk`Tv`, (3.69)

Φ = Φs1 +RHTv, (3.70)
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where Hk` = 0 for ` < k. The quantity 1 is defined to be the unit vector. The inner integral
on the right-hand side of (3.68) is derived from the vertical velocity equation (3.42), which we
shall approximate as(

ω

p

)
k

=

(
π

p

∂p

∂π

)
k

V k · ∇Π−
K∑
`=1

Ck`

[
δ`∆p` + π (V ` · ∇Π) ∆

(
∂p

∂π

)
`

]
, (3.71)

where Ck` = 0 for ` > k, and Ck` is included as an approximation to 1/pk for ` ≤ k and the
symbol ∆ is similarly defined as in (3.62). Ck` will be determined so that ω is consistent with
the discrete continuity equation following Williamson and Olson [1994]. Using (3.69) and (3.71),
the finite difference analog of (3.68) is

K∑
k=1

{
1

∆ηk

[
δk∆pk + π (V k · ∇Π) ∆

(
∂p

∂π

)
k

]
R

K∑
`=1

Hk`Tv`

}
∆ηk

=
K∑
k=1

{
RTvk

∆pk
∆ηk

K∑
`=1

Ck`

[
δ`∆p` + π (V ` · ∇Π) ∆

(
∂p

∂π

)
`

]}
∆ηk, (3.72)

where we have used the relation

∇ · V (∂p/∂η)k = [δk∆pk + π (V k · ∇Π) ∆ (∂p/∂π)k]/∆ηk (3.73)

(see 3.22). We can now combine the sums in (3.72) and simplify to give

K∑
k=1

K∑
`=1

{[
δk∆pk + π (V k · ∇Π) ∆

(
∂p

∂π

)
k

]
Hk`Tv`

}

=
K∑
k=1

K∑
`=1

{[
δ`∆p` + π (V ` · ∇Π) ∆

(
∂p

∂π

)
`

]
∆pkCk`Tvk

}
. (3.74)

Interchanging the indexes on the left-hand side of (3.74) will obviously result in identical ex-
pressions if we require that

Hk` = C`k∆p`. (3.75)

Given the definitions of vertical integrals in (3.70) and (3.71) and of vertical advection in
(3.61) and (3.62) the model will conserve energy as long as we require that C and H satisfy
(3.75). We are, of course, still neglecting lack of conservation due to the truncation of the
horizontal spherical harmonic expansions.

3.1.6 Horizontal diffusion

CAM 3.0 contains a horizontal diffusion term for T, ζ, and δ to prevent spectral blocking and
to provide reasonable kinetic energy spectra. The horizontal diffusion operator in CAM 3.0 is
also used to ensure that the CFL condition is not violated in the upper layers of the model.
The horizontal diffusion is a linear ∇2 form on η surfaces in the top three levels of the model
and a linear ∇4 form with a partial correction to pressure surfaces for temperature elsewhere.
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The ∇2 diffusion near the model top is used as a simple sponge to absorb vertically propagating
planetary wave energy and also to control the strength of the stratospheric winter jets. The ∇2

diffusion coefficient has a vertical variation which has been tuned to give reasonable Northern
and Southern Hemisphere polar night jets.

In the top three model levels, the ∇2 form of the horizontal diffusion is given by

FζH = K(2)
[
∇2 (ζ + f) + 2 (ζ + f) /a2

]
, (3.76)

FδH = K(2)
[
∇2δ + 2(δ/a2)

]
, (3.77)

FTH
= K(2)∇2T. (3.78)

Since these terms are linear, they are easily calculated in spectral space. The undifferentiated
correction term is added to the vorticity and divergence diffusion operators to prevent damping
of uniform (n = 1) rotations [Orszag, 1974; Bourke et al., 1977]. The ∇2 form of the horizontal
diffusion is applied only to pressure surfaces in the standard model configuration.

The horizontal diffusion operator is better applied to pressure surfaces than to terrain-
following surfaces (applying the operator on isentropic surfaces would be still better). Although
the governing system of equations derived above is designed to reduce to pressure surfaces above
some level, problems can still occur from diffusion along the lower surfaces. Partial correction
to pressure surfaces of harmonic horizontal diffusion (∂ξ/∂t = K∇2ξ) can be included using the
relations:

∇pξ = ∇ηξ − p
∂ξ

∂p
∇η ln p

∇2
pξ = ∇2

ηξ − p
∂ξ

∂p
∇2
η ln p− 2∇η

(
∂ξ

∂p
−
)
· ∇ηp+

∂2ξ

∂2p
∇2
ηp . (3.79)

Retaining only the first two terms above gives a correction to the η surface diffusion which
involves only a vertical derivative and the Laplacian of log surface pressure,

∇2
pξ = ∇2

ηξ − π
∂ξ

∂p

∂p

∂π
∇2Π + . . . (3.80)

Similarly, biharmonic diffusion can be partially corrected to pressure surfaces as:

∇4
pξ = ∇4

ηξ − π
∂ξ

∂p

∂p

∂π
∇4Π + . . . (3.81)

The bi-harmonic ∇4 form of the diffusion operator is applied at all other levels (generally
throughout the troposphere) as

FζH = −K(4)
[
∇4 (ζ + f)− (ζ + f)

(
2/a2

)2]
, (3.82)

FδH = −K(4)
[
∇4δ − δ(2/a2)2

]
, (3.83)

FTH
= −K(4)

[
∇4T − π

∂T

∂p

∂p

∂π
∇4Π

]
. (3.84)

The second term in FTH
consists of the leading term in the transformation of the ∇4 operator

to pressure surfaces. It is included to offset partially a spurious diffusion of T over mountains.
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As with the ∇2 form, the ∇4 operator can be conveniently calculated in spectral space. The
correction term is then completed after transformation of T and ∇4Π back to grid–point space.
As with the ∇2 form, an undifferentiated term is added to the vorticity and divergence diffusion
operators to prevent damping of uniform rotations.

3.1.7 Finite difference equations

The governing equations are solved using the spectral method in the horizontal, so that only the
vertical and time differences are presented here. The dynamics includes horizontal diffusion of
T, (ζ + f), and δ. Only T has the leading term correction to pressure surfaces. Thus, equations
that include the terms in this time split sub-step are of the form

∂ψ

∂t
= Dyn (ψ)− (−1)iK(2i)∇2i

η ψ , (3.85)

for (ζ + f) and δ, and

∂T

∂t
= Dyn (T )− (−1)iK(2i)

{
∇2i
η T − π

∂T

∂p

∂p

∂π
∇2iΠ

}
, (3.86)

where i = 1 in the top few model levels and i = 2 elsewhere (generally within the troposphere).
These equations are further subdivided into time split components:

ψn+1 = ψn−1 + 2∆t Dyn
(
ψn+1, ψn, ψn−1

)
, (3.87)

ψ∗ = ψn+1 − 2∆t (−1)iK(2i)∇2i
η

(
ψ∗n+1

)
, (3.88)

ψ̂n+1 = ψ∗ , (3.89)

for (ζ + f) and δ, and

T n+1 = T n−1 + 2∆t Dyn
(
T n+1, T n, T n−1

)
(3.90)

T ∗ = T n+1 − 2∆t (−1)iK(2i)∇2iη (T ∗) , (3.91)

T̂ n+1 = T ∗ + 2∆t (−1)iK(2i)π
∂T ∗

∂p

∂p

∂π
∇2i Π , (3.92)

for T , where in the standard model i only takes the value 2 in (3.92). The first step from ( )n−1

to ( )n+1 includes the transformation to spectral coefficients. The second step from ( )n+1 to
(ˆ)n+1 for δ and ζ , or ( )n+1 to ( )∗ for T , is done on the spectral coefficients, and the final step
from ( )∗ to (ˆ)n+1 for T is done after the inverse transform to the grid point representation.

The following finite-difference description details only the forecast given by (3.87) and (3.90).
The finite-difference form of the forecast equation for water vapor will be presented later in
Section 3c. The general structure of the complete finite difference equations is determined by
the semi-implicit time differencing and the energy conservation properties described above. In
order to complete the specification of the finite differencing, we require a definition of the vertical
coordinate. The actual specification of the generalized vertical coordinate takes advantage of the
structure of the equations (3.33)-(3.42). The equations can be finite-differenced in the vertical
and, in time, without having to know the value of η anywhere. The quantities that must be
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known are p and ∂p/∂π at the grid points. Therefore the coordinate is defined implicitly through
the relation:

p(η, π) = A(η)p0 +B(η)π , (3.93)

which gives
∂p

∂π
= B(η) . (3.94)

A set of levels ηk may be specified by specifying Ak and Bk, such that ηk ≡ Ak + Bk, and
difference forms of (3.33)-(3.42) may be derived.

The finite difference forms of the Dyn operator (3.33)-(3.42), including semi-implicit time
integration are:

ζn+1 = ζn−1 + 2∆tk · ∇× (nn/ cosφ) , (3.95)

δn+1 = δn−1 + 2∆t
[
∇ · (nn/ cosφ)−∇2

(
En + Φs1 +RHn(Tv

′
)n
)]

−2∆tRHr∇2

(
(T ′)n−1 + (T ′)n+1

2
− (T ′)n

)
−2∆tR (br + hr)∇2

(
Πn−1 + Πn+1

2
− Πn

)
, (3.96)

(T
′
)n+1 = (T

′
)n−1 − 2∆t

[
1

a cos2 φ

∂

∂λ
(UT ′)

n
+

1

a cosφ

∂

∂φ
(V T ′)

n − Γn
]

(3.97)

−2∆tDr

(
δn−1 + δn+1

2
− δn

)
Πn+1 = Πn−1 − 2∆t

1

πn

(
(δn)T ∆pn + (V n)T · ∇Πnπn∆B

)
−2∆t

(
δn−1 + δn+1

2
− δn

)T
1

πr
∆pr, (3.98)

(nU)k = (ζk + f)Vk −RTvk

(
1

p

∂p

∂π

)
k

π
1

a

∂Π

∂λ

− 1

2∆pk

[(
η̇
∂p

∂η

)
k+1/2

(Uk+1 − Uk) +

(
η̇
∂p

∂η

)
k−1/2

(Uk − Uk−1)

]
+ (FU)k , (3.99)

(nV )k = − (ζk + f)Uk −RTvk

(
1

p

∂p

∂π

)
k

π
cosφ

a

∂Π

∂φ

− 1

2∆pk

[(
η̇
∂p

∂η

)
k+1/2

(Vk+1 − Vk) +

(
η̇
∂p

∂η

)
k−1/2

(Vk − Vk−1)

]
+ (FV )k , (3.100)

Γk = T ′kδk +
RTvk
(c∗p)k

(
ω

p

)
k

−Q

− 1

2∆pk

[(
η̇
∂p

∂η

)
k+1/2

(Tk+1 − Tk) +

(
η̇
∂p

∂η

)
k−1/2

(Tk − Tk−1)

]
, (3.101)
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Ek = (uk)
2 + (vk)

2 , (3.102)

RTvk
(c∗p)k

=
R

cp

 T rk + Tv
′
k

1 +
(
cpv

cp
− 1
)
qk

 , (3.103)

(
η̇
∂p

∂η

)
k+1/2

= Bk+1/2

K∑
`=1

[δ`∆p` + V ` · π∇Π∆B`]

−
k∑
`=1

[δ`∆p` + V ` · π∇Π∆B`] , (3.104)

(
ω

p

)
k

=

(
1

p

∂p

∂π

)
k

V k · π∇Π−
k∑
`=1

Ck` [δ`∆p` + V ` · π∇Π∆B`] , (3.105)

Ck` =

{
1
pk
, ` < k

1
2pk
, ` = k,

(3.106)

Hk` = C`k∆p`, (3.107)

Dr
k` = ∆pr`

R

cp
T rkC

r
`k +

∆pr`
2∆prk

(
T rk − T rk−1

) (
εk`+1 −Bk−1/2

)
+

∆pr`
2∆prk

(
T rk+1 − T rk

) (
εk` −Bk+1/2

)
, (3.108)

εk`
R

=

{
1, ` ≤ k
0, ` > k,

(3.109)

where notation such as (UT ′)
n

denotes a column vector with components (UkT
′
k)
n. In order

to complete the system, it remains to specify the reference vector hr, together with the term
(1/p ∂p/∂π), which results from the pressure gradient terms and also appears in the semi-implicit
reference vector br:

(
1

p

∂p

∂π

)
k

=

(
1

p

)
k

(
∂p

∂π

)
k

=
Bk

pk
, (3.110)

br = T r, (3.111)

hr = 0. (3.112)

The matrices Cn and Hn (i.e. with components Ck` and Hk`) must be evaluated at each time
step and each point in the horizontal. It is more efficient computationally to substitute the
definitions of these matrices into (3.96) and (3.105) at the cost of some loss of generality in
the code. The finite difference equations have been written in the form (3.95)-(3.112) because
this form is quite general. For example, the equations solved by Simmons and Strüfing [1981]
at ECMWF can be obtained by changing only the vectors and hydrostatic matrix defined by
(3.109)-(3.112).
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3.1.8 Time filter

The time step is completed by applying a recursive time filter originally designed by [Robert,
1966] and later studied by [Asselin, 1972].

ψ
n

= ψn + α
(
ψ
n−1 − 2ψn + ψn+1

)
(3.113)

3.1.9 Spectral transform

The spectral transform method is used in the horizontal exactly as in CCM1. As shown earlier,
the vertical and temporal aspects of the model are represented by finite–difference approxima-
tions. The horizontal aspects are treated by the spectral–transform method, which is described
in this section. Thus, at certain points in the integration, the prognostic variables (ζ + f) , δ, T,
and Π are represented in terms of coefficients of a truncated series of spherical harmonic func-
tions, while at other points they are given by grid–point values on a corresponding Gaussian
grid. In general, physical parameterizations and nonlinear operations are carried out in grid–
point space. Horizontal derivatives and linear operations are performed in spectral space. Ex-
ternally, the model appears to the user to be a grid–point model, as far as data required and
produced by it. Similarly, since all nonlinear parameterizations are developed and carried out in
grid–point space, the model also appears as a grid–point model for the incorporation of physical
parameterizations, and the user need not be too concerned with the spectral aspects. For users
interested in diagnosing the balance of terms in the evolution equations, however, the details are
important and care must be taken to understand which terms have been spectrally truncated
and which have not. The algebra involved in the spectral transformations has been presented in
several publications [Daley et al., 1976; Bourke et al., 1977; Machenhauer, 1979]. In this report,
we present only the details relevant to the model code; for more details and general philosophy,
the reader is referred to these earlier papers.

3.1.10 Spectral algorithm overview

The horizontal representation of an arbitrary variable ψ consists of a truncated series of spherical
harmonic functions,

ψ(λ, µ) =
M∑

m=−M

N (m)∑
n=|m|

ψmn P
m
n (µ)eimλ, (3.114)

where µ = sinφ, M is the highest Fourier wavenumber included in the east–west representa-
tion, and N (m) is the highest degree of the associated Legendre polynomials for longitudinal
wavenumber m. The properties of the spherical harmonic functions used in the representation
can be found in the review by Machenhauer [1979]. The model is coded for a general pentagonal
truncation, illustrated in Figure 3.2, defined by three parameters: M,K, and N , where M is
defined above, K is the highest degree of the associated Legendre polynomials, and N is the
highest degree of the Legendre polynomials for m = 0. The common truncations are subsets of
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Figure 3.2: Pentagonal truncation parameters

this pentagonal case:

Triangular : M = N = K,

Rhomboidal : K = N +M, (3.115)

Trapezoidal : N = K > M.

The quantity N (m) in (3.114) represents an arbitrary limit on the two-dimensional wavenumber
n, and for the pentagonal truncation described above is simply given by
N (m) = min (N + |m|, K).

The associated Legendre polynomials used in the model are normalized such that∫ 1

−1

[Pm
n (µ)]2 dµ = 1. (3.116)

With this normalization, the Coriolis parameter f is

f =
Ω√

0.375
P o

1 , (3.117)
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which is required for the absolute vorticity.
The coefficients of the spectral representation (3.114) are given by

ψmn =

∫ 1

−1

1

2π

∫ 2π

0

ψ(λ, µ)e−imλdλPm
n (µ)dµ. (3.118)

The inner integral represents a Fourier transform,

ψm(µ) =
1

2π

∫ 2π

0

ψ(λ, µ)e−imλdλ, (3.119)

which is performed by a Fast Fourier Transform (FFT) subroutine. The outer integral is per-
formed via Gaussian quadrature,

ψmn =
J∑
j=1

ψm(µj)P
m
n (µj)wj, (3.120)

where µj denotes the Gaussian grid points in the meridional direction, wj the Gaussian weight
at point µj, and J the number of Gaussian grid points from pole to pole. The Gaussian grid
points (µj) are given by the roots of the Legendre polynomial PJ(µ), and the corresponding
weights are given by

wj =
2(1− µ2

j)

[J PJ−1(µj)]
2 . (3.121)

The weights themselves satisfy
J∑
j=1

wj = 2.0 . (3.122)

The Gaussian grid used for the north–south transformation is generally chosen to allow un-
aliased computations of quadratic terms only. In this case, the number of Gaussian latitudes J
must satisfy

J ≥ (2N +K +M + 1)/2 forM ≤ 2(K −N) , (3.123)

J ≥ (3K + 1)/2 forM ≥ 2(K −N) . (3.124)

For the common truncations, these become

J ≥ (3K + 1)/2 for triangular and trapezoidal, (3.125)

J ≥ (3N + 2M + 1)/2 for rhomboidal. (3.126)

In order to allow exact Fourier transform of quadratic terms, the number of points P in the
east–west direction must satisfy

P ≥ 3M + 1 . (3.127)

The actual values of J and P are often not set equal to the lower limit in order to allow use of
more efficient transform programs.

Although in the next section of this model description, we continue to indicate the Gaus-
sian quadrature as a sum from pole to pole, the code actually deals with the symmetric and
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antisymmetric components of variables and accumulates the sums from equator to pole only.
The model requires an even number of latitudes to easily use the symmetry conditions. This
may be slightly inefficient for some spectral resolutions. We define a new index, which goes
from −I at the point next to the south pole to +I at the point next to the north pole and not
including 0 (there are no points at the equator or pole in the Gaussian grid), i.e., let I = J/2
and i = j− J/2 for j ≥ J/2 + 1 and i = j− J/2− 1 for j ≤ J/2; then the summation in (3.120)
can be rewritten as

ψmn =
I∑

i=−I, i6=0

ψm(µi)P
m
n (µi)wi. (3.128)

The symmetric (even) and antisymmetric (odd) components of ψm are defined by

(ψE)mi =
1

2

(
ψmi + ψm−i

)
,

(ψO)mi =
1

2

(
ψmi − ψm−i

)
. (3.129)

Since wi is symmetric about the equator, (3.128) can be rewritten to give formulas for the
coefficients of even and odd spherical harmonics:

ψmn =


I∑
i=1

(ψE)mi (µi)P
m
n (µi)2wi for n−m even,

I∑
i=1

(ψO)mi (µi)P
m
n (µi)2wi for n−m odd.

(3.130)

The model uses the spectral transform method [Machenhauer, 1979] for all nonlinear terms.
However, the model can be thought of as starting from grid–point values at time t (consistent
with the spectral representation) and producing a forecast of the grid–point values at time t+∆t
(again, consistent with the spectral resolution). The forecast procedure involves computation
of the nonlinear terms including physical parameterizations at grid points; transformation via
Gaussian quadrature of the nonlinear terms from grid–point space to spectral space; computation
of the spectral coefficients of the prognostic variables at time t+ ∆t (with the implied spectral
truncation to the model resolution); and transformation back to grid–point space. The details
of the equations involved in the various transformations are given in the next section.

3.1.11 Combination of terms

In order to describe the transformation to spectral space, for each equation we first group
together all undifferentiated explicit terms, all explicit terms with longitudinal derivatives, and
all explicit terms with meridional derivatives appearing in the Dyn operator. Thus, the vorticity
equation (3.95) is rewritten

(ζ + f)n+1 = V +
1

a(1− µ2)

[
∂

∂λ
(Vλ)− (1− µ2)

∂

∂µ
(Vµ)

]
, (3.131)
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where the explicit forms of the vectors V,Vλ, and Vµ are given as

V = (ζ + f)n−1, (3.132)

Vλ = 2∆t nnV , (3.133)

Vµ = 2∆t nnU . (3.134)

The divergence equation (3.96) is

δn+1 = D +
1

a(1− µ2)

[
∂

∂λ
(Dλ) + (1− µ2)

∂

∂µ
(Dµ)

]
−∇2D∇

−∆t∇2(RHrT ′n+1 +R (br + hr) Πn+1). (3.135)

The mean component of the temperature is not included in the next–to–last term since the
Laplacian of it is zero. The thermodynamic equation (3.98) is

T ′n+1 = T− 1

a(1− µ2)

[
∂

∂λ
(Tλ) + (1− µ2)

∂

∂µ
(Tµ)−

]
−∆tDr δn+1. (3.136)

The surface–pressure tendency (3.98) is

Πn+1 = PS− ∆t

πr
(
∆pr

)T
δn+1. (3.137)

The grouped explicit terms in (3.135)–(3.137) are given as follows. The terms of (3.135) are

D = δn−1, (3.138)

Dλ = 2∆t nnU , (3.139)

Dµ = 2∆t nnV , (3.140)

D∇ = 2∆t
[
En + Φs1 +RHrT ′n

]
+ ∆t

[
RHr

(
(T

′
)
n−1 − 2(T ′)

n
)

+R (br + hr)
(
Πn−1 − 2Πn

)]
. (3.141)

The terms of (3.136) are

T = (T ′)
n−1

+ 2∆tΓn −∆tDr
[
δn−1 − 2δn

]
, (3.142)

Tλ = 2∆t(UT ′)
n
, (3.143)

Tµ = 2∆t(V T ′)
n
. (3.144)

The nonlinear term in (3.137) is

PS = Πn−1 − 2∆t 1
πn

[
(δn)T

(
∆pn

)
+ (V n)T ∇Πnπn∆B

]
−∆t

[(
∆pr

)T 1
πr

] [
δn−1 − 2δn

]
. (3.145)
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3.1.12 Transformation to spectral space

Formally, Equations (3.131)-(3.137) are transformed to spectral space by performing the opera-
tions indicated in (3.146) to each term. We see that the equations basically contain three types
of terms, for example, in the vorticity equation the undifferentiated term V, the longitudinally
differentiated term Vλ, and the meridionally differentiated term Vµ. All terms in the original
equations were grouped into one of these terms on the Gaussian grid so that they could be
transformed at once.

Transformation of the undifferentiated term is obtained by straightforward application of
(3.118)-(3.120),

{V}mn =
J∑
j=1

Vm(µj)P
m
n (µj)wj, (3.146)

where Vm(µj) is the Fourier coefficient of V with wavenumber m at the Gaussian grid line
µj. The longitudinally differentiated term is handled by integration by parts, using the cyclic
boundary conditions, {

∂

∂λ
(Vλ)

}m
=

1

2π

∫ 2π

o

∂Vλ
∂λ

e−imλdλ, (3.147)

= im
1

2π

∫ 2π

o

Vλe
−imλdλ, (3.148)

(3.149)

so that the Fourier transform is performed first, then the differentiation is carried out in spectral
space. The transformation to spherical harmonic space then follows (3.152):{

1

a(1− µ2)

∂

∂λ
(Vλ)

}m
n

= im
J∑
j=1

Vmλ (µj)
Pm
n (µj)

a(1− µ2
j)
wj, (3.150)

where Vmλ (µj) is the Fourier coefficient of Vλ with wavenumber m at the Gaussian grid line µj.
The latitudinally differentiated term is handled by integration by parts using zero boundary

conditions at the poles:{
1

a(1− µ2)
(1− µ2)

∂

∂µ
(Vµ)

}m
n

=

∫ 1

−1

1

a(1− µ2)
(1− µ2)

∂

∂µ
(Vµ)

mPm
n dµ, (3.151)

= −
∫ 1

−1

1

a(1− µ2)
(Vµ)

m(1− µ2)
dPm

n

dµ
dµ. (3.152)

Defining the derivative of the associated Legendre polynomial by

Hm
n = (1− µ2)

dPm
n

dµ
, (3.153)

(3.155) can be written{
1

a(1− µ2)
(1− µ2)

∂

∂µ
(Vµ)

}m
n

= −
J∑
j=1

(Vµ)
m Hm

n (µj)

a(1− µ2
j)
wj. (3.154)
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Similarly, the ∇2 operator in the divergence equation can be converted to spectral space by
sequential integration by parts and then application of the relationship

∇2Pm
n (µ)eimλ =

−n(n+ 1)

a2
Pm
n (µ)eimλ, (3.155)

to each spherical harmonic function individually so that

{
∇2D∇

}m
n

=
−n(n+ 1)

a2

J∑
j=1

Dm
∇(µj)P

m
n (µj)wj, (3.156)

where Dm
∇(µ) is the Fourier coefficient of the original grid variable D∇.

3.1.13 Solution of semi-implicit equations

The prognostic equations can be converted to spectral form by summation over the Gaussian
grid using (3.146), (3.150), and (3.154). The resulting equation for absolute vorticity is

(ζ + f)m
n

= VSmn , (3.157)

where (ζ + f)m
n

denotes a spherical harmonic coefficient of (ζ + f)n+1, and the form of VSmn , as
a summation over the Gaussian grid, is given as

VSmn =
J∑
j=1

[
Vm(µj)P

m
n (µj) + imVmλ (µj)

Pm
n (µj)

a(1− µ2
j)

+ Vmµ (µj)
Hm
n (µj)

a(1− µ2
j)

]
wj. (3.158)

The spectral form of the divergence equation (3.135) becomes

δmn = DSmn + ∆t
n(n+ 1)

a2
[RHrT ′mn +R (br + hr) Πm

n ] , (3.159)

where δmn , T
′m
n , and Πm

n are spectral coefficients of δn+1, T ′n+1, and Πn+1. The Laplacian of
the total temperature in (3.135) is replaced by the equivalent Laplacian of the perturbation
temperature in (3.159). DSmn is given by

DSmn =
J∑
j=1

{[
Dm(µj) +

n(n+ 1)

a2
Dm
∇(µj)

]
Pm
n (µj)

+imDm
λ (µj)

Pm
n (µj)

a(1− µ2
j)
− Dm

µ (µj)
Hm
n (µj)

a(1− µ2
j)

}
wj. (3.160)

The spectral thermodynamic equation is

T ′mn = TSmn −∆tDrδmn , (3.161)

with TSmn defined as

TSmn =
J∑
j=1

[
Tm(µj)P

m
n (µj)− imTm

λ (µj)
Pm
n (µj)

a(1− µ2
j)

+ Tm
µ (µj)

Hm
n (µj)

a(1− µ2
j)

]
wj, (3.162)
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while the surface pressure equation is

Πm
n = PSmn − δmn

(
∆pr

)T ∆t

πr
, (3.163)

where PSmn is given by

PSmn =
J∑
j=1

PSm(µj)P
m
n (µj)wj. (3.164)

Equation (3.157) for vorticity is explicit and complete at this point. However, the remaining
equations (3.159)–(3.163) are coupled. They are solved by eliminating all variables except δmn :

Anδ
m
n = DSmn + ∆t

n(n+ 1)

a2
[RHr(TS)mn +R (br + hr) (PS)mn ] , (3.165)

where

An = I + ∆t2
n(n+ 1)

a2

[
RHrDr +R (br + hr)

((
∆pr

)T 1

πr

)]
, (3.166)

which is simply a set of K simultaneous equations for the coefficients with given wavenumbers
(m,n) at each level and is solved by inverting An. In order to prevent the accumulation of round–
off error in the global mean divergence (which if exactly zero initially, should remain exactly
zero) (Ao)

−1 is set to the null matrix rather than the identity, and the formal application of
(3.165) then always guarantees δoo = 0. Once δmn is known, T ′mn and Πm

n can be computed
from (3.161) and (3.163), respectively, and all prognostic variables are known at time n+1 as
spherical harmonic coefficients. Note that the mean component T ′oo is not necessarily zero since
the perturbations are taken with respect to a specified T r.

3.1.14 Horizontal diffusion

As mentioned earlier, the horizontal diffusion in (3.88) and (3.91) is computed implicitly via
time splitting after the transformations into spectral space and solution of the semi-implicit
equations. In the following, the ζ and δ equations have a similar form, so we write only the δ
equation:

(δ∗)mn =
(
δn+1

)m
n
− (−1)i 2∆tK(2i)

[
∇2i (δ∗)mn − (−1)i (δ∗)mn

(
2/a2

)i]
, (3.167)

(T ∗)mn =
(
T n+1

)m
n
− (−1)i 2∆tK(2i)

[
∇2i (T ∗)mn

]
. (3.168)

The extra term is present in (3.167), (3.171) and (3.173) to prevent damping of uniform
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rotations. The solutions are just

(δ∗)mn = K(2i)
n (δ)

(
δn+1

)m
n
, (3.169)

(T ∗)mn = K(2i)
n (T )

(
T n+1

)m
n
, (3.170)

K(2)
n (δ) =

{
1 + 2∆tDnK

(2)

[(
n(n+ 1)

a2

)
− 2

a2

]}−1

, (3.171)

K(2)
n (T ) =

{
1 + 2∆tDnK

(2)

(
n(n+ 1)

a2

)}−1

, (3.172)

K(4)
n (δ) =

{
1 + 2∆tDnK

(4)

[(
n(n+ 1)

a2

)2

− 4

a4

]}−1

, (3.173)

K(4)
n (T ) =

{
1 + 2∆tDnK

(4)

(
n(n+ 1)

a2

)2
}−1

. (3.174)

K
(2)
n (δ) and K

(4)
n (δ) are both set to 1 for n = 0. The quantity Dn represents the “Courant

number limiter”, normally set to 1. However, Dn is modified to ensure that the CFL criterion
is not violated in selected upper levels of the model. If the maximum wind speed in any of
these upper levels is sufficiently large, then Dn = 1000 in that level for all n > nc, where
nc = a∆t

/
max |V |. This condition is applied whenever the wind speed is large enough that

nc < K, the truncation parameter in (3.115), and temporarily reduces the effective resolution of
the model in the affected levels. The number of levels at which this “Courant number limiter”
may be applied is user-selectable, but it is only used in the top level of the 26 level CAM 3.0
control runs.

The diffusion of T is not complete at this stage. In order to make the partial correction
from η to p in (3.82) local, it is not included until grid–point values are available. This requires
that ∇4Π also be transformed from spectral to grid–point space. The values of the coefficients
K(2) and K(4) for the standard T42 resolution are 2.5 × 105m2sec−1 and 1.0 × 1016m4sec−1,
respectively.

3.1.15 Initial divergence damping

Occasionally, with poorly balanced initial conditions, the model exhibits numerical instability
during the beginning of an integration because of excessive noise in the solution. Therefore, an
optional divergence damping is included in the model to be applied over the first few days. The
damping has an initial e-folding time of ∆t and linearly decreases to 0 over a specified number
of days, tD, usually set to be 2. The damping is computed implicitly via time splitting after the
horizontal diffusion.

r = max

[
1

∆t
(tD − t)/tD, 0

]
(3.175)

(δ∗)mn =
1

1 + 2∆tr
(δ∗)mn (3.176)
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3.1.16 Transformation from spectral to physical space

After the prognostic variables are completed at time n+1 in spectral space
(
(ζ + f)∗

)m
n

, (δ∗)mn ,

(T ∗)mn , (Πn+1)
m
n they are transformed to grid space. For a variable ψ, the transformation is

given by

ψ(λ, µ) =
M∑

m=−M

N (m)∑
n=|m|

ψmn P
m
n (µ)

 eimλ. (3.177)

The inner sum is done essentially as a vector product over n, and the outer is again performed
by an FFT subroutine. The term needed for the remainder of the diffusion terms, ∇4Π, is
calculated from

∇4Πn+1 =
M∑

m=−M

N (m)∑
n=|m|

(
n(n+ 1)

a2

)2 (
Πn+1

)m
n
Pm
n (µ)

 eimλ. (3.178)

In addition, the derivatives of Π are needed on the grid for the terms involving ∇Π and V ·∇Π,

V · ∇Π =
U

a(1− µ2)

∂Π

∂λ
+

V

a(1− µ2)
(1− µ2)

∂Π

∂µ
. (3.179)

These required derivatives are given by

∂Π

∂λ
=

M∑
m=−M

im

N (m)∑
n=|m|

Πm
n P

m
n (µ)

 eimλ, (3.180)

and using (3.153),

(1− µ2)
∂Π

∂µ
=

M∑
m=−M

N (m)∑
n=|m|

Πm
nH

m
n (µ)

 eimλ, (3.181)

which involve basically the same operations as (3.178). The other variables needed on the
grid are U and V . These can be computed directly from the absolute vorticity and divergence
coefficients using the relations

(ζ + f)mn = −n(n+ 1)

a2
ψmn + fmn , (3.182)

δmn = −n(n+ 1)

a2
χmn , (3.183)

in which the only nonzero fmn is f o1 = Ω/
√
.375, and

U =
1

a

∂χ

∂λ
− (1− µ2)

a

∂ψ

∂µ
, (3.184)

V =
1

a

∂ψ

∂λ
+

(1− µ2)

a

∂χ

∂µ
. (3.185)
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Thus, the direct transformation is

U = −
M∑

m=−M

a

N (m)∑
n=|m|

[
im

n(n+ 1)
δmn P

m
n (µ)− 1

n(n+ 1)
(ζ + f)mnH

m
n (µ)

]
eimλ

− a

2

Ω√
0.375

Ho
1 , (3.186)

V = −
M∑

m=−M

a

N (m)∑
n=|m|

[
im

n(n+ 1)
(ζ + f)mn P

m
n (µ) +

1

n(n+ 1)
δmn H

m
n (µ)

]
eimλ. (3.187)

The horizontal diffusion tendencies are also transformed back to grid space. The spectral
coefficients for the horizontal diffusion tendencies follow from (3.167) and (3.168):

FTH
(T ∗)mn = (−1)i+1K2i

[
∇2i (T ∗)

]m
n
, (3.188)

FζH ((ζ + f)∗)
m
n = (−1)i+1K2i

{
∇2i (ζ + f)∗ − (−1)i (ζ + f)∗

(
2/a2

)i}
, (3.189)

FδH (δ∗)mn = (−1)K2i
{
∇2i (δ∗)− (−1)i δ∗

(
2/a2

)i}
, (3.190)

using i = 1 or 2 as appropriate for the ∇2 or ∇4 forms. These coefficients are transformed to
grid space following (3.114) for the T term and (3.186) and (3.187) for vorticity and divergence.
Thus, the vorticity and divergence diffusion tendencies are converted to equivalent U and V
diffusion tendencies.

3.1.17 Horizontal diffusion correction

After grid–point values are calculated, frictional heating rates are determined from the momen-
tum diffusion tendencies and are added to the temperature, and the partial correction of the ∇4

diffusion from η to p surfaces is applied to T . The frictional heating rate is calculated from the
kinetic energy tendency produced by the momentum diffusion

FFH
= −un−1FuH

(u∗)/c∗p − vn−1FvH
(v∗)/c∗p, (3.191)

where FuH
, and FvH

are the momentum equivalent diffusion tendencies, determined from FζH
and FδH just as U and V are determined from ζ and δ, and

c∗p = cp

[
1 +

(
cpv

cp
− 1

)
qn+1

]
. (3.192)

These heating rates are then combined with the correction,

T̂ n+1
k = T ∗k + (2∆tFFH

)k + 2∆t

(
πB

∂T ∗

∂p

)
k

K(4)∇4Πn+1. (3.193)
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The vertical derivatives of T ∗ (where the ∗ notation is dropped for convenience) are defined by(
πB

∂T

∂p

)
1

=
π

2∆p1

[
B1+ 1

2
(T2 − T1)

]
, (3.194)(

πB
∂T

∂p

)
k

=
π

2∆pk

[
Bk+ 1

2
(Tk+1 − Tk) +Bk− 1

2
(Tk − Tk−1)

]
, (3.195)(

πB
∂T

∂p

)
K

=
π

2∆pK

[
BK− 1

2
(TK − TK−1)

]
. (3.196)

The corrections are added to the diffusion tendencies calculated earlier (3.188) to give the
total temperature tendency for diagnostic purposes:

F̂TH
(T ∗)k = FTH

(T ∗)k + (2∆tFFH
)k + 2∆tBk

(
π
∂T ∗

∂p

)
k

K(4)∇4Πn+1. (3.197)

3.1.18 Semi-Lagrangian Tracer Transport

The forecast equation for water vapor specific humidity and constituent mixing ratio in the η
system is from (3.36) excluding sources and sinks.

dq

dt
=
∂q

∂t
+ V · ∇q + η̇

∂p

∂η

∂q

∂p
= 0 (3.198)

or

dq

dt
=
∂q

∂t
+ V · ∇q + η̇

∂q

∂η
= 0. (3.199)

Equation (3.199) is more economical for the semi-Lagrangian vertical advection, as ∆η does not
vary in the horizontal, while ∆p does. Written in this form, the η advection equations look
exactly like the σ equations.

The parameterizations are time-split in the moisture equation. The tendency sources have
already been added to the time level (n− 1). The semi-Lagrangian advection step is subdivided
into horizontal and vertical advection sub-steps, which, in an Eulerian form, would be written

q∗ = qn−1 + 2∆t (V · ∇q)n (3.200)

and

qn+1 = q∗ + 2∆t

(
η̇
∂q

∂n

)n
. (3.201)

In the semi-Lagrangian form used here, the general form is

q∗ = Lλϕ
(
qn−1

)
, (3.202)

qn+1 = Lη (q∗) . (3.203)

Equation (3.202) represents the horizontal interpolation of qn−1 at the departure point calculated
assuming η̇ = 0. Equation (3.203) represents the vertical interpolation of q∗ at the departure
point, assuming V = 0.
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The horizontal departure points are found by first iterating for the mid-point of the trajectory,
using winds at time n, and a first guess as the location of the mid-point of the previous time
step

λk+1
M = λA −∆tun

(
λkM , ϕ

k
M

) /
a cosϕkM , (3.204)

ϕk+1
M = ϕA −∆tvn

(
λkM , ϕ

k
M

)
/a, (3.205)

where subscript A denotes the arrival (Gaussian grid) point and subscript M the midpoint of
the trajectory. The velocity components at

(
λkM , ϕ

k
M

)
are determined by Lagrange cubic inter-

polation. For economic reasons, the equivalent Hermite cubic interpolant with cubic derivative
estimates is used at some places in this code. The equations will be presented later.

Once the iteration of (3.204) and (3.205) is complete, the departure point is given by

λD = λA − 2∆tun (λM , ϕM)
/
a cosϕM , (3.206)

ϕD = λA − 2∆tvn (λM , ϕM) /a, (3.207)

where the subscript D denotes the departure point.
The form given by (3.204)-(3.207) is inaccurate near the poles and thus is only used for

arrival points equatorward of 70◦ latitude. Poleward of 70◦ we transform to a local geodesic
coordinate for the calculation at each arrival point. The local geodesic coordinate is essentially
a rotated spherical coordinate system whose equator goes through the arrival point. Details
are provided in Williamson and Rasch [1989]. The transformed system is rotated about the
axis through

(
λA − π

2
, 0
)

and
(
λA + π

2
, 0
)
, by an angle ϕA so the equator goes through (λA, ϕA).

The longitude of the transformed system is chosen to be zero at the arrival point. If the local
geodesic system is denoted by (λ′, ϕ′), with velocities (u′, v′), the two systems are related by

sinφ′ = sinφ cosφA − cosφ sinφA cos (λA − λ) , (3.208)

sinφ = sinφ′ cosφA + cosφ′ sin ′A cosλ′ , (3.209)

sinλ′ cosφ′ = − sin (λA − λ) cosφ , (3.210)

v′ cosφ′ = v [cosφ cosφA + sinφ sinφA cos (λA − λ)]

−u sinφA sin (λA − λ) , (3.211)

u′ cosλ′ − v′ sinλ′ sinφ′ = u cos (λA − λ) + v sinφ sin (λA − λ) . (3.212)

The calculation of the departure point in the local geodesic system is identical to (3.204)-
(3.207) with all variables carrying a prime. The equations can be simplified by noting that
(λ′A, ϕ

′
A) = (0, 0) by design and u′ (λ′A, ϕ

′
A) = u (λA, ϕA) and v′ (λ′A, ϕ

′
A) = v (λA, ϕA). The

interpolations are always done in global spherical coordinates.
The interpolants are most easily defined on the interval 0 ≤ θ ≤ 1. Define

θ = (xD − xi)
/

(xi+1 − xi) , (3.213)

where x is either λ or ϕ and the departure point xD falls within the interval (xi, xi+1). Following
(23) of [Rasch and Williamson, 1990] with ri = 3 the Hermite cubic interpolant is given by

qD = qi+1 [3− 2θ] θ2 − di+1

[
hiθ

2 (1− θ)
]

+qi [3− 2 (1− θ)] (1− θ)2 + di
[
hiθ (1− θ)2] (3.214)
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where qi is the value at the grid point xi, di is the derivative estimate given below, and hi =
xi+1 − xi.

Following (3.2.12) and (3.2.13) of Hildebrand [1956], the Lagrangian cubic polynomial inter-
polant used for the velocity interpolation, is given by

fD =
2∑

j=−1

`j (xD) fi+j (3.215)

where

`j (xD) =
(xD − xi−1) . . . (xD − xi+j−1) (xD − xi+j+1) . . . (xD − xi+2)

(xi+j − xi−1) . . . (xi+j − xi+j−1) (xi+j − xi+j+1) . . . (xi+j − xi+2)
(3.216)

where f can represent either u or v, or their counterparts in the geodesic coordinate system.
The derivative approximations used in (3.214) for q are obtained by differentiating (3.215)

with respect to xD, replacing f by q and evaluating the result at xD equal xi and xi+1. With
these derivative estimates, the Hermite cubic interpolant (3.214) is equivalent to the Lagrangian
(3.215). If we denote the four point stencil (xi−1, xi, xi+1, xi+2) by (x1, x2, x3, x4, ) the cubic
derivative estimates are

d2 =

[
(x2 − x3)(x2 − x4)

(x1 − x2)(x1 − x3)(x1 − x4)

]
q1 (3.217)

−
[

1

(x1 − x2)
− 1

(x2 − x3)
− 1

(x2 − x4)

]
q2 (3.218)

+

[
(x2 − x1)(x2 − x4)

(x1 − x3)(x2 − x3)(x3 − x4)

]
q3 (3.219)

−
[

(x2 − x1)(x2 − x3)

(x1 − x4)(x2 − x4)(x3 − x4)

]
q4 (3.220)

and

d3 =

[
(x3 − x2)(x3 − x4)

(x1 − x2)(x1 − x3)(x1 − x4)

]
q1 (3.221)

−
[

(x3 − x1)(x3 − x4)

(x1 − x2)(x2 − x3)(x2 − x4)

]
q2 (3.222)

−
[

1

(x1 − x3)
+

1

(x2 − x3)
− 1

(x3 − x4)

]
q3 (3.223)

−
[

(x3 − x1)(x3 − x2)

(x1 − x4)(x2 − x4)(x3 − x4)

]
q4 (3.224)

The two dimensional (λ, ϕ) interpolant is obtained as a tensor product application of the
one-dimensional interpolants, with λ interpolations done first. Assume the departure point falls
in the grid box (λi, λi+1) and (ϕi, ϕi+1). Four λ interpolations are performed to find q values
at (λD, ϕj−1), (λD, ϕj), (λD, ϕj+1), and (λD, ϕj+2). This is followed by one interpolation in ϕ
using these four values to obtain the value at (λD, ϕD). Cyclic continuity is used in longitude.
In latitude, the grid is extended to include a pole point (row) and one row across the pole. The

42



pole row is set equal to the average of the row next to the pole for q and to wavenumber 1
components for u and v. The row across the pole is filled with the values from the first row
below the pole shifted π in longitude for q and minus the value shifted by π in longitude for u
and v.

Once the departure point is known, the constituent value of q∗ = qn−1
D is obtained as indicated

in (3.202) by Hermite cubic interpolation (3.214), with cubic derivative estimates (3.215) and
(3.216) modified to satisfy the Sufficient Condition for Monotonicity with C◦ continuity (SCMO)
described below. Define ∆iq by

∆iq =
qi+1 − qi
xi+1 − xi

. (3.225)

First, if ∆iq = 0 then
di = di+1 = 0 . (3.226)

Then, if either

0 ≤ di
∆iq

≤ 3 (3.227)

or

0 ≤ di+1

∆iq
≤ 3 (3.228)

is violated, di or di+1 is brought to the appropriate bound of the relationship. These conditions
ensure that the Hermite cubic interpolant is monotonic in the interval [xi, xi+1].

The horizontal semi-Lagrangian sub-step (3.202) is followed by the vertical step (3.203). The
vertical velocity η̇ is obtained from that diagnosed in the dynamical calculations (3.94) by

(η̇)k+ 1
2

=

(
η̇
∂p

∂η

)
k+ 1

2

/(
pk+1 − pk
ηk+1 − ηk

)
, (3.229)

with ηk = Ak + Bk. Note, this is the only place that the model actually requires an explicit
specification of η. The mid-point of the vertical trajectory is found by iteration

ηk+1
M = ηA −∆tη̇n

(
ηkM
)
. (3.230)

Note, the arrival point ηA is a mid-level point where q is carried, while the η̇ used for the
interpolation to mid-points is at interfaces. We restrict ηM by

η1 ≤ ηM ≤ ηK , (3.231)

which is equivalent to assuming that q is constant from the surface to the first model level and
above the top q level. Once the mid-point is determined, the departure point is calculated from

ηD = ηA − 2∆tη̇n (ηM) , (3.232)

with the restriction
η1 ≤ ηD ≤ ηK . (3.233)

The appropriate values of η̇ and q are determined by interpolation (3.214), with the derivative
estimates given by (3.215) and (3.216) for i = 2 to K − 1. At the top and bottom we assume
a zero derivative (which is consistent with (3.231) and (3.233)), di = 0 for the interval k = 1,
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and δi+1 = 0 for the interval k = K − 1. The estimate at the interior end of the first and last
grid intervals is determined from an uncentered cubic approximation; that is di+1 at the k = 1
interval is equal to di from the k = 2 interval, and di at the k = K − 1 interval is equal to di+1

at the k = K − 2 interval. The monotonic conditions (3.227) to (3.228) are applied to the q
derivative estimates.

3.1.19 Mass fixers

This section describes original and modified fixers used for the Eulerian and semi-Lagrangian
dynamical cores.

Let π0, ∆p0 and q0 denote the values of air mass, pressure intervals, and water vapor specific
humidity at the beginning of the time step (which are the same as the values at the end of the
previous time step.)

π+, ∆p+ and q+ are the values after fixers are applied at the end of the time step.
π−, ∆p− and q− are the values after the parameterizations have updated the moisture field

and tracers.
Since the physics parameterizations do not change the surface pressure, π− and ∆p− are also

the values at the beginning of the time step.
The fixers which ensure conservation are applied to the dry atmospheric mass, water vapor

specific humidity and constituent mixing ratios. For water vapor and atmospheric mass the
desired discrete relations, following Williamson and Olson [1994] are∫

2

π+ −
∫
3

q+∆p+ = P , (3.234)

∫
3

q+∆p+ =

∫
3

q−∆p−, (3.235)

where P is the dry mass of the atmosphere. From the definition of the vertical coordinate,

∆p = p0∆A+ π∆B, (3.236)

and the integral
∫
2

denotes the normal Gaussian quadrature while
∫
3

includes a vertical sum

followed by Gaussian quadrature. The actual fixers are chosen to have the form

π+ (λ, ϕ) = M π̂+ (λ, ϕ) , (3.237)

preserving the horizontal gradient of Π, which was calculated earlier during the inverse spectral
transform, and

q+ (λ, ϕ, η) = q̂+ + αηq̂+|q̂+ − q−|. (3.238)

In (3.237) and (3.238) the ˆ( ) denotes the provisional value before adjustment. The form (3.238)
forces the arbitrary corrections to be small when the mixing ratio is small and when the change
made to the mixing ratio by the advection is small. In addition, the η factor is included to make
the changes approximately proportional to mass per unit volume [Rasch et al., 1995]. Satisfying
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(3.234) and (3.235) gives

α =

∫
3

q−∆p− −
∫
3

q̂+p0∆A−M
∫
3

q̂+π̂+∆B∫
3

ηq̂+|q̂+ − q−| p0∆A+M
∫
3

ηq̂+|q̂+ − q−|π̂+∆B
(3.239)

and

M =

P +

∫
3

q−∆p−

/∫
2

π̂+ . (3.240)

Note that water vapor and dry mass are corrected simultaneously. Additional advected con-
stituents are treated as mixing ratios normalized by the mass of dry air. This choice was made
so that as the water vapor of a parcel changed, the constituent mixing ratios would not change.
Thus the fixers which ensure conservation involve the dry mass of the atmosphere rather than
the moist mass as in the case of the specific humidity above. Let χ denote the mixing ratio of
constituents. Historically we have used the following relationship for conservation:∫

3

χ+(1− q+)∆p+ =

∫
3

χ−(1− q−)∆p− . (3.241)

The term (1− q)∆p defines the dry air mass in a layer. Following Rasch et al. [1995] the change
made by the fixer has the same form as (3.238)

χ+ (λ, ϕ, η) = χ̂+ + αχηχ̂
+|χ̂+ − χ−| . (3.242)

Substituting (3.242) into (3.241) and using (3.237) through (3.240) gives

αχ =

∫
3

χ−(1− q−)∆p− −
∫
A,B

χ̂+(1− q̂+)∆p̂+ + α
∫
A,B

χ̂+ηq̂+|q̂+ − q−|∆p∫
A,B

ηχ̂+|χ̂+ − χ−|(1− q̂+)∆p− α
∫
A,B

ηχ̂+|χ̂+ − χ−|ηq̂+|q̂+ − q−|∆p
, (3.243)

where the following shorthand notation is adopted:∫
A,B

( )∆p =

∫
3

( )p0∆A+M

∫
3

( )ps∆B . (3.244)

We note that there is a small error in (3.241). Consider a situation in which moisture is
transported by a physical parameterization, but there is no source or sink of moisture. Under
this circumstance q− 6= q0, but the surface pressure is not allowed to change. Since (1 −
q−)∆p− 6= (1 − q0)∆p0, there is an implied change of dry mass of dry air in the layer, and
even in circumstances where there is no change of dry mixing ratio χ there would be an implied
change in mass of the tracer. The solution to this inconsistency is to define a dry air mass only
once within the model time step, and use it consistently throughout the model. In this revision,
we have chosen to fix the dry air mass in the model time step where the surface pressure is
updated, e.g. at the end of the model time step. Therefore, we now replace (3.241) with∫

3

χ+(1− q+)∆p+ =

∫
3

χ−(1− q0)∆p0 . (3.245)
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There is a corresponding change in the first term of the numerator of (3.243) in which
q− is replace by q0. CAM 3.0uses (3.243) for water substances and constituents affecting the
temperature field to prevent changes to the IPCC simulations. In the future, constituent fields
may use a corrected version of (3.243).

3.1.20 Energy Fixer

Following notation in section 3.1.19, the total energy integrals are∫
3

1

g

[
cpT

+ + Φs +
1

2

(
u+2

+ v+2
)]

∆p+ = E (3.246)

E =

∫
3

1

g

[
cpT

− + Φs +
1

2

(
u−

2
+ v−

2
)]

∆p− + S (3.247)

S =

∫
2

[(FSNT − FLNT )− (FSNS − FLNS − SHFLX − ρH2OLvPRECT )−] ∆t (3.248)

where S is the net source of energy from the parameterizations. FSNT is the net downward
solar flux at the model top, FLNT is the net upward longwave flux at the model top, FSNS
is the net downward solar flux at the surface, FLNS is the net upward longwave flux at the
surface, SHFLX is the surface sensible heat flux, and PRECT is the total precipitation during
the time step. From equation (3.237)

π+ (λ, ϕ) = M π̂+ (λ, ϕ) (3.249)

and from (3.236)

∆p = p0∆A+ π∆B (3.250)

The energy fixer is chosen to have the form

T+ (λ, ϕ, η) = T̂+ + β (3.251)

u+ (λ, ϕ, η) = û+ (3.252)

v+ (λ, ϕ, η) = v̂+ (3.253)

Then

β =

gE −
∫
3

[
cpT̂

+ + Φs + 1
2

(
û+2

+ v̂+2
)]
p0∆A−M

∫
3

[
cpT̂

+ + Φs + 1
2

(
û+2

+ v̂+2
)]
π̂+∆B∫

3

cp p0∆A+ M
∫
3

cpπ̂+∆B

(3.254)
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3.1.21 Statistics Calculations

At each time step, selected global average statistics are computed for diagnostic purposes when
the model is integrated with the Eulerian and semi-Lagrangian dynamical cores. Let

∫
3

denote
a global and vertical average and

∫
2

a horizontal global average. For an arbitrary variable ψ,
these are defined by ∫

3

ψdV =
K∑
k=1

J∑
j=1

I∑
i=1

ψijkwj

(
∆pk
π

)/
2I, (3.255)

and ∫
2

ψdA =
J∑
j=1

I∑
i=1

ψijkwj/2I, (3.256)

where recall that
J∑
j=1

wj = 2. (3.257)

The quantities monitored are:

global rms (ζ + f)(s−1) =

[∫
3

(ζn + f)2dV

]1/2

, (3.258)

global rms δ(s−1) =

[∫
3

(δn)2dV

]1/2

, (3.259)

global rms T (K) =

[∫
3

(T r + T ′n)2dV

]1/2

, (3.260)

global average mass times g (Pa) =

∫
2

πndA, (3.261)

global average mass of moisture (kg m−2) =

∫
3

πnqn/gdV. (3.262)

3.1.22 Reduced grid

The Eulerian core and semi-Lagrangian tracer transport can be run on reduced grids. The
term reduced grid generally refers to a grid based on latitude and longitude circles in which the
longitudinal grid increment increases at latitudes approaching the poles so that the longitudinal
distance between grid points is reasonably constant. Details are provided in [Williamson and
Rosinski, 2000]. This option provides a saving of computer time of up to 25%.

3.2 Semi-Lagrangian Dynamical Core

3.2.1 Introduction

The two-time-level semi-implicit semi-Lagrangian spectral transform dynamical core in CAM
3.0 evolved from the three-time-level CCM2 semi-Lagrangian version detailed in Williamson
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and Olson [1994] hereafter referred to as W&O94. As a first approximation, to convert from a
three-time-level scheme to a two-time-level scheme, the time level index n-1 becomes n, the time
level index n becomes n+1

2
, and 2∆t becomes ∆t. Terms needed at n+1

2
are extrapolated in time

using time n and n-1 terms, except the Coriolis term which is implicit as the average of time n
and n+1. This leads to a more complex semi-implicit equation to solve. Additional changes have
been made in the scheme to incorporate advances in semi-Lagrangian methods developed since
W&O94. In the following, reference is made to changes from the scheme developed in W&O94.
The reader is referred to that paper for additional details of the derivation of basic aspects of
the semi-Lagrangian approximations. Only the details of the two-time-level approximations are
provided here.

3.2.2 Vertical coordinate and hydrostatic equation

The semi-Lagrangian dynamical core adopts the same hybrid vertical coordinate (η) as the
Eulerian core defined by

p(η, ps) = A(η)po +B(η)ps , (3.263)

where p is pressure, ps is surface pressure, and po is a specified constant reference pressure. The
coefficients A and B specify the actual coordinate used. As mentioned by Simmons and Burridge
[1981] and implemented by Simmons and Strüfing [1981] and Simmons and Strüfing [1983], the
coefficients A and B are defined only at the discrete model levels. This has implications in the
continuity equation development which follows.

In the η system the hydrostatic equation is approximated in a general way by

Φk = Φs +R
K∑
l=k

Hkl (p)Tvl (3.264)

where k is the vertical grid index running from 1 at the top of the model to K at the first model
level above the surface, Φk is the geopotential at level k, Φs is the surface geopotential, Tv is the
virtual temperature, and R is the gas constant. The matrix H, referred to as the hydrostatic
matrix, represents the discrete approximation to the hydrostatic integral and is left unspecified
for now. It depends on pressure, which varies from horizontal point to point.

3.2.3 Semi-implicit reference state

The semi-implicit equations are linearized about a reference state with constant T r and prs. We
choose

T r = 350K, prs = 105Pa (3.265)

3.2.4 Perturbation surface pressure prognostic variable

To ameliorate the mountain resonance problem, Ritchie and Tanguay [1996] introduce a pertur-
bation ln ps surface pressure prognostic variable

ln p′s = ln ps − ln p∗s (3.266)

ln p∗s = − Φs

RT r
(3.267)
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The perturbation surface pressure, ln p′s, is never actually used as a grid point variable in the
CAM 3.0 code. It is only used for the semi-implicit development and solution. The total ln ps
is reclaimed in spectral space from the spectral coefficients of Φs immediately after the semi-
implicit equations are solved, and transformed back to spectral space along with its derivatives.
This is in part because ∇4ln ps is needed for the horizontal diffusion correction to pressure
surfaces. However the semi-Lagrangian CAM 3.0 default is to run with no horizontal diffusion.

3.2.5 Extrapolated variables

Variables needed at time (n+ 1
2
) are obtained by extrapolation

( )n+ 1
2 =

3

2
( )n − 1

2
( )n−1 (3.268)

3.2.6 Interpolants

Lagrangian polynomial quasi-cubic interpolation is used in the prognostic equations for the
dynamical core. Monotonic Hermite quasi-cubic interpolation is used for tracers. Details are
provided in the Eulerian Dynamical Core description. The trajectory calculation uses tri-linear
interpolation of the wind field.

3.2.7 Continuity Equation

The discrete semi-Lagrangian, semi-implicit continuity equation is obtained from (16) of W&O94
modified to be spatially uncentered by a fraction ε, and to predict ln p′s

∆B
l

{(
ln p′sl

)n+1

A
−
[
(ln psl

)n +
Φs

RT r

]
D2

} /
∆t =

− 1

2

{[
(1 + ε) ∆

(
1

ps
η̇
∂p

∂η

)
l

]n+1

A

+

[
(1− ε) ∆

(
1

ps
η̇
∂p

∂η

)
l

]n
D2

}
(3.269)

−
(

1

ps
δ

l
∆p

l

)n+ 1
2

M2

+
∆B

l

RT r
(V

l
· ∇ Φs)

n+ 1
2

M2

−
{

1

2

[
(1 + ε)

(
1

prs
δ

l
∆pr

l

)n+1

A

+ (1− ε)

(
1

prs
δ

l
∆pr

l

)n
D2

]
−
(

1

prs
δ

l
∆pr

l

)n+ 1
2

M2

}
where

∆( )l = ( )l+ 1
2
− ( )l− 1

2
(3.270)

and

( )
n+ 1

2
M2

=
1

2

[
(1 + ε) ( )

n+ 1
2

A + (1− ε) ( )
n+ 1

2
D2

]
(3.271)

∆( )l denotes a vertical difference, l denotes the vertical level, A denotes the arrival point, D2

the departure point from horizontal (two-dimensional) advection, and M2 the midpoint of that
trajectory.
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The surface pressure forecast equation is obtained by summing over all levels and is related
to (18) of W&O94 but is spatially uncentered and uses ln p′s

(ln p′s)
n+1

A
=

K∑
l=1

∆Bl

[
(ln psl

)n +
Φs

RT r

]
D2

− 1

2
∆t

K∑
l=1

[
(1− ε) ∆

(
1

ps
η̇
∂p

∂η

)
l

]n
D2

−∆t
K∑
l=1

(
1

ps
δl∆pl

)n+ 1
2

M2

+ ∆t
K∑
l=1

∆B
l

RT r
(V

l
· ∇ Φs)

n+ 1
2

M2
(3.272)

−∆t
K∑
l=1

1

prs

{
1

2

[
(1 + ε) (δl)

n+1

A
+ (1− ε) (δl)

n

D2

]
− (δl)

n+ 1
2

M2

}
∆pr

l

The corresponding
(

1
ps
η̇ ∂p
∂η

)
equation for the semi-implicit development follows and is related

to (19) of W&O94, again spatially uncentered and using ln p′s.

(1 + ε)

(
1

ps
η̇
∂p

∂η

)n+1

k+ 1
2

=− 2

∆t

{
Bk+ 1

2
(ln p′s)

n+1

A
−

k∑
l=1

∆Bl

[
(ln psl

)n +
Φs

RT r

]
D2

}

−
k∑
l=1

[
(1− ε) ∆

(
1

ps
η̇
∂p

∂η

)
l

]n
D2

(3.273)

− 2
k∑
l=1

(
1

ps
δl∆pl

)n+ 1
2

M2

+ 2
k∑
l=1

∆B
l

RT r
(V

l
· ∇ Φs)

n+ 1
2

M2

− 2
k∑
l=1

1

prs

{
1

2

[
(1 + ε) (δl)

n+1

A
+ (1− ε) (δl)

n

D2

]
− (δl)

n+ 1
2

M2

}
∆pr

l

This is not the actual equation used to determine
(

1
ps
η̇ ∂p
∂η

)
in the code. The equation actually

used in the code to calculate
(

1
ps
η̇ ∂p
∂η

)
involves only the divergence at time (n+1) with (ln p′s)

n+1

eliminated.
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(1 + ε)

(
1

ps
η̇
∂p

∂η

)n+1

k+ 1
2

=

2

∆t

[
k∑
l=1

− Bk+ 1
2

K∑
l=1

]
∆Bl

[
(ln psl

)n +
Φs

RT r

]
D2

−

[
k∑
l=1

− Bk+ 1
2

K∑
l=1

] [
(1− ε) ∆

(
1

ps
η̇
∂p

∂η

)
l

]n
D2

−2

[
k∑
l=1

− Bk+ 1
2

K∑
l=1

](
1

ps
δl∆pl

)n+ 1
2

M2

(3.274)

+2

[
k∑
l=1

− Bk+ 1
2

K∑
l=1

]
∆B

l

RT r
(V

l
· ∇ Φs)

n+ 1
2

M2

−2

[
k∑
l=1

− Bk+ 1
2

K∑
l=1

]
1

prs

{
1

2

[
(1 + ε) (δl)

n+1

A
+ (1− ε) (δl)

n

D2

]
− (δl)

n+ 1
2

M2

}
∆prl

The combination
[
(ln psl

)n + Φs

RT r + 1
2

∆t
RT r (V · ∇ Φs)

n+ 1
2

]
D2

is treated as a unit, and follows from

(3.271).

3.2.8 Thermodynamic Equation

The thermodynamic equation is obtained from (25) of W&O94 modified to be spatially uncen-
tered and to use ln p′s. In addition Hortal’s modification [Temperton et al., 2001] is included, in
which

d

dt

[
−
(
psB

∂T

∂p

)
ref

Φs

RT r

]
(3.275)

is subtracted from both sides of the temperature equation. This is akin to horizontal diffusion
which includes the first order term converting horizontal derivatives from eta to pressure co-

ordinates, with (ln ps) replaced by − Φs

RT r , and
(
psB

∂T
∂p

)
ref

taken as a global average so it is

invariant with time and can commute with the differential operators.
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T n+1
A − T nD

∆t
=



[
−
(
psB(η)

∂T

∂p

)
ref

Φs

RT r

]n+1

A

−

[
−
(
psB(η)

∂T

∂p

)
ref

Φs

RT r

]n
D


/

∆t

+
1

RT r

[(
psB(η)

∂T

∂p

)
ref

V · ∇ Φs + Φsη̇
∂

∂η

(
psB(η)

∂T

∂p

)
ref

]n+ 1
2

M


+

(
RTv
c∗p

ω

p

)n+ 1
2

M

+Qn
M

+
RT r

cp

prs
pr

[
B(η)

d2 ln p′s
dt

+

(
1

ps
η̇
∂p

∂η

)t]
(3.276)

−RT
r

cp

prs
pr

[(
p

ps

)(
ω

p

)]n+ 1
2

M

−RT
r

cp

prs
pr
B(η)

[
1

RT r
V · ∇ Φs

]n+ 1
2

M2

Note that Qn represents the heating calculated to advance from time n to time n + 1 and is
valid over the interval.

The calculation of
(
psB

∂T
∂p

)
ref

follows that of the ECMWF (Research Manual 3, ECMWF

Forecast Model, Adiabatic Part, ECMWF Research Department, 2nd edition, 1/88, pp 2.25-
2.26) Consider a constant lapse rate atmosphere
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T = T0

(
p

p0

)Rγ/g
(3.277)

∂T

∂p
=

1

p

Rγ

g
T0

(
p

p0

)Rγ/g
(3.278)

psB
∂T

∂p
= B

ps
p

Rγ

g
T (3.279)(

psB
∂T

∂p

)
ref

= Bk
(ps)ref
(pk)ref

Rγ

g
(Tk)ref for (Tk)ref > TC (3.280)(

psB
∂T

∂p

)
ref

= 0 for (Tk)ref ≤ TC (3.281)

(pk)ref = Akp0 +Bk(ps)ref (3.282)

(Tk)ref = T0

(
(pk)ref
(ps)ref

)Rγ/g
(3.283)

(ps)ref = 1013.25mb (3.284)

T0 = 288K (3.285)

p0 = 1000mb (3.286)

γ = 6.5K/km (3.287)

TC = 216.5K (3.288)

3.2.9 Momentum equations

The momentum equations follow from (3) of W&O94 modified to be spatially uncentered, to use
ln p′s, and with the Coriolis term implicit following Côté and Staniforth [1988] and Temperton
[1997]. The semi-implicit, semi-Lagrangian momentum equation at level k (but with the level
subscript k suppressed) is
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V n+1
A

− V n
D

∆t
= −1

2

{
(1 + ε)

[
f k̂ × V

]n+1

A

+ (1− ε)
[
f k̂ × V

]n
D

}
+ F n

M

−1

2

{
(1 + ε)

[
∇ (Φs +RHk · T v) +RTv

B

p
ps∇ ln ps

]n+ 1
2

A

+ (1− ε)

[
∇ (Φs +RHk · T v) +RTv

B

p
ps∇ ln ps

]n+ 1
2

D

}
−1

2

{
(1 + ε)∇ [RHr

k · T +RT r ln p′s]
n+1

A
(3.289)

− (1 + ε)∇ [Φs +RHr
k · T +RT r ln ps]

n+ 1
2

A

+ (1− ε)∇ [Φs +RHr
k · T +RT r ln ps]

n

D

− (1− ε)∇ [Φs +RHr
k · T +RT r ln ps]

n+ 1
2

D

}
The gradient of the geopotential is more complex than in the σ system because the hydro-

static matrix H depends on the local pressure:

∇ (Hk · T v) = Hk · [(1 + εvq)∇T + εvT∇q] + T v · ∇Hk (3.290)

where εv is (Rv/R − 1) and Rv is the gas constant for water vapor. The gradient of T is
calculated from the spectral representation and that of q from a discrete cubic approximation
that is consistent with the interpolation used in the semi-Lagrangian water vapor advection. In
general, the elements of H are functions of pressure at adjacent discrete model levels

Hkl = fkl(pl+1/2, pl, pl−1/2) (3.291)

The gradient is then a function of pressure and the pressure gradient

∇Hkl = gkl(pl+1/2
, p

l
, p

l−1/2
,∇p

l+1/2
,∇p

l
,∇p

l−1/2
) (3.292)

The pressure gradient is available from (3.263) and the surface pressure gradient calculated from
the spectral representation

∇p
l
= Bl∇ps = Blps∇ ln ps (3.293)

3.2.10 Development of semi-implicit system equations

The momentum equation can be written as

V n+1
A

− V n
D

∆t
= −1

2

{
(1 + ε)

[
f k̂ × V

]n+1

A

+ (1− ε)
[
f k̂ × V

]n
D

}
−1

2

{
(1 + ε)∇ [RHr

k · T +RT r ln p′s]
n+1

A

}
+RHSV , (3.294)
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where RHSV contains known terms at times (n+ 1
2
) and (n).

By combining terms, 3.294 can be written in general as

Un+1

A
î
A

+ Vn+1

A
ĵ

A
= U

A
î
A

+ V
A
ĵ

A
+ U

D
î
D

+ V
D
ĵ

D
, (3.295)

where î and ĵ denote the spherical unit vectors in the longitudinal and latitudinal directions,
respectively, at the points indicated by the subscripts, and U and V denote the appropriate
combinations of terms in 3.294. Note that Un+1

A
is distinct from the U

A
. Following Bates et al.

[1990], equations for the individual components are obtained by relating the unit vectors at the
departure points (̂i

D
,̂j

D
) to those at the arrival points (̂i

A
,̂j

A
):

î
D

= αu
A
î
A

+ βu
A
ĵ

A
(3.296)

ĵ
D

= αv
A
î
A

+ βv
A
ĵ

A
, (3.297)

in which the vertical components (k̂) are ignored. The dependence of α’s and β’s on the latitudes
and longitudes of the arrival and departure points is given in the Appendix of Bates et al. [1990].

W&O94 followed Bates et al. [1990] which ignored rotating the vector to remain parallel to
the earth’s surface during translation. We include that factor by keeping the length of the vector

written in terms of
(
î

A
, ĵ

A

)
the same as the length of the vector written in terms of

(
î

D
, ĵ

D

)
.

Thus, (10) of W&O94 becomes

Un+1

A
= U

A
+ γαu

A
U

D
+ γαv

A
V

D

Vn+1

A
= V

A
+ γβu

A
U

D
+ γβv

A
V

D
(3.298)

where

γ =

[
U2

D
+ V2

D(
U

D
αu

A
+ V

D
αv

A

)2
+
(
U

D
βu

A
+ V

D
βv

A

)2
] 1

2

(3.299)

After the momentum equation is written in a common set of unit vectors

V n+1
A

+

(
1 + ε

2

)
∆t
[
f k̂ × V

]n+1

A

+

(
1 + ε

2

)
∆t∇ [RHr

k · T +RT r ln p′s]
n+1

A
= R∗

V (3.300)

Drop the ( )n+1
A from the notation, define

α = (1 + ε) ∆tΩ (3.301)

and transform to vorticity and divergence

ζ + α sinϕδ +
α

a
v cosϕ =

1

a cosϕ

[
∂R∗

v

∂λ
− ∂

∂ϕ
(R∗

u cosϕ)

]
(3.302)

δ − α sinϕζ +
α

a
u cosϕ +

(
1 + ε

2

)
∆t∇2 [RHr

k · T +RT r ln p′s]
n+1

A

=
1

a cosϕ

[
∂R∗

u

∂λ
+

∂

∂ϕ
(R∗

v cosϕ)

]
(3.303)
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Note that

u cosϕ =
1

a

∂

∂λ

(
∇−2δ

)
− cosϕ

a

∂

∂ϕ

(
∇−2ζ

)
(3.304)

v cosϕ =
1

a

∂

∂λ

(
∇−2ζ

)
+

cosϕ

a

∂

∂ϕ

(
∇−2δ

)
(3.305)

Then the vorticity and divergence equations become

ζ + α sinϕδ +
α

a2

∂

∂λ

(
∇−2ζ

)
+

α cosϕ

a2

∂

∂ϕ

(
∇−2δ

)
=

1

a cosϕ

[
∂R∗

v

∂λ
− ∂

∂ϕ
(R∗

u cosϕ)

]
= L (3.306)

δ − α sinϕζ +
α

a2

∂

∂λ

(
∇−2δ

)
− α cosϕ

a2

∂

∂ϕ

(
∇−2ζ

)
+

(
1 + ε

2

)
∆t∇2 [RHr

k · T +RT r ln p′s]
n+1

A

=
1

a cosϕ

[
∂R∗

u

∂λ
+

∂

∂ϕ
(R∗

v cosϕ)

]
= M (3.307)

Transform to spectral space as described in the description of the Eulerian spectral transform
dynamical core. Note, from (4.5b) and (4.6) on page 177 of Machenhauer [1979]

µPm
n = Dm

n+1P
m
n+1 +Dm

n P
m
n−1 (3.308)

Dm
n =

(
n2 −m2

4n2 − 1

) 1
2

(3.309)

and from (4.5a) on page 177 of Machenhauer [1979]

(
1− µ2

) ∂

∂µ
Pm
n = −nDm

n+1P
m
n+1 + (n+ 1)Dm

n P
m
n−1 (3.310)

Then the equations for the spectral coefficients at time n+ 1 at each vertical level are

ζmn

(
1− imα

n (n+ 1)

)
+ δmn+1α

(
n

n+ 1

)
Dm
n+1 + δmn−1α

(
n+ 1

n

)
Dm
n = Lmn (3.311)

δmn

(
1− imα

n (n+ 1)

)
− ζmn+1α

(
n

n+ 1

)
Dm
n+1 − ζmn−1α

(
n+ 1

n

)
Dm
n (3.312)

−
(

1 + ε

2

)
∆t
n (n+ 1)

a2

[
RHr

k · Tm
n +RT r ln p′s

m
n

]
= Mm

n

lnp′s
m
n = PSmn −

(
1 + ε

2

)
∆t

prs

(
∆pr

)T
δmn (3.313)

Tmn = TSmn −
(

1 + ε

2

)
∆tDrδmn (3.314)
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The underbar denotes a vector over vertical levels. Rewrite the vorticity and divergence equa-
tions in terms of vectors over vertical levels.

δmn

(
1− imα

n (n+ 1)

)
− ζm

n+1
α

(
n

n+ 1

)
−Dm

n+1ζ
m

n−1
α

(
n+ 1

−n

)
Dm
n (3.315)

−
(

1 + ε

2

)
∆t
n (n+ 1)

a2

[
RHrTmn +RT r ln p′s

m
n

]
= DSmn

ζm
n

(
1− imα

n (n+ 1)

)
+ δmn+1α

(
n

n+ 1

)
Dm
n+1 + δmn−1α

(
n+ 1

n

)
Dm
n = V Smn (3.316)

Define hmn by

ghmn = RHrTmn +RT r ln p′s
m
n (3.317)

and

Am
n = 1− imα

n (n+ 1)
(3.318)

B+m
n = α

(
n

n+ 1

)
Dm
n+1 (3.319)

B−mn = α

(
n+ 1

n

)
Dm
n (3.320)

Then the vorticity and divergence equations are

Am
n ζ

m

n
+ B+m

n δ
m
n+1 + B−mn δmn−1 = VSmn (3.321)

Am
n δ

m
n − B+m

n ζ
m

n+1
B−mn − ζm

n−1
−
(

1 + ε

2

)
∆t
n (n+ 1)

a2
ghmn = DSmn (3.322)

Note that these equations are uncoupled in the vertical, i.e. each vertical level involves variables
at that level only. The equation for hmn however couples all levels.

ghmn = −
(

1 + ε

2

)
∆t

[
RHrDr +RT r

(
∆pr

)T
prs

]
δmn +RHrTSmn +RT rPSmn (3.323)

Define Cr and HSmn so that

ghmn = −
(

1 + ε

2

)
∆tCrδmn + HSmn (3.324)

Let gD` denote the eigenvalues of Cr with corresponding eigenvectors Φ` and Φ is the matrix
with columns Φ`

Φ =
(

Φ1 Φ2 . . . ΦL

)
(3.325)

and gD the diagonal matrix of corresponding eigenvalues
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gD = g


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · DL

 (3.326)

CrΦ = ΦgD (3.327)

Φ−1CrΦ = gD (3.328)

Then transform

ζ̃
m

n
= Φ−1ζm

n
, ṼS

m

n = Φ−1VSmn (3.329)

δ̃
m

n = Φ−1δmn , D̃S
m

n = Φ−1DSmn (3.330)

h̃
m

n = Φ−1hmn , H̃S
m

n = Φ−1HSmn (3.331)

Am
n ζ̃

m

n
+ B+m

n δ̃
m

n+1 + B−mn δ̃
m

n−1 = ṼS
m

n (3.332)

Am
n δ̃

m

n − B+m
n ζ̃

m

n+1
B−mn − ζ̃

m

n−1
−
(

1 + ε

2

)
∆t
n (n+ 1)

a2
gh̃

m

n = D̃S
m

n (3.333)

gh̃
m

n +

(
1 + ε

2

)
∆tΦ−1CrΦΦ−1δmn = H̃S

m

n (3.334)

h̃
m

n +

(
1 + ε

2

)
∆tDδ̃

m

n =
1

g
H̃S

m

n (3.335)

Since D is diagonal, all equations are now uncoupled in the vertical.
For each vertical mode, i.e. element of (˜)mn , and for each Fourier wavenumber m we have

a system of equations in n to solve. In following we drop the Fourier index m and the modal
element index ( )` from the notation.

Anζ̃n + B+
nδ̃n+1 + B−nδ̃n−1 = ṼSn (3.336)

Anδ̃n − B+
nζ̃n+1B−nζ̃n−1 −

(
1 + ε

2

)
∆t
n (n+ 1)

a2
gh̃n = D̃Sn (3.337)

h̃n +

(
1 + ε

2

)
∆tD`δ̃n =

1

g
H̃Sn (3.338)

The modal index ( )` was included in the above equation on D only as a reminder, but will also
be dropped in the following.

Substitute ζ̃ and h̃ into the δ̃ equation.[
An +

(
1 + ε

2

)2

(∆t)2 n (n+ 1)

a2
gD + B+

nA−1
n+1B−n+1 + B−nA−1

n−1B+
n−1

]
δ̃n

+
(
B+

nA−1
n+1B+

n+1

)
δ̃n+2 +

(
B−nA−1

n−1B−n−1

)
δ̃n−2 (3.339)

= D̃Sn +

(
1 + ε

2

)
∆t
n (n+ 1)

a2
H̃Sn + B+

nA−1
n+1ṼSn+1 + B−nA−1

n−1ṼSn−1
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which is just two tri-diagonal systems of equations, one for the even and one for the odd n’s,
and m ≤ n ≤ N

At the end of the system, the boundary conditions are

n = m, B−n = B−mm = 0 (3.340)

n = m+ 1, B−n−1 = B−mm = B−m(m+1)−1 = 0

the δ̃n−2 term is not present, and from the underlying truncation

δ̃mN+1 = δ̃mN+2 = 0 (3.341)

For each m and ` we have the general systems of equations

− Anδ̃n+2 +Bnδ̃n − Cn − δ̃n−2 = Dn ,


n = m,m+ 2, ...,


N + 1

or
N + 2

n = m+ 1,m+ 3, ...,


N + 1

or
N + 2

(3.342)

Cm = Cm+1 = 0 (3.343)

δ̃N+1 = δ̃N+2 = 0 (3.344)

Assume solutions of the form
δ̃n = Enδ̃n+2 + Fn (3.345)

then

Em =
Am
Bm

(3.346)

FM =
Dm

Bm

(3.347)

En =
An

Bn − CnEn−2

, n = m+ 2,m+ 4, ...,


N − 2

or
N − 3

(3.348)

Fn =
Dn + CnFn−2

Bn − CnEn−2

, n = m+ 2,m+ 4, ...,


N
or

N − 1
(3.349)

δ̃N = FN or δ̃N−1 = FN−1 , (3.350)

δ̃n = Enδ̃n+2 + Fn ,


n = N − 2, N − 4, ...,


m
or

m+ 1

n = N − 3, N − 5, ...,


m+ 1

or
m

(3.351)
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Divergence in physical space is obtained from the vertical mode coefficients by

δmn = Φδ̃
m

n (3.352)

The remaining variables are obtained in physical space by

ζmn

(
1− imα

n (n+ 1)

)
= Lmn − δmn+1α

(
n

n+ 1

)
Dm
n+1 − δmn−1α

(
n+ 1

n

)
Dm
n (3.353)

Tmn = TSmn −
(

1 + ε

2

)
∆tDrδmn (3.354)

lnp′s
m
n = PSmn −

(
1 + ε

2

)
∆t

prs

(
∆pr

)T
δmn (3.355)

3.2.11 Trajectory Calculation

The trajectory calculation follows Hortal [1999] Let R denote the position vector of the parcel,

dR

dt
= V (3.356)

which can be approximated in general by

Rn
D = Rn+1

A −∆tV
n+ 1

2
M (3.357)

Hortal’s method is based on a Taylor’s series expansion

Rn+1
A = Rn

D + ∆t

(
dR

dt

)n
D

+
∆t2

2

(
d2R

dt2

)n
D

+ . . . (3.358)

or substituting for dR/dt

Rn+1
A = Rn

D + ∆tV n
D +

∆t2

2

(
dV

dt

)n
D

+ . . . (3.359)

Approximate (
dV

dt

)n
D

≈ V n
A − V n−1

D

∆t
(3.360)

giving

V
n+ 1

2
M =

1

2

[(
2V n − V n−1

)
D

+ V n
A

]
(3.361)

for the trajectory equation.

3.2.12 Mass and energy fixers and statistics calculations

The semi-Lagrangian dynamical core applies the same mass and energy fixers and statistical
calculations as the Eulerian dynamical core. These are described in sections 3.1.19, 3.1.20, and
3.1.21.

60



3.3 Finite Volume Dynamical Core

3.3.1 Overview

This document describes the Finite-Volume (FV) dynamical core that was initially developed
and used at the NASA Data Assimilation Office (DAO) for data assimilation, numerical weather
predictions, and climate simulations. The finite-volume discretization is local and entirely
in physical space. The horizontal discretization is based on a conservative “flux-form semi-
Lagrangian” scheme described by Lin and Rood [1996] (hereafter LR96) and Lin and Rood
[1997] (hereafter LR97). The vertical discretization can be best described as Lagrangian with
a conservative re-mapping, which essentially makes it quasi-Lagrangian. The quasi-Lagrangian
aspect of the vertical coordinate is transparent to model users or physical parameterization de-
velopers, and it functions exactly like the η − coordinate (a hybrid σ − p coordinate) used by
other dynamical cores within CAM.

In the current implementation for use in CAM, the FV dynamics and physics are “time
split” in the sense that all prognostic variables are updated sequentially by the “dynamics”
and then the “physics”. The time integration within the FV dynamics is fully explicit, with
sub-cycling within the 2D Lagrangian dynamics to stabilize the fastest wave (see section 3.3.4).
The transport for tracers, however, can take a much larger time step (e.g., 30 minutes as for the
physics).

3.3.2 The governing equations for the hydrostatic atmosphere

For reference purposes, we present the continuous differential equations for the hydrostatic 3D
atmospheric flow on the sphere for a general vertical coordinate ζ (e.g., Kasahara [1974]). Using
standard notations, the hydrostatic balance equation is given as follows:

1

ρ

∂p

∂z
+ g = 0, (3.362)

where ρ is the density of the air, p the pressure, and g the gravitational constant. Introducing
the “pseudo-density” π = ∂p

∂ζ
(i.e., the vertical pressure gradient in the general coordinate), from

the hydrostatic balance equation the pseudo-density and the true density are related as follows:

π = −∂Φ

∂ζ
ρ, (3.363)

where Φ = gz is the geopotential. Note that π reduces to the “true density” if ζ = −gz, and
the “surface pressure” Ps if ζ = σ (σ = p

Ps
). The conservation of total air mass using π as the

prognostic variable can be written as

∂

∂t
π +∇ ·

(−→
V π
)

= 0, (3.364)

where
−→
V = (u, v, dζ

dt
). Similarly, the mass conservation law for tracer species (or water vapor)

can be written as

∂

∂t
(πq) +∇ ·

(−→
V πq

)
= 0, (3.365)
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where q is the mass mixing ratio (or specific humidity) of the tracers (or water vapor).
Choosing the (virtual) potential temperature Θ as the thermodynamic variable, the first law

of thermodynamics is written as

∂

∂t
(πΘ) +∇ ·

(−→
V πΘ

)
= 0. (3.366)

Letting (λ, θ) denote the (longitude, latitude) coordinate, the momentum equations can be
written in the “vector-invariant form” as follows:

∂

∂t
u = Ωv − 1

Acosθ

[
∂

∂λ
(κ+ Φ− νD) +

1

ρ

∂

∂λ
p

]
− dζ

dt

∂u

∂ζ
, (3.367)

∂

∂t
v = −Ωu− 1

A

[
∂

∂θ
(κ+ Φ− νD) +

1

ρ

∂

∂θ
p

]
− dζ

dt

∂v

∂ζ
, (3.368)

where A is the radius of the earth, ν is the coefficient for the optional divergence damping, D
is the horizontal divergence

D =
1

Acosθ

[
∂

∂λ
(u) +

∂

∂θ
(v cosθ)

]
,

κ =
1

2

(
u2 + v2

)
,

and Ω, the vertical component of the absolute vorticity, is defined as follows:

Ω = 2ω sinθ +
1

Acosθ

[
∂

∂λ
v − ∂

∂θ
(u cosθ)

]
,

where ω is the angular velocity of the earth. Note that the last term in (3.367) and (3.368)
vanishes if the vertical coordinate ζ is a conservative quantity (e.g., entropy under adiabatic
conditions [Hsu and Arakawa, 1990] or an imaginary conservative tracer), and the 3D divergence
operator becomes 2D along constant ζ surfaces. The discretization of the 2D horizontal transport
process is described in section 3.3.3. The complete dynamical system using the Lagrangian
control-volume vertical discretization is described in section 3.3.4. A mass, momentum, and
total energy conservative mapping algorithm is described in section 3.3.5.

3.3.3 Horizontal discretization of the transport process on the sphere

Since the vertical transport term would vanish after the introduction of the vertical Lagrangian
control-volume discretization (see section 3.3.4), we shall present here only the 2D (horizontal)
forms of the FFSL transport algorithm for the transport of density (3.364) and mixing ratio-like
quantities (3.365) on the sphere. The governing equation for the pseudo-density (3.364) becomes

∂

∂t
π +

1

Acosθ

[
∂

∂λ
(uπ) +

∂

∂θ
(vπ cosθ)

]
= 0. (3.369)

The finite-volume (integral) representation of the continuous π field is defined as follows:
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π̃(t) ≡ 1

A2∆θ∆λcosθ

∫∫
π(t;λ, θ)A2cosθ dθdλ. (3.370)

Given the exact 2D wind field
−→
V (t;λ, θ) = (U, V ) the 2D integral representation of the conser-

vation law for π̃ can be obtained by integrating (3.369) in time and in space

π̃n+1 = π̃n − 1

A2∆θ∆λcosθ

∫ t+∆t

t

[∮
π(t;λ, θ)

−→
V · −→n dl

]
dt. (3.371)

The above 2D transport equation is still exact for the finite-volume under consideration. To
carry out the contour integral, certain approximations must be made. LR96 essentially decom-
posed the flux integral using two orthogonal 1D flux-form transport operators. Introducing the
following difference operator

δxq = q(x+
∆x

2
)− q(x− ∆x

2
),

and assuming (u∗, v∗) is the time-averaged (from time t to time t+ ∆t)
−→
V on the C-grid (e.g.,

Fig. 1 in LR96), the 1-D finite-volume flux-form transport operator F in the λ-direction is

F (u∗,∆t, π̃) = − 1

A∆λcosθ
δλ

[∫ t+∆t

t

πU dt

]
= − ∆t

A∆λcosθ
δλ [χ(u∗,∆t; π)] , (3.372)

where χ , the time-accumulated (from t to t+∆t) mass flux across the cell wall, is defined as
follows,

χ(u∗,∆t; π) =
1

∆t

∫ t+∆t

t

πU dt ≡ u∗π∗(u∗,∆t, π̃), (3.373)

and

π∗(u∗,∆t; π̃) ≈ 1

∆t

∫ t+∆t

t

π dt (3.374)

can be interpreted as a time mean (from time t to time t + ∆t) pseudo-density value of all
material that passed through the cell edge from the upwind direction.

Note that the above time integration is to be carried out along the backward-in-time trajec-
tory of the cell edge position from t = t+∆t (the arrival point; (e.g., point B in Fig. 3 of LR96)
back to time t (the departure point; e.g., point B’ in Fig. 3 of LR96). The very essence of the 1D
finite-volume algorithm is to construct, based on the given initial cell-mean values of π̃, an ap-
proximated subgrid distribution of the true π field, to enable an analytic integration of (3.374).
Assuming there is no error in obtaining the time-mean wind (u∗), the only error produced by the
1D transport scheme would be solely due to the approximation to the continuous distribution
of π within the subgrid under consideration. From this perspective, it can be said that the 1D
finite-volume transport algorithm combines the time-space discretization in the approximation
of the time-mean cell-edge values π∗. The physically correct way of approximating the integral
(3.374) must be “upwind”, in the sense that it is integrated along the backward trajectory of
the cell edges. For example, a center difference approximation to (3.374) would be physically
incorrect, and consequently numerically unstable unless artificial numerical diffusion is added.
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Central to the accuracy and computational efficiency of the finite-volume algorithms is the
degrees of freedom that describe the subgrid distribution. The first order upwind scheme, for
example, has zero degrees of freedom within the volume as it is assumed that the subgrid distri-
bution is piecewise constant having the same value as the given volume-mean. The second order
finite-volume scheme (e.g., Lin et al. [1994]) assumes a piece-wise linear subgrid distribution,
which allows one degree of freedom for the specification of the “slope” of the linear distribution
to improve the accuracy of integrating (3.374). The Piecewise Parabolic Method (PPM, Colella
and Woodward [1984]) has two degrees of freedom in the construction of the second order poly-
nomial within the volume, and as a result, the accuracy is significantly enhanced. The PPM
appears to strike a good balance between computational efficiency and accuracy. Therefore, the
PPM is the basic 1D scheme we chose. (An extension of the standard PPM by S.-J. Lin has
also been documented in Machenhauer [1998]). Note that the subgrid PPM distributions are
compact, and do not extend beyond the volume under consideration. The accuracy is therefore
significantly better than the order of the chosen polynomials implies. While the PPM scheme
possesses all the desirable attributes (mass conserving, monotonicity preserving, and high-order
accuracy) in 1D, it is important that a solution be found to avoid the directional splitting in
the multi-dimensional problem of modeling the dynamics and transport processes of the Earth’s
atmosphere.

The first step for reducing the splitting error is to apply the two orthogonal 1D flux-form
operators in a directionally symmetric way. After symmetry is achieved, the “inner operators”
are then replaced with corresponding advective-form operators. A consistent advective-form
operator in the λ−direction can be derived from its flux-form counterpart (F ) as follows:

f(u∗,∆t, π̃) = F (u∗,∆t, π̃) + ρ̃ F (u∗,∆t, π̃ ≡ 1) = F (u∗,∆t, π̃) + π̃ Cλ
def , (3.375)

Cλ
def =

∆t δλu
∗

A∆λcosθ
, (3.376)

where Cλ
def is a dimensionless number indicating the degree of the flow deformation in the λ-

direction. The above derivation of f is slightly different from LR96’s approach, which adopted
the traditional 1D advective-form semi-Lagrangian scheme. The advantage of using (3.375) is
that computation of winds at cell centers (Eq. 2.25 in LR96) are avoided.

Analogously, the 1D flux-form transport operator G in the latitudinal (θ) direction is derived
as follows:

G(v∗,∆t, π̃) = − 1

A∆θcosθ
δθ

[∫ t+∆t

t

πV cosθ dt

]
= − ∆t

A∆θcosθ
δθ [v∗cosθ π∗] , (3.377)

and likewise the advective-form operator,

g(v∗,∆t, π̃) = G(v∗,∆t, π̃) + π̃ Cθ
def , (3.378)

where

Cθ
def =

∆t δθ [v∗cosθ]

A∆θcosθ
. (3.379)

To complete the construction of the 2D algorithm on the sphere, we introduce the following
short hand notations:

( )θ = ( )n +
1

2
g [v∗,∆t, ( )n] , (3.380)

64



( )λ = ( )n +
1

2
f [u∗,∆t, ( )n] . (3.381)

The 2D transport algorithm (cf, Eq. 2.24 in LR96) can then be written as

π̃n+1 = π̃n + F
[
u∗,∆t, π̃θ

]
+G

[
v∗,∆t, π̃λ

]
. (3.382)

Using explicitly the mass fluxes (χ, Y ), (3.382) is rewritten as

π̃n+1 = π̃n − ∆t

Acosθ

{
1

∆λ
δλ
[
χ(u∗,∆t; π̃θ)

]
+

1

∆θ
δθ
[
cosθ Y (v∗,∆t; π̃λ)

]}
, (3.383)

where Y , the mass flux in the meridional direction, is defined in a similar fashion as χ (3.373).
It can be verified that in the special case of constant density flow (π̃ = constant) the above
equation degenerates to the finite-difference representation of the incompressibility condition of
the “time mean” wind field (u∗, v∗), i.e.,

1

∆λ
δλu

∗ +
1

∆θ
δθ (v∗cosθ) = 0. (3.384)

The fulfillment of the above incompressibility condition for constant density flows is crucial
to the accuracy of the 2D flux-form formulation. For transport of volume mean mixing ratio-like
quantities (q̃) the mass fluxes (χ, Y ) as defined previously should be used as follows

q̃n+1 =
1

π̃n+1

[
π̃nq̃n + F (χ,∆t, q̃θ) +G(Y,∆t, q̃λ)

]
. (3.385)

Note that the above form of the tracer transport equation consistently degenerates to (3.382)
if q̃ ≡ 1 (i.e., the tracer density equals to the background air density), which is another important
condition for a flux-form transport algorithm to be able to avoid generation of noise (e.g., creation
of artificial gradients) and to maintain mass conservation.

3.3.4 A vertically Lagrangian and horizontally Eulerian control-
volume discretization of the hydrodynamics

The very idea of using Lagrangian vertical coordinate for formulating governing equations for
the atmosphere is not entirely new. Starr [1945]) is likely the first to have formulated, in the
continuous differential form, the governing equations using a Lagrangian coordinate. Starr did
not make use of the discrete Lagrangian control-volume concept for discretization nor did he
present a solution to the problem of computing the pressure gradient forces. In the finite-volume
discretization to be described here, the Lagrangian surfaces are treated as the bounding material
surfaces of the Lagrangian control-volumes within which the finite-volume algorithms developed
in LR96, LR97, and L97 will be directly applied.

To use a vertical Lagrangian coordinate system to reduce the 3D governing equations to the
2D forms, one must first address the issue of whether it is an inertial coordinate or not. For
hydrostatic flows, it is. This is because both the right-hand-side and the left-hand-side of the
vertical momentum equation vanish for purely hydrostatic flows.

Realizing that the earth’s surface, for all practical modeling purposes, can be regarded as
a non-penetrable material surface, it becomes straightforward to construct a terrain-following
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Lagrangian control-volume coordinate system. In fact, any commonly used terrain-following
coordinates can be used as the starting reference (i.e., fixed, Eulerian coordinate) of the floating
Lagrangian coordinate system. To close the coordinate system, the model top (at a prescribed
constant pressure) is also assumed to be a Lagrangian surface, which is the same assumption
being used by practically all global hydrostatic models.

The basic idea is to start the time marching from the chosen terrain-following Eulerian coor-
dinate (e.g., pure σ or hybrid σ-p), treating the initial coordinate surfaces as material surfaces,
the finite-volumes bounded by two coordinate surfaces, i.e., the Lagrangian control-volumes,
are free vertically, to float, compress, or expand with the flow as dictated by the hydrostatic
dynamics.

By choosing an imaginary conservative tracer ζ that is a monotonic function of height and
constant on the initial reference coordinate surfaces (e.g., the value of “η” in the hybrid σ − p
coordinate used in CAM), the 3D governing equations written for the general vertical coordinate
in section 1.2 can be reduced to 2D forms. After factoring out the constant δζ, (3.364), the
conservation law for the pseudo-density (π = δp

δζ
), becomes

∂

∂t
δp+

1

Acosθ

[
∂

∂λ
(uδp) +

∂

∂θ
(vδp cosθ)

]
= 0, (3.386)

where the symbol δ represents the vertical difference between the two neighboring Lagrangian
surfaces that bound the finite control-volume. From (3.362), the pressure thickness δp of that
control-volume is proportional to the total mass, i.e., δp = −ρgδz. Therefore, it can be said that
the Lagrangian control-volume vertical discretization has the hydrostatic balance built-in, and
δp can be regarded as the “pseudo-density” for the discretized Lagrangian vertical coordinate
system.

Similarly, (3.365), the mass conservation law for all tracer species, is

∂

∂t
(qδp) +

1

Acosθ

[
∂

∂λ
(uqδp) +

∂

∂θ
(vqδp cosθ)

]
= 0, (3.387)

the thermodynamic equation, (3.366), becomes

∂

∂t
(Θδp) +

1

Acosθ

[
∂

∂λ
(uΘδp) +

∂

∂θ
(vΘδp cosθ)

]
= 0, (3.388)

and (3.367) and (3.368), the momentum equations, are reduced to

∂

∂t
u = Ωv − 1

Acosθ

[
∂

∂λ
(κ+ Φ− νD) +

1

ρ

∂

∂λ
p

]
, (3.389)

∂

∂t
v = −Ωu− 1

A

[
∂

∂θ
(κ+ Φ− νD) +

1

ρ

∂

∂θ
p

]
. (3.390)

Given the prescribed pressure at the model top P∞, the position of each Lagrangian surface
Pl (horizontal subscripts omitted) is determined in terms of the hydrostatic pressure as follows:

Pl = P∞ +
l∑

k=1

δPk, (for l = 1, 2, 3, ..., N), (3.391)

66



where the subscript l is the vertical index ranging from 1 at the lower bounding Lagrangian
surface of the first (the highest) layer to N at the Earth’s surface. There are N+1 Lagrangian
surfaces to define a total number of N Lagrangian layers. The surface pressure, which is the
pressure at the lowest Lagrangian surface, is easily computed as PN using (3.391). The sur-
face pressure is needed for the physical parameterizations and to define the reference Eulerian
coordinate for the mapping procedure (to be described in section 3.3.5).

With the exception of the pressure-gradient terms and the addition of a thermodynamic
equation, the above 2D Lagrangian dynamical system is the same as the shallow water system
described in LR97. The conservation law for the depth of fluid h in the shallow water system
of LR97 is replaced by (3.386) for the pressure thickness δp. The ideal gas law, the mass con-
servation law for air mass, the conservation law for the potential temperature (3.388), together
with the modified momentum equations (3.389) and (3.390) close the 2D Lagrangian dynamical
system, which are vertically coupled only by the hydrostatic relation (see (3.406), section 3.3.5).

The time marching procedure for the 2D Lagrangian dynamics follows closely that of the
shallow water dynamics fully described in LR97. For computational efficiency, we shall take
advantage of the stability of the FFSL transport algorithm by using a much larger time step
(∆t) for the transport of all tracer species (including water vapor). As in the shallow water
system, the Lagrangian dynamics uses a relatively small time step, ∆τ = ∆t/m, where m is
the number of the sub-cycling needed to stabilize the fastest wave in the system. We shall
describe here this time-split procedure for the prognostic variables [δp,Θ, u, v; q] on the D-grid.
Discretization on the C-grid for obtaining the diagnostic variables, the time-averaged winds
(u∗, v∗), is analogous to that of the D-grid (see also LR97).

Introducing the following short hand notations (cf, (3.380) and (3.381)):

( )θi = ( )n+ i−1
m +

1

2
g[v∗i ,∆τ, ( )n+ i−1

m ],

( )λi = ( )n+ i−1
m +

1

2
f [u∗i ,∆τ, ( )n+ i−1

m ],

and applying directly (3.383), the update of “pressure thickness” δp, using the fractional time
step ∆τ = ∆t/m, can be written as

δpn+ i
m = δpn+ i−1

m − ∆τ

Acosθ

{
1

∆λ
δλ
[
x∗i (u

∗
i ,∆τ ; δp

θ
i )
]
+

1

∆θ
δθ
[
cosθ y∗i (v

∗
i ,∆τ ; δp

λ
i )
]}

(3.392)

(for i = 1, ...,m),

where [x∗i , y
∗
i ] are the background air mass fluxes, which are then used as input to Eq. 24 for

transport of the potential temperature Θ:

Θn+ i
m =

1

δpn+ i
m

[
δpn+ i−1

m Θn+ i−1
m + F (x∗i ,∆τ ; Θ

θ
i ) +G(y∗i ,∆τ,Θ

λ
i )
]
. (3.393)

The discretized momentum equations for the shallow water system (cf, Eq. 16 and Eq. 17
in LR97) are modified for the pressure gradient terms as follows:

un+ i
m = un+ i−1

m + ∆τ

[
y∗i
(
v∗i ,∆τ ; Ω

λ
)
− 1

A∆λcosθ
δλ(κ

∗ − νD∗) + P̂λ

]
, (3.394)
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vn+ i
m = vn+ i−1

m −∆τ

[
x∗i
(
u∗i ,∆τ ; Ω

θ
)

+
1

A∆θ
δθ(κ

∗ − νD∗)− P̂θ

]
, (3.395)

where κ∗ is the upwind-biased “kinetic energy” (as defined by Eq. 18 in LR97), and D∗, the
horizontal divergence on the D-grid, is discretized as follows:

D∗ =
1

Acosθ

[
1

∆λ
δλu

n+ i−1
m +

1

∆θ
δθ

(
vn+ i−1

m cosθ
)]

.

The finite-volume mean pressure-gradient terms in (3.394) and (3.395) are computed as
follows:

P̂λ =

∮
Π
λ

φdΠ

Acosθ
∮

Π
λ
Πdλ

, (3.396)

P̂θ =

∮
Π
θ

φdΠ

A
∮

Π
θ
Πdθ

, (3.397)

where Π = pκ (κ = R/Cp), and the symbols “Π 
 λ” and “Π
 θ” indicate that the contour
integrations are to be carried out, using the finite-volume algorithm described in L97, in the
(Π, λ) and (Π, θ) space, respectively.

To complete one time step, equations (3.392-3.395), together with their counterparts on the
C-grid are cycled m times using the fractional time step ∆τ , which are followed by the tracer
transport using (3.387) with the large-time-step ∆t.

Mass fluxes (x∗, y∗) and the winds (u∗, v∗) on the C-grid are accumulated for the large-time-
step transport of tracer species (including water vapor) q as

qn+1 =
1

δpn+1

[
qnδpn + F (X∗,∆t, qθ) +G(Y ∗,∆t, qλ)

]
, (3.398)

where the time-accumulated mass fluxes (X∗, Y ∗) are computed as

X∗ =
m∑
i=1

x∗i (u
∗
i , ∆τ, δpθi ), (3.399)

Y ∗ =
m∑
i=1

y∗i (v
∗
i , ∆τ, δpλi ). (3.400)

The time-averaged winds (U∗, V ∗), defined as follows, are to be used as input for the com-
putations of qλ and qθ :

U∗ =
1

m

m∑
i=1

u∗i , (3.401)

V ∗ =
1

m

m∑
i=1

v∗i . (3.402)

The use of the time accumulated mass fluxes and the time-averaged winds for the large-
time-step tracer transport in the manner described above ensures the conservation of the tracer
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mass and maintains the highest degree of consistency possible given the time split integration
procedure.

The algorithm described here can be readily applied to a regional model if appropriate bound-
ary conditions are supplied. There is formally no Courant number related time step restriction
associated with the transport processes. There is, however, a stability condition imposed by the
gravity-wave processes. For application on the whole sphere, it is computationally advantageous
to apply a polar filter to allow a dramatic increase of the size of the small time step ∆τ . The
effect of the polar filter is to stabilize the short-in-wavelength (and high-in-frequency) gravity
waves that are being unnecessarily and unidirectionally resolved at very high latitudes in the
zonal direction. To minimize the impact to meteorologically significant larger scale waves, the
polar filter is highly scale selective and is applied only to the diagnostic variables on the auxiliary
C-grid and the tendency terms in the D-grid momentum equations. No polar filter is applied
directly to any of the prognostic variables.

The design of the polar filter follows closely that of Suarez and Takacs [1995] for the C-
grid Arakawa type dynamical core (e.g., Arakawa and Lamb [1981]). Because our prognostic
variables are computed on the D-grid and the fact that the FFSL transport scheme is stable for
Courant number greater than one, in realistic test cases the maximum size of the time step is
about two to three times larger than a model based on Arakawa and Lamb’s C-grid differencing
scheme. It is possible to avoid the use of the polar filter if, for example, the “Cubed grid” is
chosen, instead of the current latitude-longitude grid. However, this would require a significant
rewrite of the rest of the model codes including physics parameterizations, the land model, and
most of the post processing packages.

The size of the small time step for the Lagrangian dynamics is only a function of the horizontal
resolution. Applying the polar filter, for the 2-degree horizontal resolution, a small-time-step size
of 450 seconds can be used for the Lagrangian dynamics. From the large-time-step transport
perspective, the small-time-step integration of the 2D Lagrangian dynamics can be regarded
as a very accurate iterative solver, with m iterations, for computing the time mean winds
and the mass fluxes, analogous in functionality to a semi-implicit algorithm’s elliptic solver
(e.g., Ringler et al. [2000]). Besides accuracy, the merit of an “explicit” versus “semi-implicit”
algorithm ultimately depends on the computational efficiency of each approach. In light of the
advantage of the explicit algorithm in parallelization, we do not regard the explicit algorithm for
the Lagrangian dynamics as an impedance to computational efficiency, particularly on modern
parallel computing platforms. Furthermore, it may be possible to further increase the size of the
small time step via vertical mode decomposition. This approach is one of the algorithm design
issues we plan to revisit.

3.3.5 A mass, momentum, and total energy conserving mapping al-
gorithm

The Lagrangian surfaces that bound the finite-volume will eventually deform, particularly in
the presence of persistent diabatic heating/cooling, in a time scale of a few hours to a day
depending on the strength of the heating and cooling, to a degree that it will negatively impact
the accuracy of the horizontal-to-Lagrangian-coordinate transport and the computation of the
pressure gradient forces. Therefore, a key to the success of the Lagrangian control-volume
discretization is an accurate and conservative algorithm for mapping the deformed Lagrangian

69



coordinate back to a fixed reference Eulerian coordinate.

There are some degrees of freedom in the design of the vertical mapping algorithm. To ensure
conservation, our current (and recommended) mapping algorithm is based on the reconstruction
of the “mass” (pressure thickness δp), zonal and meridional “winds”, “tracer mixing ratios”, and
“total energy” (volume integrated sum of the internal, potential, and kinetic energy), using the
monotonic Piecewise Parabolic sub-grid distributions with the hydrostatic pressure (as defined
by (3.391)) as the mapping coordinate. We outline the mapping procedure as follows.

Step 1: Define a suitable Eulerian reference coordinate. The mass in each layer
(δp) is then distributed vertically according to the chosen Eulerian coordinate.
The surface pressure typically plays an “anchoring” role in defining the terrain
following Eulerian vertical coordinate. The hybrid η − coordinate used in the
NCAR CCM3 [Kiehl et al., 1996] is adopted in the current model setup.

Step 2: Construct the piece-wise continuous vertical subgrid profiles of tracer mixing
ratios (q), zonal and meridional winds (u and v), and total energy (Γ) in the
Lagrangian control-volume coordinate based on the Piece-wise Parabolic Method
(PPM, Colella and Woodward [1984]). The total energy Γ is computed as the
sum of the finite-volume integrated geopotential φ, internal energy (CvT ), and
the kinetic energy (K) as follows:

Γ =
1

δp

∫ [
CvT + φ+

1

2

(
u2 + v2

)]
dp. (3.403)

Applying integration by parts and the ideal gas law, the above integral can be
rewritten as

Γ = CpT +
1

δp
δ (pφ) +K, (3.404)

where T is the layer mean temperature, K is the kinetic energy, p is the pressure
at layer edges, and Cv and Cp are the specific heat of the air at constant volume
and at constant pressure, respectively. Layer mean values of q, (u, v), and Γ in
the Eulerian coordinate system are obtained by integrating analytically the sub-
grid distributions, in the vertical direction, from model top to the surface, layer
by layer. Since the hydrostatic pressure is chosen as the mapping coordinate,
tracer mass, momentum, and total energy are locally and globally conserved.

Step 3: Compute kinetic energy in the Eulerian coordinate system for each layer.
Substituting kinetic energy and the hydrostatic relationship into (3.404), the layer
mean temperature T k for layer k in the Eulerian coordinate is then retrieved from
the reconstructed total energy (done in Step 2) by a fully explicit integration
procedure starting from the surface up to the model top as follows:

T k =
Γk −Kk − φk+ 1

2

Cp

[
1− κ pk− 1

2

ln p
k+1

2
−ln p

k− 1
2

p
k+1

2
−p

k− 1
2

] . (3.405)
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To convert the potential temperature Θ to the layer mean temperature the conversion factor is
obtained by equating the following two equivalent forms of the hydrostatic relation for Θ and
T :

δφ = −CpΘ δΠ, (3.406)

δφ = −RT δlnΠ, (3.407)

where Π = pκ. The conversion formula between layer mean temperature and layer mean poten-
tial temperature is obtained as follows:

Θ = κ
δlnΠ

δΠ
T . (3.408)

The physical implication of retrieving the layer mean temperature from the total energy as
described in Step 3 is that the dissipated kinetic energy, if any, is locally converted into internal
energy via the vertically sub-grid mixing (dissipation) processes. Due to the monotonicity
preserving nature of the sub-grid reconstruction the column-integrated kinetic energy inevitably
decreases (dissipates), which leads to local frictional heating. The frictional heating is a physical
process that maintains the conservation of the total energy in a closed system.

As viewed by an observer riding on the Lagrangian surfaces, the mapping procedure essen-
tially performs the physical function of the relative-to-the-Eulerian-coordinate vertical trans-
port, by vertically redistributing (air and tracer) mass, momentum, and total energy from the
Lagrangian control-volume back to the Eulerian framework.

As described in section 3.3.4, the model time integration cycle consists of m small time steps
for the 2D Lagrangian dynamics and one large time step for tracer transport. The mapping time
step can be much larger than that used for the large-time-step tracer transport. In tests using
the Held-Suarez forcing [Held and Suarez, 1994], a three-hour mapping time interval is found
to be adequate. In the full model integration, one may choose the same time step used for the
physical parameterizations so as to ensure the input state variables to physical parameterizations
are in the usual “Eulerian” vertical coordinate.

3.3.6 Adjustment of specific humidity to conserve water

The physics parameterizations operate on a model state provided by the dynamics, and are
allowed to update specific humidity. However, the surface pressure remains fixed throughout
the physics updates, and since there is an explicit relationship between the surface pressure and
the air mass within each layer, the total air mass must remain fixed as well. This implies a
change of dry air mass at the end of the physics updates. We impose a restriction that dry air
mass and water mass be conserved as follows:

The total pressure p is

p = d+ e. (3.409)

with dry pressure d, water vapor pressure e. The specific humidity is

q =
e

p
=

e

d+ e
, d = (1− q)p. (3.410)
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We define a layer thickness as δkp ≡ pk+1/2 − pk−1/2, so

δkd = (1− qk)δkp. (3.411)

We are concerned about 3 time levels: qn is input to physics, qn∗ is output from physics, qn+1 is
the adjusted value for dynamics.

Dry mass is the same at n and n+ 1 but not at n∗. To conserve dry mass, we require that

δkdn = δkdn+1 (3.412)

or
(1− qkn)δ

kpn = (1− qkn+1)δ
kpn+1. (3.413)

Water mass is the same at n∗ and n+ 1, but not at n. To conserve water mass, we require
that

qkn∗δ
kpn = qkn+1δ

kpn+1. (3.414)

Substituting (3.414) into (3.413),

(1− qkn)δ
kpn = δkpn+1 − qkn∗δ

kpn (3.415)

δkpn+1 = (1− qkn + qkn∗)δ
kpn (3.416)

which yields a modified specific humidity for the dynamics:

qkn+1 = qkn
δkpn
δkpn+1

=
qkn∗

1− qkn + qkn∗
. (3.417)

3.3.7 Further discussion

There are still aspects of the numerical formulation in the finite volume dynamical core that can
be further improved. For example, the choice of the horizontal grid, the computational efficiency
of the split-explicit time marching scheme, the choice of the various monotonicity constraints,
and how the conservation of total energy is achieved.

The impact of the non-linear diffusion associated with the monotonicity constraint is dif-
ficult to assess. All discrete schemes must address the problem of subgrid-scale mixing. The
finite-volume algorithm contains a non-linear diffusion that mixes strongly when monotonicity
principles are locally violated. However, the effect of nonlinear diffusion due to the imposed
monotonicity constraint diminishes quickly as the resolution matches better to the spatial struc-
ture of the flow. In other numerical schemes, however, an explicit (and tunable) linear diffusion
is often added to the equations to provide the subgrid-scale mixing as well as to smooth and/or
stabilize the time marching.

The finite-volume dynamical core as implemented in CAM and described here conserves the
dry air and all other tracer mass exactly without a “mass fixer”. The vertical Lagrangian dis-
cretization and the associated remapping conserves the total energy exactly. The only remaining
issue regarding conservation of the total energy is the horizontal discretization and the use of the
“diffusive” transport scheme with monotonicity constraint. To compensate for the loss of total
energy due to horizontal discretization, we apply a global fixer to add the loss in kinetic energy
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due to “diffusion” back to the thermodynamic equation so that the total energy is conserved.
However, it should be noted that even without the “energy fixer” the loss in total energy (in
flux unit) is found to be less than 2 (W/m2) with the 2 degrees resolution, and much smaller
with higher resolution. In the future, we may consider using the total energy as a transported
prognostic variable so that the total energy could be automatically conserved.
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Chapter 4

Model Physics

As stated in chapter 2, the total parameterization package in CAM 3.0 consists of a sequence of
components, indicated by

P = {M,R, S, T} , (4.1)

whereM denotes (Moist) precipitation processes, R denotes clouds and Radiation, S denotes the
Surface model, and T denotes Turbulent mixing. Each of these in turn is subdivided into vari-
ous components: M includes an optional dry adiabatic adjustment normally applied only in the
stratosphere, moist penetrative convection, shallow convection, and large-scale stable condensa-
tion; R first calculates the cloud parameterization followed by the radiation parameterization;
S provides the surface fluxes obtained from land, ocean and sea ice models, or calculates them
based on specified surface conditions such as sea surface temperatures and sea ice distribution.
These surface fluxes provide lower flux boundary conditions for the turbulent mixing T which
is comprised of the planetary boundary layer parameterization, vertical diffusion, and gravity
wave drag.

4.1 Deep Convection

The process of deep convection is treated with a parameterization scheme developed by Zhang
and McFarlane [1995]. The scheme is based on a plume ensemble approach where it is assumed
that an ensemble of convective scale updrafts (and the associated saturated downdrafts) may
exist whenever the atmosphere is conditionally unstable in the lower troposphere. The updraft
ensemble is comprised of plumes sufficiently buoyant so as to penetrate the unstable layer,
where all plumes have the same upward mass flux at the bottom of the convective layer. Moist
convection occurs only when there is convective available potential energy (CAPE) for which
parcel ascent from the sub-cloud layer acts to destroy the CAPE at an exponential rate using a
specified adjustment time scale. For the convenience of the reader we will review some aspects
of the formulation, but refer the interested reader to Zhang and McFarlane [1995] for additional
detail, including behavioral characteristics of the parameterization scheme. Evaporation of
convective precipitation is computed following the procedure described in section 4.3.

The large-scale budget equations distinguish between a cloud and sub-cloud layer where
temperature and moisture response to convection in the cloud layer is written in terms of bulk
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convective fluxes as

cp

(
∂T

∂t

)
cu

= −1

ρ

∂

∂z
(MuSu +MdSd −McS) + L(C − E) (4.2)(

∂q

∂t

)
cu

= −1

ρ

∂

∂z
(Muqu +Mdqd −Mcq) + E − C , (4.3)

for z ≥ zb, where zb is the height of the cloud base. For zs < z < zb, where zs is the surface
height, the sub-cloud layer response is written as

cp

(
ρ
∂T

∂t

)
m

= − 1

zb − zs
(Mb[S(zb)− Su(zb)] +Md[S(zb)− Sd(zb)]) (4.4)(

ρ
∂q

∂t

)
m

= − 1

zb − zs
(Mb[q(zb)− qu(zb)] +Md[q(zb)− qd(zb)]) , (4.5)

where the net vertical mass flux in the convective region, Mc, is comprised of upward, Mu, and
downward, Md, components, C and E are the large-scale condensation and evaporation rates,
S, Su, Sd, q, qu, qd, are the corresponding values of the dry static energy and specific humidity,
and Mb is the cloud base mass flux.

4.1.1 Updraft Ensemble

The updraft ensemble is represented as a collection of entraining plumes, each with a charac-
teristic fractional entrainment rate λ. The moist static energy in each plume hc is given by

∂hc
∂z

= λ(h− hc), zb < z < zD . (4.6)

Mass carried upward by the plumes is detrained into the environment in a thin layer at the top
of the plume, zD, where the detrained air is assumed to have the same thermal properties as
in the environment (Sc = S). Plumes with smaller λ penetrate to larger zD. The entrainment
rate λD for the plume which detrains at height z is then determined by solving (4.6), with lower
boundary condition hc(zb) = hb:

∂hc
∂(z − zb)

= λD(h− hb)− λD(hc − hb) (4.7)

∂(hc − hb)

∂(z − zb)
− λD(hc − hb) = λD(h− hb) (4.8)

∂(hc − hb)e
λD(z−zb)

∂(z − zb)
= λD(h− hb)e

λD(z−zb) (4.9)

(hc − hb)e
λD(z−zb) =

∫ z

zb

λD(h− hb)e
λD(z′−zb)dz′ (4.10)

(hc − hb) = λD

∫ z

zb

(h− hb)e
λD(z′−z)dz′ . (4.11)
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Since the plume is saturated, the detraining air must have hc = h∗, so that

(hb − h∗) = λD

∫ z

zb

(hb − h)eλD(z′−z)dz′ . (4.12)

Then, λD is determined by solving (4.12) iteratively at each z.
The top of the shallowest of the convective plumes, z0 is assumed to be no lower than the

mid-tropospheric minimum in saturated moist static energy, h∗, ensuring that the cloud top
detrainment is confined to the conditionally stable portion of the atmospheric column. All
condensation is assumed to occur within the updraft plumes, so that C = Cu. Each plume is
assumed to have the same value for the cloud base mass flux Mb, which is specified below. The
vertical distribution of the cloud updraft mass flux is given by

Mu = Mb

∫ λD

0

1

λ0

eλ(z−zb)dλ = Mb
eλD(z−zb) − 1

λ0(z − zb)
, (4.13)

where λ0 is the maximum detrainment rate, which occurs for the plume detraining at height
z0, and λD is the entrainment rate for the updraft that detrains at height z. Detrainment is
confined to regions where λD decreases with height, so that the total detrainment Du = 0 for
z < z0. Above z0,

Du = −Mb

λ0

∂λD
∂z

. (4.14)

The total entrainment rate is then just given by the change in mass flux and the total detrain-
ment,

Eu =
∂Mu

∂z
−Du . (4.15)

The updraft budget equations for dry static energy, water vapor mixing ratio, moist static
energy, and cloud liquid water, `, are:

∂

∂z
(MuSu) = (Eu −Du)S + ρLCu (4.16)

∂

∂z
(Muqu) = Euq −Duq

∗ + ρCu (4.17)

∂

∂z
(Muhu) = Euh−Duh

∗ (4.18)

∂

∂z
(Mu`) = −Du`d + ρCu − ρRu , (4.19)

where (4.18) is formed from (4.16) and (4.17) and detraining air has been assumed to be sat-
urated (q = q∗ and h = h∗). It is also assumed that the liquid content of the detrained air is
the same as the ensemble mean cloud water (`d = `). The conversion from cloud water to rain
water is given by

ρRu = c0Mu` , (4.20)

following Lord et al. [1982], with c0 = 2× 10−3 m−1.
Since Mu, Eu and Du are given by (4.13-4.15), and h and h∗ are environmental profiles,

(4.18) can be solved for hu, given a lower boundary condition. The lower boundary condition
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is obtained by adding a 0.5 K temperature perturbation to the dry (and moist) static energy
at cloud base, or hu = h + cp × 0.5 at z = zb. Below the lifting condensation level (LCL), Su
and qu are given by (4.16) and (4.17). Above the LCL, qu is reduced by condensation and Su is
increased by the latent heat of vaporization. In order to obtain to obtain a saturated updraft at
the temperature implied by Su, we define ∆T as the temperature perturbation in the updraft,
then:

hu = Su + Lqu (4.21)

Su = S + cp∆T (4.22)

qu = q∗ +
dq∗

dT
∆T . (4.23)

Substituting (4.22) and (4.23) into (4.21),

hu = S + Lq∗ + cp

(
1 +

L

cp

dq∗

dT

)
∆T (4.24)

= h∗ + cp (1 + γ) ∆T (4.25)

γ ≡ L

cp

dq∗

dT
(4.26)

∆T =
1

cp

hu − h∗

1 + γ
. (4.27)

The required updraft quantities are then

Su = S +
hu − h∗

1 + γ
(4.28)

qu = q∗ +
γ

L

hu − h∗

1 + γ
. (4.29)

With Su given by (4.28), (4.16) can be solved for Cu, then (4.19) and (4.20) can be solved for `
and Ru.

The expressions above require both the saturation specific humidity to be

q∗ =
εe∗

p− e∗
, e∗ < p , (4.30)

where e∗ is the saturation vapor pressure, and its dependence on temperature (in order to
maintain saturation as the temperature varies) to be

dq∗

dT
=

ε

p− e∗
de∗

dT
− εe∗

(p− e∗)2

d(p− e∗)

dT
(4.31)

=
ε

p− e∗

(
1 +

1

p− e∗

)
de∗

dT
(4.32)

=
ε

p− e∗

(
1 +

q∗

εe∗

)
de∗

dT
. (4.33)
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The deep convection scheme does not use the same approximation for the saturation vapor
pressure e∗ as is used in the rest of the model. Instead,

e∗ = c1 exp

[
c2(T − Tf )

(T − Tf + c3)

]
, (4.34)

where c1 = 6.112, c2 = 17.67, c3 = 243.5 K and Tf = 273.16 K is the freezing point. For this
approximation,

de∗

dT
= e∗

d

dT

[
c2(T − Tf )

(T − Tf + c3)

]
(4.35)

= e∗
[

c2
(T − Tf + c3)

− c2(T − Tf )

(T − Tf + c3)2

]
(4.36)

= e∗
c2c3

(T − Tf + c3)2
(4.37)

dq∗

dT
= q∗

(
1 +

q∗

εe∗

)
c2c3

(T − Tf + c3)2
. (4.38)

We note that the expression for γ in the code gives

dq∗

dT
=
cp
L
γ = q∗

(
1 +

q∗

ε

)
εL

RT 2
. (4.39)

The expressions for dq∗/dT in (4.38) and (4.39) are not identical. Also, T − Tf + c3 6= T and
c2c3 6= εL/R.

4.1.2 Downdraft Ensemble

Downdrafts are assumed to exist whenever there is precipitation production in the updraft
ensemble where the downdrafts start at or below the bottom of the updraft detrainment layer.
Detrainment from the downdrafts is confined to the sub-cloud layer, where all downdrafts have
the same mass flux at the top of the downdraft region. Accordingly, the ensemble downdraft
mass flux takes a similar form to (4.13) but includes a “proportionality factor” to ensure that
the downdraft strength is physically consistent with precipitation availability. This coefficient
takes the form

α = µ

[
P

P + Ed

]
, (4.40)

where P is the total precipitation in the convective layer and Ed is the rain water evaporation
required to maintain the downdraft in a saturated state. This formalism ensures that the
downdraft mass flux vanishes in the absence of precipitation, and that evaporation cannot
exceed some fraction, µ, of the precipitation, where µ = 0.2.

4.1.3 Closure

The parameterization is closed, i.e., the cloud base mass fluxes are determined, as a function of
the rate at which the cumulus consume convective available potential energy (CAPE). Since the
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large-scale temperature and moisture changes in both the cloud and sub-cloud layer are linearly
proportional to the cloud base updraft mass flux (e.g. see eq. 4.2 – 4.5), the CAPE change due
to convective activity can be written as(

∂A

∂t

)
cu

= −MbF , (4.41)

where F is the CAPE consumption rate per unit cloud base mass flux. The closure condition is
that the CAPE is consumed at an exponential rate by cumulus convection with characteristic
adjustment time scale τ = 7200 s:

Mb =
A

τF
. (4.42)

4.1.4 Numerical Approximations

The quantities Mu,d, `, Su,d, qu,d, hu,d are defined on layer interfaces, while Du, Cu, Ru are
defined on layer midpoints. S, q, h, γ are required on both midpoints and interfaces and the
interface values ψk± are determined from the midpoint values ψk as

ψk− = log

(
ψk−1

ψk

)
ψk−1ψk

ψk−1 − ψk
. (4.43)

All of the differencing within the deep convection is in height coordinates. The differences are
naturally taken as

∂ψ

∂z
=
ψk− − ψk+

zk− − zk+
, (4.44)

where ψk− and ψk+ represent values on the upper and lower interfaces, respectively for layer
k. The convention elsewhere in this note (and elsewhere in the code) is δkψ = ψk+ − ψk−.
Therefore, we avoid using the compact δk notation, except for height, and define

dkz ≡ zk− − zk+ = −δkz , (4.45)

so that dkz corresponds to the variable dz(k) in the deep convection code.
Although differences are in height coordinates, the equations are cast in flux form and the

tendencies are computed in units kg m−3 s−1. The expected units are recovered at the end by
multiplying by gδz/δp.

The environmental profiles at midpoints are

Sk = cpT
k + gzk (4.46)

hk = Sk + Lqk (4.47)

h∗k = Sk + Lq∗k (4.48)

q∗k = εe∗k/(pk − e∗k) (4.49)

e∗k = c1 exp

[
c2(T

k − Tf )

(T k − Tf + c3)

]
(4.50)

γk = q∗k
(

1 +
q∗k

ε

)
εL2

cpRT k
2 . (4.51)
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The environmental profiles at interfaces of S, q, q∗, and γ are determined using (4.43) if |ψk−1−
ψk| is large enough. However, there are inconsistencies in what happens if |ψk−1 − ψk|
is not large enough. For S and q the condition is

ψk− = (ψk−1 + ψk)/2,
|ψk−1 − ψk|

max(ψk−1 − ψk)
≤ 10−6 . (4.52)

For q∗ and γ the condition is

ψk− = ψk, |ψk−1 − ψk| ≤ 10−6 . (4.53)

Interface values of h are not needed and interface values of h∗ are given by

h∗k− = Sk− + Lq∗k− . (4.54)

The unitless updraft mass flux (scaled by the inverse of the cloud base mass flux) is given
by differencing (4.13) as

Mk−
u =

1

λ0(zk− − zb)

(
eλ

k
D(zk−−zb) − 1

)
, (4.55)

with the boundary condition that MM+
u = 1. The entrainment and detrainment are calculated

using

mk−
u =

1

λ0(zk− − zb)

(
eλ

k+1
D (zk−−zb) − 1

)
(4.56)

Ek
u =

mk−
u −Mk+

u

dkz
(4.57)

Dk
u =

mk−
u −Mk−

u

dkz
. (4.58)

Note that Mk−
u and mk−

u differ only by the value of λD.
The updraft moist static energy is determined by differencing (4.18)

Mk−
u hk−u −Mk+

u hk+u
dkz

= Ek
uh

k −Dk
uh

∗k (4.59)

hk−u =
1

Mk−
u

[
Mk+

u hk+u + dkz
(
Ek
uh

k −Dk
uh

∗k)] , (4.60)

with hM−
u = hM + cp/2, where M is the layer of maximum h.

Once hu is determined, the lifting condensation level is found by differencing (4.16) and
(4.17) similarly to (4.18):

Sk−u =
1

Mk−
u

[
Mk+

u Sk+u + dkz
(
Ek
uS

k −Dk
uS

k
)]

(4.61)

qk−u =
1

Mk−
u

[
Mk+

u qk+u + dkz
(
Ek
uq

k −Dk
uq

∗k)] . (4.62)
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The detrainment of Su is given by Dk
uS

k not by Dk
uS

k
u, since detrainment occurs at the environ-

mental value of S. The detrainment of qu is given by Dk
uq

∗k, even though the updraft is not yet
saturated. The LCL will usually occur below z0, the level at which detrainment begins, but this
is not guaranteed.

The lower boundary conditions, SM−
u = SM + cp/2 and qM−

u = qM , are determined from
the first midpoint values in the plume, rather than from the interface values of S and q. The
solution of (4.61) and (4.62) continues upward until the updraft is saturated according to the
condition

qk−u > q∗(T k−u ), (4.63)

T k−u =
1

cp

(
Sk−u − gzk−

)
. (4.64)

The condensation (in units of m−1) is determined by a centered differencing of (4.16):

Mk−
u Sk−u −Mk+

u Sk+u
dkz

= (Ek
u −Dk

u)S
k + LCk

u (4.65)

Ck
u =

1

L

[
Mk−

u Sk−u −Mk+
u Sk+u

dkz
− (Ek

u −Dk
u)S

k

]
. (4.66)

The rain production (in units of m−1) and condensed liquid are then determined by differencing
(4.19) as

Mk−
u `k− −Mk+

u `k+

dkz
= −Dk

u`
k+ + Ck

u −Rk
u , (4.67)

and (4.20) as

Rk
u = c0M

k−
u `k− . (4.68)

Then

Mk−
u `k− = Mk+

u `k+ − dkz
(
Dk
u`
k+ − Ck

u + c0M
k−
u `k−

)
(4.69)

Mk−
u `k−

(
1 + c0d

kz
)

= Mk+
u `k+ + dkz

(
Dk
u`
k+ − Ck

u

)
(4.70)

`k− =
1

Mk−
u (1 + c0dkz)

[
Mk+

u `k+ − dkz
(
Dk
u`
k+ − Ck

u

)]
. (4.71)

4.1.5 Deep Convective Tracer Transport

The CAM 3.0 provides the ability to transport constituents via convection. The method used
for constituent transport by deep convection is a modification of the formulation described in
Zhang and McFarlane [1995].

We assume the updrafts and downdrafts are described by a steady state mass continuity
equation for a “bulk” updraft or downdraft

∂(Mxqx)

∂p
= Exqe −Dxqx . (4.72)
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The subscript x is used to denote the updraft (u) or downdraft (d) quantity. Mx here is the
mass flux in units of Pa/s defined at the layer interfaces, qx is the mixing ratio of the updraft or
downdraft. qe is the mixing ratio of the quantity in the environment (that part of the grid volume
not occupied by the up and downdrafts). Ex and Dx are the entrainment and detrainment rates
(units of s−1) for the up- and down-drafts. Updrafts are allowed to entrain or detrain in any
layer. Downdrafts are assumed to entrain only, and all of the mass is assumed to be deposited
into the surface layer.

Equation 4.72 is first solved for up and downdraft mixing ratios qu and qd, assuming the
environmental mixing ratio qe is the same as the gridbox averaged mixing ratio q̄.

Given the up- and down-draft mixing ratios, the mass continuity equation used to solve for
the gridbox averaged mixing ratio q̄ is

∂q̄

∂t
=

∂

∂p
(Mu(qu − q̄) +Md(qd − q̄)) . (4.73)

These equations are solved for in subroutine CONVTRAN. There are a few numerical details
employed in CONVTRAN that are worth mentioning here as well.

• mixing quantities needed at interfaces are calculated using the geometric mean of the layer
mean values.

• simple first order upstream biased finite differences are used to solve 4.72 and 4.73.

• fluxes calculated at the interfaces are constrained so that the resulting mixing ratios are
positive definite. This means that this parameterization is not suitable for moving mixing
ratios of quantities meant to represent perturbations of a trace constituent about a mean
value (in which case the quantity can meaningfully take on positive and negative mix-
ing ratios). The algorithm can be modified in a straightforward fashion to remove this
constraint, and provide meaningful transport of perturbation quantities if necessary. the
reader is warned however that there are other places in the model code where similar mod-
ifications are required because the model assumes that all mixing ratios should be positive
definite quantities.

4.2 Shallow/Middle Tropospheric Moist Convection

To characterize the convective forcing associated with shallow and middle-level convection (i.e.,
convective activity not treated by the primary convective parameterization scheme) we write
the large-scale budget equations for dry static energy and total water as

∂s

∂t
= −∇ · V s− ∂ω s

∂p
− ∂

∂p

(
ω′s′`

)
+ LR+ cpQR

=
∂s

∂t

∣∣∣∣
R.S.

− ∂

∂p

(
ω′s′`

)
+ LR (4.74)
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and

∂q

∂t
= −∇ · V q − ∂ω q

∂p
− ∂

∂p

(
ω′ − (q′ + `′)

)
−R

=
∂q

∂t

∣∣∣∣
R.S.

− ∂

∂p

(
ω′ (q′ + `′)

)
−R , (4.75)

where s ≡ cpT + gz is the dry static energy; ` represents liquid water; s` ≡ s− L` is the static
energy analogue of the liquid water potential temperature introduced by Betts [1975]; R is the
“convective-scale” liquid water sink (sometimes denoted by C−E); and QR is the net radiative
heating rate. The subscript R.S. denotes the resolvable-scale contributions to the large-scale
budget. Note that variations of the mean liquid water on the large scale have been neglected.
The barred quantities represent horizontal averages over an area large enough to contain a
collection of cloud elements, but small enough so as to cover only a fraction of a large-scale
disturbance. By writing the mean thermodynamic variables in terms of their average cloud and
environment properties, and assuming that the convection occupies only a small fraction of the
averaging area, the vertical eddy transports ω′s′` and ω′ (q′ + `′) can be approximated by the
difference between the upward flux inside a typical convective element and the downward flux
(i.e. induced subsidence) in the environment (cf. Yanai et al. [1973]). Mathematically, this
approximation takes the form

Fs`
(p) = −1

g

(
ω′s′`

)
≈ −Mc (p) (s (p)− sc (p) + L` (p)) (4.76)

and

Fq+`(p) = −1

g

(
ω′ (q′ + `′)

)
≈ −Mc (p) (q (p)− qc (p)− ` (p)) , (4.77)

where Mc is a convective mass flux, and sc, qc, and ` represent cloud-scale properties. Thus,
(4.74) and (4.75) can be written as

∂s

∂t
=
∂s

∂t

∣∣∣∣
R.S.

+ g
∂

∂p
Fs`

+ LR , (4.78)

and

∂q

∂t
‘ =

∂q

∂t

∣∣∣∣
R.S.

+ g
∂

∂p
Fq+` −R . (4.79)

Let us now turn our attention to a vertically discrete model atmosphere and consider the
case where layers k and k + 1 are moist adiabatically unstable, i.e. a non-entraining parcel of
air at level k+1 (with moist static energy hc) would be unstable if raised to level k. We assume
the existence of a non-entraining convective element with roots in level k + 1, condensation
and rainout processes in level k, and limited detrainment in level k − 1 (see Figure 4.1). In
accordance with (4.78) and (4.79), the discrete dry static energy and specific humidity budget

84



equations for these three layers can be written as

ŝk−1 = sk−1 +
2∆tg

∆pk−1

{
βmc

(
sc − sk− 1

2
− L`k

)}
, (4.80)

ŝk = sk +
2∆tg

∆pk

{
mc

(
sc − sk+ 1

2

)
− βmc

(
sc − L`k − sk− 1

2

)
+ LRk

}
, (4.81)

ŝk+1 = sk+1 +
2∆tg

∆pk+1

{
mc

(
sk+ 1

2
− sc

)}
, (4.82)

q̂k−1 = qk−1 +
2∆tg

∆pk−1

{
βmc

(
qc − qk− 1

2

)}
, (4.83)

q̂k = qk +
2∆tg

∆pk

{
mc

(
qc − qk+ 1

2

)
− βmc

(
qc − qk− 1

2
−
)
Rk

}
, (4.84)

q̂k+1 = qk+1 +
2∆tg

∆pk+1

{
mc

(
qk+ 1

2
− qc

)}
, (4.85)

where the subscript c denotes cloud properties in the ascent region, mc is a convective mass
flux at the bottom of the condensation layer (level k + 1

2
, “cloud base”), and β is a yet to be

determined “detrainment parameter” at level k− 1
2

that will take a value between zero and one.
Note that the convective-scale liquid water sink R has been redefined in terms of mass per unit
area per unit time (denoted by R), and the resolvable-scale components have been dropped for
the convenience of the following discussion. In the general case, the thermodynamic properties
of the updraft region can be assumed to be equal to their large-scale values in the sub-cloud
layer, level k + 1, plus some arbitrary thermodynamic perturbation; i.e.

sc = sk+1 + s′, (4.86)

qc = qk+1 + q′, (4.87)

and

hc = sc + Lqc . (4.88)

In the CAM 3.0 implementation of this scheme, when a sub-cloud layer lies within the diagnosed
atmospheric boundary layer, the perturbation quantities q′ and s′ are assumed to be equal to

b (w′q′)s

wm
(e.g. see 4.470 and the atmospheric boundary layer discussion) and zero.

The liquid water generation rate at level k is given by

mc`k = mc [qc − (qc)k
] . (4.89)

Using the saturation relation

(qc)k
= q∗k +

γ
k

1 + γ
k

1

L

(
hc − h

∗
k

)
, (4.90)

where q∗ denotes the saturated specific humidity

q∗ = ε
es

p− (1− ε)es
, (4.91)
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Figure 4.1: Conceptual three-level non-entraining cloud model

h∗ denotes the saturated moist state energy, es is the saturation vapor pressure (determined
from a precomputed table), and γ ≡ (L/cp)(∂q

∗/∂T )p, and assuming that the large-scale liquid
water divergence in layer k is zero, (4.89) can be manipulated to give the rainout term in layer
k as

LRk ≡ L(1− β)mc`k = (1− β)mc

{
sk − sc +

1

1 + γ
k

(
hc − h

∗
k

)}
, (4.92)

and the liquid water flux into layer k − 1 as

βmcL`k = βmc

{
sk − sc +

1

1 + γ
k

(
hc − h

∗
k

)}
. (4.93)

Equations (4.82) and (4.85) can be combined to give an equation for moist static energy in
layer k + 1

∂hk+1

∂t
=

g

∆pk+1

mc

(
hk+ 1

2
− hc

)
≈ ∂hc

∂t
, (4.94)

where the approximation follows from the assumption that ∂h′/∂t can be neglected. Using the
relation (1 + γ

k
)∂sk

∂t
= ∂h

∗
k∂t, (4.81) can be manipulated to give an expression for the time rate

of change of saturated moist static energy in layer k

∂h
∗
k

∂t
=
gmc

∆pk
(1 + γ

k
)
{(

sc − sk+ 1
2

+ L`k

)
− β

(
sc − sk− 1

2

)}
. (4.95)

Subtracting (4.95) from (4.94) results in

∂
(
hc − h

∗
k

)
∂t

= mc

{ g

∆pk+1

(
hk+ 1

2
− hc

)
− g

∆pk
(1 + γ

k
)
[(
sk − sk+ 1

2

)
− β

(
sc − sk− 1

2

)]}
, (4.96)
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from which the convective mass flux mc can be written as

mc =
hc − h

∗
k

gτ
{

(1+γ
k
)

∆pk

[(
sc − sk+ 1

2
+ L`k

)
− β

(
sc − sk− 1

2

)]
− 1

∆pk+1

[
hk+ 1

2
− hc

]} (4.97)

where τ is a characteristic convective adjustment time scale.
Physically realistic solutions require that the convective mass flux mc be positive, implying

the following constraint on the detrainment parameter β

β (1 + γk)
(
sc − sk− 1

2

)
< (1 + γk)

(
sc − sk+ 1

2
+ L`k

)
− ∆pk

∆pk+1

(
hk+ 1

2
− hc

)
. (4.98)

A second physical constraint is imposed to ensure that the adjustment process does not supersat-
urate the “detrainment layer”, k−1, which leads to the following constraint on the detrainment
parameter, β:

1

∆pk

[
(1 + γk)

(
sc − sk+ 1

2
+ L`k

) ]
− 1

∆pk+1

[
hk+ 1

2
− hc

]
>

β

{(
2∆t

τ

)
hc − h

∗
k(

h
∗
k−1 − hk−1

)
∆pk−1

[
γk−1

{
sk− 1

2
− sc + L`k

}

+hc − hk− 1
2
− sc + sk− 1

2

]
+

1

∆pk
(1 + γk)

(
sc − sk− 1

2

)}
. (4.99)

A final constraint on the adjustment process attempts to minimize the introduction of 2∆η
computational structures in the thermodynamic field by not allowing the procedure to increase
the vertical gradient of h when ∂h

∂p
< 0 in the upper pair of layers. Mathematically this constraint

is formulated by discretizing in time the moist static energy equations in layers k and k − 1,
leading to the following constraint on β

hk − hk−1 −G

(hc − h
∗
k )

( τ

2∆t

)( 1

∆ph

[
(1 + γk)(sc − sk+ 1

2
+ L`k)

]
− 1

∆pk+ 1
2

[
hk+ 1

2
− hc

])

+
1

∆pk

[
hc − hk+ 1

2

]
≥ β

{
hk − hk−1 −G

hc − h
∗
k

( τ

2∆t

)(1 + γk
∆pk

)(
sc − sk− 1

2

)
+
(
hc − hk− 1

2
− L`k

)( 1

∆pk
+

1

∆pk+1

)}
. (4.100)

where G is an arbitrary vertical difference in the adjusted moist static energy profile (cf. Hack
et al. [1993]).

The first guess for the detrainment parameter, β, comes from a crude buoyancy argument
where

β = max


βmin

min

βmax

1 +
(hc−h

∗
k−1)∆pk−1

(hc−h
∗
k )∆pk

(4.101)
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and βmin is assumed to be 0.10 (i.e., 10% detrainment). Since β effectively determines the actual
autoconversion from cloud water to rainwater, βmax is determined from a minimum autoconver-
sion requirement which is mathematically written as

βmax = max

βmin

1− c0(δz − δzmin)
(4.102)

where c0 is a constant autoconversion coefficient assumed to be equal to 1.0×10−4 m−1, δz is
the depth of contiguous convective activity (i.e. layers in which condensation and rainout takes
place) including and below layer k, and δzmin is a minimum depth for precipitating convection.
The physical constraints on the adjustment process are then applied to determine the actual
value of β appropriate to the stabilization of levels k and k + 1.

In summary, the adjustment procedure is applied as follows. A first guess at β is determined
from (4.101) and (4.102), and further refined using (4.98), (4.99), and (4.100). The convective
mass flux, mc, is then determined from (4.97), followed by application of budget equations (4.80)-
(4.85) to complete the thermodynamic adjustment in layers k − 1 through k + 1. By repeated
application of this procedure from the bottom of the model to the top, the thermodynamic
structure is locally stabilized, and a vertical profile of the total cloud mass flux associated with
shallow and mid-level convection, Mc (whereMc

k+1
2

= mc
k+1

2

+β mc
k+3

2

) can be constructed. This

mass flux profile can also be used to estimate the convective-scale transport of arbitrary passive
scalars. The production rate of convective precipitation Rk is supplied to the parameterization
of evaporation of convective precipitation described in section 4.3. The free parameters for the
convection scheme consist of a minimum convective detrainment, βmin, a characteristic adjust-
ment time scale for the convection, τ , a cloud-water to rain-water autoconversion coefficient c0,
and a minimum depth for precipitating convection δzmin.

4.3 Evaporation of convective precipitation

The CAM 3.0 employs a Sundqvist [1988] style evaporation of the convective precipitation as it
makes its way to the surface. This scheme relates the rate at which raindrops evaporate to the
local large-scale subsaturation, and the rate at which convective rainwater is made available to
the subsaturated model layer

Erk = KE (1− RHk) (R̂rk)
1/2

. (4.103)

where RHk is the relative humidity at level k, R̂rk denotes the total rainwater flux at level
k (which can be different from the locally diagnosed rainwater flux from the convective pa-
rameterization, as will be shown below), the coefficient KE takes the value 0.2 · 10−5 (kg m−2

s−1)−1/2s−1, and the variable Erk has units of s−1. The evaporation rate Erk is used to determine

a local change in qk and Tk, associated with an evaporative reduction of R̂rk . Conceptually, the
evaporation process is invoked after a vertical profile of Rrk has been evaluated. An evaporation
rate is then computed for the uppermost level of the model for which Rrk 6= 0 using (4.103),

where in this case Rrk ≡ R̂rk . This rate is used to evaluate an evaporative reduction in Rrk
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which is then accumulated with the previously diagnosed rainwater flux in the layer below,

R̂rk+1
= R̂rk −

(
∆pk
g

)
Erk +Rrk+1

. (4.104)

A local increase in the specific humidity qk and a local reduction of Tk are also calculated in
accordance with the net evaporation

qk = qk + Erk 2∆t , (4.105)

and

Tk = Tk −
(
L

cp

)
Erk 2∆t . (4.106)

The procedure, (4.103)-(4.106), is then successively repeated for each model level in a downward
direction where the final convective precipitation rate is that portion of the condensed rainwater
in the column to survive the evaporation process

Ps =

(
R̂rK −

(
∆pK
g

)
ErK

)
/ρH20 . (4.107)

In global annually averaged terms, this evaporation procedure produces a very small reduction
in the convective precipitation rate where the evaporated condensate acts to moisten the middle
and lower troposphere.

4.4 Conversion to and from dry and wet mixing ratios

for trace constituents in the model

There are trade offs in the various options for the representation of trace constituents χ in any
general circulation model:

1. When the air mass in a model layer is defined to include the water vapor, it is frequently
convenient to represent the quantity of trace constituent as a “moist” mixing ratio χm,
that is, the mass of tracer per mass of moist air in the layer. The advantage of the
representation is that one need only multiply the moist mixing ratio by the moist air mass
to determine the tracer air mass. It has the disadvantage of implicitly requiring a change
in χm whenever the water vapor q changes within the layer, even if the mass of the trace
constituent does not.

2. One can also utilize a “dry” mixing ratio χd to define the amount of constituent in a
volume of air. This variable does not have the implicit dependence on water vapor, but
does require that the mass of water vapor be factored out of the air mass itself in order to
calculate the mass of tracer in a cell.

NCAR atmospheric models have historically used a combination of dry and moist mixing ratios.
Physical parameterizations (including convective transport) have utilized moist mixing ratios.
The resolved scale transport performed in the Eulerian (spectral), and semi-Lagrangian dynam-
ics use dry mixing ratios, specifically to prevent oscillations associated with variations in water
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vapor requiring changes in tracer mixing ratios. The finite volume dynamics module utilizes
moist mixing ratios, with an attempt to maintain internal consistency between transport of
water vapor and other constituents.

There is no “right” way to resolve the requirements associated with the simultaneous treat-
ment of water vapor, air mass in a layer and tracer mixing ratios. But the historical treatment
significantly complicates the interpretation of model simulations, and in the latest version of
CAM we have also provided an “alternate” representation. That is, we allow the user to specify
whether any given trace constituent is interpreted as a “dry” or “wet” mixing ratio through the
specification of an “attribute” to the constituent in the physics state structure. The details of
the specification are described in the users manual, but we do identify the interaction between
state quantities here.

At the end of the dynamics update to the model state, the surface pressure, specific humidity,
and tracer mixing ratios are returned to the model. The physics update then is allowed to update
specific humidity and tracer mixing ratios through a sequence of operator splitting updates but
the surface pressure is not allowed to evolve. Because there is an explicit relationship between
the surface pressure and the air mass within each layer we assume that water mass can change
within the layer by physical parameterizations but dry air mass cannot. We have chosen to
define the dry air mass in each layer at the beginning of the physics update as

δpdi,k = (1− q0
i,k)δ

m
i,k

for column i, level k. Note that the specific humidity used is the value defined at the beginning
of the physics update. We define the transformation between dry and wet mixing ratios to be

χdi,k = (δpdi,k/δp
m
i,k)χ

m
i,k

We note that the various physical parameterizations that operate on tracers on the model
(convection, turbulent transport, scavenging, chemistry) will require a specification of the air
mass within each cell as well as the value of the mixing ratio in the cell. We have modified the
model so that it will use the correct value of δp depending on the attribute of the tracer, that
is, we use couplets of (χm, δpm) or (χd, δpd) in order to assure that the process conserves mass
appropriately.

We note further that there are a number of parameterizations (e.g. convection, vertical
diffusion) that transport species using a continuity equation in a flux form that can be written
generically as

∂χ

∂t
=
∂F (χ)

∂p
(4.108)

where F indicates a flux of χ. For example, in convective transports F (χ) might correspond
to Muχ where Mu is an updraft mass flux. In principle one should adjust Mu to reflect the fact
that it may be moving a mass of dry air or a mass of moist air. We assume these differences
are small, and well below the errors required to produce equation 4.108 in the first place. The
same is true for the diffusion coefficients involved in turbulent transport. All processes using
equations of such a form still satisfy a conservation relationship

∂

∂t

∑
k

χkδpk = Fkbot − Fktop

provided the appropriate δp is used in the summation.
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4.5 Prognostic Condensate and Precipitation Parame-

terization

4.5.1 Introductory comments

The parameterization of non-convective cloud processes in CAM 3.0 is described in Rasch and
Kristjánsson [1998] and Zhang et al. [2003]. The original formulation is introduced in Rasch
and Kristjánsson [1998]. Revisions to the parameterization to deal more realistically with the
treatment of the condensation and evaporation under forcing by large scale processes and chang-
ing cloud fraction are described in Zhang et al. [2003]. The equations used in the formulation
are discussed here. The papers contain a more thorough description of the formulation and a
discussion of the impact on the model simulation.

The formulation for cloud condensate combines a representation for condensation and evapo-
ration with a bulk microphysical parameterization closer to that used in cloud resolving models.
The parameterization replaces the diagnosed liquid water path of CCM3 with evolution equa-
tions for two additional predicted variables: liquid and ice phase condensate. At one point
during each time step, these are combined into a total condensate and partitioned according to
temperature (as described in section 4.5.3), but elsewhere function as independent quantities.
They are affected by both resolved (e.g. advective) and unresolved (e.g. convective, turbulent)
processes. Condensate can evaporate back into the environment or be converted to a precipi-
tating form depending upon its in-cloud value and the forcing by other atmospheric processes.
The precipitate may be a mixture of rain and snow, and is treated in diagnostic form, i.e. its
time derivative has been neglected.

The parameterization calculates the condensation rate more consistently with the change in
fractional cloudiness and in-cloud condensate than the previous CCM3 formulation. Changes in
water vapor and heat in a grid volume are treated consistently with changes to cloud fraction
and in-cloud condensate. Condensate can form prior to the onset of grid-box saturation and
can require a significant length of time to convert (via the cloud microphysics) to a precipitable
form. Thus a substantially wider range of variation in condensate amount than in the CCM3 is
possible.

The new parameterization adds significantly to the flexibility in the model and to the range of
scientific problems that can be studied. This type of scheme is needed for quantitative treatment
of scavenging of atmospheric trace constituents and cloud aqueous and surface chemistry. The
addition of a more realistic condensate parameterization closely links the radiative properties
of the clouds and their formation and dissipation. These processes must be treated for many
problems of interest today (e.g. anthropogenic aerosol-climate interactions).

The parameterization has two components: 1) a macroscale component that describes the
exchange of water substance between the condensate and the vapor phase and the associated
temperature change arising from that phase change Zhang et al. [2003]; and 2) a bulk micro-
physical component that controls the conversion from condensate to precipitate [Rasch and
Kristjánsson, 1998]. These components are discussed in the following two sections.
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4.5.2 Description of the macroscale component

As in Sundqvist [1988] and Rasch and Kristjánsson [1998], the controlling equations for the
water vapor mixing ratio, temperature, and total cloud condensate are written as

∂q

∂t
= Aq −Q + Er (4.109)

∂T

∂t
= AT +

L

cp
(Q− Er) (4.110)

∂l

∂t
= Al +Q−Rl , (4.111)

where Aq, AT , and Al are tendencies of water vapor, temperature, and cloud water from processes
other than large-scale condensation and evaporation of cloud and rain water. Aq, AT and Al
include advective, expansive, radiative, turbulent, and convective tendencies. The convective
tendencies include evaporation of convective cloud and convective precipitation. For simplicity,
all these processes are collectively called advective tendencies. They are assumed to be uniform
across the whole model grid cell, although this assumption can be relaxed as discussed in Zhang
et al. [2003]. Q is the grid-averaged net stratiform condensation of cloud meteors (condensation
minus evaporation). Er is the grid-averaged evaporative rate of rain and snow. Rl is the
conversion rate of cloud water to rain and snow. This section is devoted to the determination
of the term Q in equations (4.109)–(4.111).

The controlling equation of relative humidity U , when written on a pressure surface, can be
derived from (4.109) and (4.110) as

∂U

∂t
= α

∂q

∂t
− β

∂T

∂t
(4.112)

= αAq − βAT − γ(Q− Er) (4.113)

where

α =
1

qs
, (4.114)

β =
q

q2
s

∂qs
∂T

, (4.115)

γ = α+
L

cp
β . (4.116)

Note that α, β, and γ are all positive. They can be viewed as the efficiencies of moisture
advection, cold advection, and net evaporation in changing the relative humidity U . Changing
U can alter the fractional cloud cover. As in Sundqvist [1988] and Rasch and Kristjánsson [1998],
ice saturation is not separately considered here; rather, it is approximated by a weighted average
qs(T ) of the saturation mixing ratios over ice and water. The dependence of qs on pressure is
not made explicit since pressure enters into the calculation only as a parameter.

Equations (4.109)–(4.113) are applicable on both the grid scale and sub-grid scale as long
as Q, Er, and Rl are appropriately defined. In the following, a hat denotes variables in the
cloudy portion of a grid box to distinguish them from variables of the whole grid box, and C
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denotes the fractional cloud coverage. For the portion of the grid box that is cloudy before and
after the calculation of fractional condensation (i.e., the cloudy area that does not experience
clear-cloudy conversion), equation (4.113) becomes

αÂq − β̂ÂT − γ̂Q̂ = 0.

This follows from the assumption that Er = 0 and U = 1 in the saturated cloud interior. Thus
the condensation rate in this portion of the grid box is

Q̂ =
αÂq − β̂ÂT

γ̂
(4.117)

and the in-cloud condensate equation becomes

∂l̂

∂t
= Âl +

αÂq − β̂ÂT
γ̂

− R̂l. (4.118)

Since the total cloud water can be written as l = C l̂, it follows that

∂l

∂t
= C ∂l̂

∂t
+ l̂∗

∂C
∂t

(4.119)

The symbol l̂∗ denotes the mean cloud condensate of the newly formed or dissipated clouds
within a time step. The first term on the right hand side of the above equation represents
the evolution of cloud water within existing clouds, and the second term represents the change
in cloud water associated with expansion and contraction of cloud boundaries. Theoretically,
newly formed or dissipated clouds should have zero cloud water content, except for detrained
cloud from cumulus. However, because of the finite time step in the integration of the cloud
water equation, the second term may be nonzero. Rasch and Kristjánsson [1998] set l̂∗ = l̂, and
the same closure is used in CAM 3.0. Inserting (4.118) and the relations Rl = CR̂l as well as
AT = ÂT , Aq = Âq, and Al = Âl into (4.111) yields:

l̂∗
∂C
∂t

= (1− C)Al +Q− C(
αAq − β̂AT

γ̂
) (4.120)

This equation states that the condensation rate is linked with fractional cloudiness change as
required by the total water budget. Equation (4.120) is not integrated in the present formulation.
Instead, it is used to calculate the condensation rate as follows.

The fractional cloud cover and grid-scale relative humidity are related by

C = C(U, b) (4.121)

where b denotes a generic variable describing vertical stability, local Richardson number, cumulus
mass flux, etc. The term b varies with space and time. This equation is assumed to be valid when
the relative humidity U is larger than a threshold value U00, which is the minimum grid-scale
relative humidity at which clouds are present.

Taking partial derivatives of the equation (4.121) with respect to time gives

∂C
∂t

=
∂C
∂U

∂U

∂t
+
∂C
∂b

∂b

∂t
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With the definitions

Fa =
∂C
∂U

(4.122)
and

Fb = [(
∂C
∂b

)/(
∂C
∂U

)]
∂b

∂t
, (4.123)

the time derivative of cloud amount becomes

F−1
a

∂C
∂t

=
∂U

∂t
+ Fb (4.124)

It is assumed that Fa and Fb can be calculated without the knowledge of the condensation rate.
Substituting the relative humidity equation (4.113) into equation (4.124) yields

F−1
a

∂C
∂t

= αAq − βAT − γ(Q− Er) + Fb (4.125)

Eliminating ∂C/∂t between (4.120) and (4.125) gives

Q = cqAq − cTAT − clAl + crEr + σl̂∗Fb (4.126)

with

cq =
α

γ̂
C +

(
1− γ

γ̂
C
)
σαl̂∗ (4.127)

cT =
β̂

γ̂
C +

(
1− γ

γ̂

β̂

β
C

)
σβl̂∗ (4.128)

cl = (1− C)σF−1
a (4.129)

cr = σγl̂∗ (4.130)

where

σ =
1

F−1
a + γl̂∗

. (4.131)

All coefficient variables are positive, and all are non-dimensional except for CT and β which
have units of 1/K. Equation (4.126) is valid when U ≥ U00. The terms in the equation have the
following physical interpretation. Moist advection (positive Aq) and cold advection (negative
AT ) produce condensation. Evaporation of rain/snow water (positive Er) also produces cloud
condensation because it changes the mean relative humidity, thus increasing cloud amount and
cloud water. Import of cloud water (positive Al) leads to evaporation. The reason is that it
increases cloud fraction, thus requiring a higher clear-sky relative humidity which has to be
generated by evaporation. The increase of cloud fraction from a non-water source through Fb,
however, requires condensation.

To evaluate Fa, the cloud routine is called twice each time step with relative humidity
perturbed by one percent (indicated by a ∗ superscript) while holding all other variables in the
model fixed. Thus,

Fa ≈
∆C
∆U

=
C∗ − C
U∗ − U

.
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In this implementation, all b variables are assumed fixed in the stratiform condensation cal-
culation, and therefore Fb = 0. Since a top-hat distribution is adopted for the cloud water
distribution, l̂∗ = l̂.

The effects of convection on cloud cover are introduced through the convective tendencies.
Detrainment of cloud water from the Zhang and McFarlane [1995] convection scheme is used as
input in the calculation of Al, AT and Aq. In the original version of the Zhang and McFarlane
[1995] parameterization, the detrained cloud water from convection was assumed to evaporate.

The calculation is carried out by categorizing each model grid into one of four cases:

• If U = 1, Q is calculated from (4.117);

• if 1 > U ≥ U00, Q calculated from (4.126);

• if U < U00 but l > 0, Q = −l; and

• if U < U00 and l = 0, Q = 0.

The use of the threshold relative humidity follows from equation (4.121).

4.5.3 Description of the microscale component

The condensation process has been determined by forcing terms and closure assumptions de-
scribed in the previous subsection rather than an approach in which a supersaturation is calcu-
lated and CCN can nucleate and grow. Therefore the whole microphysical calculation reduces
to modeling the process of conversion of cloud condensate to precipitation. The microscale com-
ponent of the parameterization determines the evaporation ER and conversion of condensate to
precipitate Rl.

The formulation follows closely the bulk microphysical formulations used in smaller scale
cloud resolving models rather than those of Sundqvist [1988]. A method based upon cloud re-
solving models makes an explicit connection between the formation of precipitate and individual
physical quantities like droplet or crystal number, shape of size distribution of precipitate, etc.
It also separates the various processes contributing to precipitation more strongly, and makes
diagnosis more straightforward. Because these quantities must represent an ensemble of cloud
types in any given region (or grid volume) the new formulation still involves gross approxima-
tions, but it is much easier to control the parameterizations and understand their individual
impact when the processes are isolated from each other.

As in Sundqvist [1988], the parameterization is expressed in terms of a single predicted vari-
able representing total suspended condensate. Within the parameterization, however, there are
four types of condensate expressed as mixing ratios: a liquid and ice phase for suspended con-
densate with minimal fall speed (ql and qi) and a liquid and ice phase for falling condensate, i.e.
precipitation (qr and qs). Currently, only the suspended condensates (ql and qi) are integrated
in time; the other quantities are diagnosed as described below.

Before beginning the microphysical calculation, the total condensate is decomposed into
liquid and ice phases assuming the fraction of ice is

fi =
T − Tmax
Tmin − Tmax

, Tmin ≤ T ≤ Tmax (4.132)
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with fi(T < Tmin) = 1 and fi(T > Tmax) = 0. T is the grid volume temperature. The bounds
are adjustable constants with current settings Tmin = −40◦ C and Tmax = −10◦ C. Observations
and more detailed microphysical models show a broad range of ratios of liquid to ice in clouds,
and it is difficult to be certain of an appropriate range for this parameter.

Liquid and ice mass mixing ratios (` and I) are independently advected, diffused, and trans-
ported by convection. The detrained liquid from the ZM convection is all added to the cloud
liquid, since the ZM scheme does not have an ice phase. After the convection and sedimentation
(see below), the liquid and ice are recalculated from the total cloud condensate

`n′ = (`n + In)(1− fi) (4.133)

In′ = (`n + In)fi . (4.134)

The heating due to the change in cloud ice is

Qk = Lf
In − In′
δt

. (4.135)

The stratiform cloud condensate tendency is computed and partitioned according to fi. The
excess heating due to cloud ice production instead of cloud liquid production is included with
the evaporation and freezing of precipitation below.

The in-cloud liquid water mixing ratio is

q̂l = (1− fi)qc/C (4.136)

and the in-cloud ice water mixing ratio is assumed to be

q̂i = (fi)qc/C. (4.137)

The grid volume mean quantities have been converted to in-cloud quantities by dividing the
mean mixing ratios by the cloud fraction.

The evaporation of precipitation is computed for each source of precipitation using the same
expressions, following Sundqvist [1988]. The precipitate falling from above can be a mixture of
snow and rain. The flux of total precipitation F k+ on each interface is

F k+ = F k− +
δkp

g
(P k − Ek) (4.138)

where P k and Ek are precipitation production and evaporation, respectively. P k is determined
by the convection or stratiform microphysics routines and

Ek = ke(1− ck)

(
1−min(1,

qk

qk∗
)

)
(F k−)1/2 (4.139)

where ke is an adjustable constant and ck is the fractional cloud area. The (1− ck) factor repre-
sents a random overlap assumption; precipitation falling into the existing cloud in a layer does
not evaporate. For stratiform precipitation, ke = 1× 10−5, while for convective precipitation, ke
is considered to be an adjustable parameter and is specified according to the table in appendix
C.

Two bounds are applied to Ek:
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1. Ek ≤ qk
∗−qk

δt
, to prevent supersaturation;

2. Ek ≤ F k− g
δkp

, to prevent F k+ < 0. Note that precipitation is not permitted to evaporate
in the layer in which it forms;

Exactly the same procedure is applied to snow,

F k+
s = F k−

s +
δkp

g
(P k

s − Ek
s −Mk) (4.140)

where P k
s = fsP

k is the snow production, fs(T ) is the snow production fraction, Mk is the
melting rate and

Ek
s = EkF k−

s /F k− (4.141)

so snow evaporates in proportion to the fraction of snow in the precipitation flux on the upper
interface.

The snow production fraction is simple function of temperature

fs =
T − Ts,max

Ts,min − Ts,max
, Tmin ≤ T ≤ Tmax (4.142)

with fs(T < Ts,min) = 1 and fs(T > Ts,max) = 0. T is the grid volume temperature. The bounds
are adjustable constants with current settings Tmin = −5◦ C and Tmax = 0◦ C.

Falling precipitation is not permitted to freeze. Snow is produced only by the assumed snow
fraction fs in the production term. Snow does not melt unless it it falls into a layer with T k > 0
C, in which case Mk = F k

s
g
δkp

so that all the snow melts.
The net heating rate due to freezing, melting and evaporation of precipitation is

Qk = −LvEk + Lf (P
k
i − Ek

s −Mk) (4.143)

This is the method by which the heating due to Lf is included for all condensation processes.
For convective precipitation, P k

i ≡ P k
s , while for stratiform precipitation, Pi = fiC

k where Ck

is the net condensation rate in the cloud. Both the cloud ice fraction and the snow production
fractions are determined by fi, with P k

s coming from the cloud ice. For stratiform precipitation,
the above equations are iterated once to allow the first estimate of the heating to change T and
consequently q∗ (but not fi) for the 2nd iteration.

Cloud liquid and ice particles are allowed to sediment using independent settling velocities,
similar to the form described by Lawrence and Crutzen [1998]. The liquid and ice settling fluxes
are computed at interfaces, from velocities and concentrations at midpoints, using a SPITFIRE
solver [Rasch and Lawrence, 1998]. The resulting flux at each interface is constrained to be
smaller than the mass of liquid or ice in the layer above. This constraint does not allow for
particles falling into the layer from above.

Sedimenting particles evaporate if they fall into the cloud free portion of a layer. No bound
is applied to prevent supersaturation of the layer. This will be accounted for in the subsequent
cloud condensate tendency calculation. Maximum overlap is assumed for stratiform clouds, so
particles only evaporate if the cloud fraction is larger in the layer above. The overlapped fraction
is

fo = min

(
fkc
fk−1
c

, 1

)
(4.144)
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The ice velocity vi is a function only of the effective radius Re (see Section 4.8.4 for more
information and a plot), which itself is a function only of T . For Re < 40× 10−6 m, the Stokes
terminal velocity equation for a falling sphere is used

vi =
2

9

ρwgR
2
e

η
(4.145)

where η = 1.7 × 10−5 kg m/s is the viscosity of air and the density of air has been neglected
compared to the density of water.

For Re > 40× 10−6 m, the Stokes formula is no longer valid and we use a linear dependence
of vi on r = 10−6 ×Re

vi(r) = vi(40) + (r − 40)
v400 − vi(40)

400− 40
(4.146)

where v400 = 1.0 m/s is the assumed velocity of a 400 micron sphere, close to the value suggested
by Locatelli and Hobbs [1974].

The liquid particle velocity depends only on whether the cloud is over land or ocean, as is
true of the liquid effective radius. The net liquid velocity vl is

vl = vlandl f land + voceanl f ocean (4.147)

where f land and f ocean are the land and ocean fractional areas of the cell, respectively. The
ocean fraction may contain sea ice. The velocities are vlandl = 1.5 and voceanl = 2.8 cm/s.

It is assumed that there are five processes that convert condensate to precipitate:
• The conversion of liquid water to rain (PWAUT) follows a formulation originally suggested

by Chen and Cotton [1987]:

PWAUT = Cl,autq̂
2
l ρa/ρw(q̂lρa/ρwN)1/3H(r3l − r3lc). (4.148)

Here ρa and ρw are the local densities of air and water respectively, and N is the assumed
number density of cloud droplets. Cl,aut = 0.55π1/3k(3/4)4/3(1.1)4, and k = 1.18 × 106 cm−1

sec−1 is the Stokes constant.
N is set to 400/cm3 over land near the surface, 150/cm3 over ocean, and 75/cm3 over sea

ice. The number density also varies with distance from land by a factor equal to the distance
to the nearest land point divided by 1000 km and multiplied by the cosine of latitude. The
provides a sharper transition from land properties to ocean properties near the poles.

The terms r3l and r3lc are the mean volume radii of the droplets and a critical value below
which no auto-conversion is allowed to take place, respectively. H is the Heaviside function with
the definition H(x) = (0, 1) for x(<,≥)0. The volume radius r3l = [(3ρaql)/(4πNρw)]1/3. The
standard value for the critical mean volume radius at which conversion begins is 15µm. Baker
[1993] has shown that this parameterization results in collection rates that far exceed those
calculated in more realistic stochastic collection models. This is because the parameterization is
based upon a collection efficiency corresponding to a cloud droplet distribution that has already
been substantially modified by precipitation. Austin et al. [1995] suggest that a much smaller
choice is appropriate prior to precipitation onset. Therefore the parameterization is adjusted by
making Cl,aut → 0.1Cl,aut when the precipitation flux leaving the grid box is below 0.5 mm/day.

• The collection of cloud water by rain from above (PRACW) follows Tripoli and Cotton
[1980]

PRACW = Cracwρ
3/2q̂lqr (4.149)
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where Cracw = 0.884(g/(ρw 2.7×10−4))1/2s−1 is derived by assuming a Marshall-Palmer distribu-
tion of rainwater falling through a uniformly distributed cloud water field, and qr is determined
iteratively.

• The auto-conversion of ice to snow (PSAUT) is similar in form to that originally proposed
by Kessler [1969] for liquid processes and Lin et al. [1983] for ice. However, it includes a
temperature dependence similar to that proposed in Sundqvist [1988]

PSAUT = Ci,autH(q̂i − qic). (4.150)

The rate of conversion of ice (Ci,aut) to snow is set to 10−3s−1 when the ice mixing ratio exceeds a
critical threshold qic. The threshold is set to qic,warm at T = 0◦C and qic,cold at T = −20◦C. Val-
ues for qic,warm and qic,cold are given in Appendix C. The threshold varies linearly in temperature
between these two limits.

• The collection of ice by snow (PSACI) follows Lin et al. [1983], although it has been
rewritten in the form:

PSACI = Csaceiq̂i. (4.151)

where ei (= 1) is an ice collection efficiency. The coefficient of collection is

Csac = c7ρ
c8
a P̃

c5 (4.152)

Here, c5, c7 and c8 are constants arising from the assumed shape of the snow distribution.
The coefficients of the equation (4.152) arise from some algebraic manipulation of the expres-

sions appearing in Lin et al. [1983]. They in turn depend upon the specification for parameters
describing an exponential size distribution for graupel-like snow. The parameter values used
in Lin et al. [1983] are adopted in the CAM 3.0 implementation. The parameters are a slope
parameter d = 0.25; an empirical parameter c = 152.93 controlling the fall speed of graupel-like
snow; and the assumed integrated number density of snow Ns = 3. × 10−2. The constants
appearing in equation (4.152) can be expressed as

c1 = πNscΓ(3 + d)/4 (4.153)

c2 = 6(πρsNs)
d+4/

[
cΓ(4 + d)ρ0.5

0

]
(4.154)

c5 = (3 + d)/(4 + d) (4.155)

c6 = (3 + d)/4 (4.156)

c7 = c1ρ
0.5
0 cc52 /(ρsNs)

c6 (4.157)

and

c8 = −0.5/(4 + d) . (4.158)

Here Γ is the Gamma function, ρs = 0.1 is the density of snow, and ρ0 = 1.275 × 10−3 is
a reference air density at the surface. All constants have been expressed in CGS units. The
constants follow from integrating the geometric collection of a uniform distribution of suspended
cloud liquid or ice over the size distribution of snow.

The collection of liquid by snow (PSACW) also follows Lin et al. [1983]:

PSACW = Csacewq̂l. (4.159)

where ew is the water collection efficiency. Lohmann and Roeckner [1996] note that the work by
Levkov et al. [1992] suggests that the riming process is too efficient using the standard values.
There the collection efficiency is reduced by an order of magnitude to ew = 0.1.
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4.6 Dry Adiabatic Adjustment

If a layer is unstable with respect to the dry adiabatic lapse rate, dry adiabatic adjustment is
performed. The layer is stable if

∂T

∂p
<
κT

p
. (4.160)

In finite–difference form, this becomes

Tk+1 − Tk < C1k+1(Tk+1 + Tk) + δ, (4.161)
where

C1k+1 =
κ(pk+1 − pk)

2pk+1/2

. (4.162)

If there are any unstable layers in the top three model layers, the temperature is adjusted
so that (4.161) is satisfied everywhere in the column. The variable δ represents a convergence
criterion. The adjustment is done so that sensible heat is conserved,

cp(T̂k∆pk + T̂k+1∆pk+1) = cp(Tk∆pk + Tk+1∆pk+1), (4.163)

and so that the layer has neutral stability:

T̂k+1 − T̂k = C1k+1(T̂k+1 + T̂k) . (4.164)

As mentioned above, the hats denote the variables after adjustment. Thus, the adjusted tem-
peratures are given by

T̂k+1 =
∆pk

∆pk+1 + ∆pkC2k+1

Tk +
∆pk+1

∆pk+1 + ∆pkC2k+1

Tk+1, (4.165)

and

T̂k = C2k+1T̂k+1, (4.166)
where

C2k+1 =
1− C1k+1

1 + C1k+1

. (4.167)

Whenever the two layers undergo dry adjustment, the moisture is assumed to be completely
mixed by the process as well. Thus, the specific humidity is changed in the two layers in a
conserving manner to be the average value of the original values,

q̂k+1 = q̂k = (qk+1∆pk+1 + qk∆pk)/(∆pk+1 + ∆pk). (4.168)

The layers are adjusted iteratively. Initially, δ = 0.01 in the stability check (4.161). The column
is passed through from k = 1 to a user-specifiable lower level (set to 3 in the standard model
configuration) up to 15 times; each time unstable layers are adjusted until the entire column is
stable. If convergence is not reached by the 15th pass, the convergence criterion is doubled, a
message is printed, and the entire process is repeated. If δ exceeds 0.1 and the column is still
not stable, the model stops.

As indicated above, the dry convective adjustment is only applied to the top three levels
of the standard model. The vertical diffusion provides the stabilizing vertical mixing at other
levels. Thus, in practice, momentum is mixed as well as moisture and potential temperature in
the unstable case.
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4.7 Parameterization of Cloud Fraction

Cloud amount (or cloud fraction), and the associated optical properties, are evaluated via a
diagnostic method in CAM 3.0. The basic approach is similar to that employed in the CCM2
and CCM3. The diagnosis of cloud fraction is a generalization of the scheme introduced by
Slingo [1987], with variations described in Hack et al. [1993]; Kiehl et al. [1998], and Rasch
and Kristjánsson [1998]. Cloud fraction depends on relative humidity, atmospheric stability and
convective mass fluxes. Three types of cloud are diagnosed by the scheme: low-level marine
stratus (Cst), convective cloud (Ccir), and layered cloud (Cc). Layered clouds form when the
relative humidity exceeds a threshold value which varies according to pressure. The diagnoses
of these cloud types are described in more detail in the following paragraphs.

Marine stratocumulus clouds are diagnosed using an empirical relationship between marine
stratocumulus cloud fraction and the stratification between the surface and 700mb derived by
Klein and Hartmann [1993]. The CCM3 parameterization for stratus cloud fraction over oceans
has been replaced with

Cst = min

{
1.,max

[
0., (θ700 − θs) ∗ .057− .5573

]}
(4.169)

θ700 and θs are the potential temperatures at 700 mb and the surface, respectively. The cloud
is assumed to be located in the model layer below the strongest stability jump between 750
mb and the surface. If no two layers present a stability in excess of -0.125 K/mb, no cloud
is diagnosed. In areas where terrain filtering has produced non-zero ocean elevations, the sea
surface temperature used for this computation is reduced from the true sea surface elevation to
the model surface elevation according to the lapse rate of the U.S. Standard Atmosphere (-6.5
◦C/km).

Convective cloud fraction in the model is related to updraft mass flux in the deep and shallow
cumulus schemes according to a functional form suggested by Xu and Krueger [1991]:

Cshallow = k1,shallowln(1.0 + k2Mc,shallow) (4.170)

Cdeep = k1deepln(1.0 + k2Mc,deep) (4.171)

where k1,shallow and k1deep are adjustable parameters given in Appendix C, k2 = 500, and Mc is
the convective mass flux at the given model level.

The remaining cloud types are diagnosed on the basis of relative humidity, according to

Cc =

(
RH −RHmin

1−RHmin

)2

(4.172)

The threshold relative humidity RHmin is set according to pressure p as

RHmin =


RH low

min p > 750mb

RH low
min + (RHhigh

min −RH low
min)

p−750mb
pmid−750mb

pmid < p < 750mb

RHhigh
min p < pmid

(4.173)
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where pmid in an adjustable parameter denoting the minimum pressure for a linear ramp from
the low cloud threshold to the high cloud threshold. At present this ramp is implemented
only in one configuration of the model; other versions have a step function achieved by setting
pmid = 750 mb. RH low

min, RH
high
min , and pmid are specified as in Appendix C. Also, the parameter

RH low
min is adjusted over land by −0.10. This distinction is made to account for the increased

sub-grid-scale variability of the water vapor field due to inhomogeneities in the land surface
properties and subgrid orographic effects.

The total cloud Ctot within each volume is then diagnosed as

Ctot = max(Cc, Ccir, Cst),

This is equivalent to a maximum overlap assumption of cloud types within each gridbox. The
condensate value is assumed uniform within any and all types of cloud within each grid box.

4.8 Parameterization of Shortwave Radiation

4.8.1 Diurnal cycle

With standard name-list settings, both the longwave and shortwave heating rates are evaluated
every model hour. Between hourly evaluations, the longwave and shortwave fluxes and flux
divergences are held constant.

In CAM 3.0, insolation is computed using the method of Berger [1978]. Using this formula-
tion, the insolation can be determined for any time within 106 years of 1950 AD. This facilitates
using CAM 3.0 for paleoclimate simulations. The insolation at the top of the model atmosphere
is given by

SI = S0 ρ
−2 cosµ, (4.174)

where S0 is the solar constant, µ is the solar zenith angle, and ρ−2 is the distance factor (square
of the ratio of mean to actual distance that depends on the time of year). In the standard con-
figuration, S0 = 1367.0 W/m2. CAM 3.0 includes a mechanism for treating the slow variations
in the solar constant over the 11-year cycle and during longer secular trends. A time series of
S0 for 1870-2100 based upon Lean et al. [1995] is included with the standard model.

We represent the annual and diurnal cycle of solar insolation with a repeatable solar year of
exactly 365 days and with a mean solar day of exactly 24 hours, respectively. The repeatable
solar year does not allow for leap years. The expressions defining the annual and diurnal variation
of solar insolation are:

cosµ = sinφ sin δ − cosφ cos δ cos(H) (4.175)

δ = arcsin(sin ε sinλ) (4.176)

ρ =
1− e2

1 + e cos(λ− ω̃)
(4.177)

ω̃ = Π + ψ (4.178)
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where

φ = latitude in radians

δ = solar declination in radians

H = hour angle of sun during the day

ε = obliquity

λ = true longitude of the earth relative to vernal equinox (4.179)

e = eccentricity factor

ω̃ = longitude of the perihelion + 180◦

Π = longitude of perihelion based on the fixed equinox

ψ = general precession .

Note that Π is denoted by π in Berger [1978].
The hour angle H in the expression for cosµ depends on the calendar day d as well as model

longitude:

H = 2 π

(
d+

θ

360◦

)
, (4.180)

where θ = model longitude in degrees starting from Greenwich running eastward. Note that the
calendar day d varies continuously throughout the repeatable year and is updated every model
time step. The values of d at 0 GMT for January 1 and December 31 are 0 and 364, respectively.
This would mean, for example, that a model calendar day d having no fraction (such as 182.00)
would refer to local midnight at Greenwich, and to local noon at the date line (180◦ longitude).

The obliquity ε may be approximated by an empirical series expansion of solutions for the
Earth’s orbit

ε = ε∗ +
47∑
j=1

Aj cos (fj t+ δj) (4.181)

where Aj, fj, and δj are determined by numerical fitting. The term ε∗ = 23.320556◦, and t is
the time (in years) relative to 1950 AD.

Since the series expansion for the eccentricity e is slowly convergent, it is computed using

e =

√
(e cos Π)2 + (e sin Π)2 (4.182)

The terms on the right-hand side may also be written as empirical series expansions:

e

{
cos
sin

}
Π =

19∑
j=1

Mj

{
cos
sin

}
(gj t+ βj) (4.183)

where Mj, gj, and βj are estimated from numerical fitting. Once these series have been com-
puted, the longitude of perihelion Π is calculated using

Π = arctan

(
e sin Π

e cos Π

)
(4.184)
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The general precession is given by another empirical series expansion

ψ = ψ̃ t+ ζ +
78∑
j=1

Fj sin
(
f ′j t+ δ′j

)
(4.185)

where ψ̃ = 50.439273′′, ζ = 3.392506◦, and Fj, f
′
j, and δ′j are estimated from the numerical

solution for the Earth’s orbit.
The calculation of λ requires first determining two mean longitudes for the orbit. The mean

longitude λm0 at the time of the vernal equinox is :

λm0 = 2

{(
e

2
+
e3

8

)
(1 + β) sin(ω̃)

− e2

4

(
1

2
+ β

)
sin(2 ω̃) (4.186)

+
e3

8

(
1

3
+ β

)
sin(3 ω̃)

}
where β =

√
1− e2. The mean longitude is

λm = λm0 +
2π (d− dve)

365
(4.187)

where dve = 80.5 is the calendar day for the vernal equinox at noon on March 21. The true
longitude λ is then given by:

λ = λm +

(
2 e− e3

4

)
sin(λm − ω̃)

+
5 e2

4
sin [2(λm − ω̃)] (4.188)

+
13 e3

12
sin [3(λm − ω̃)]

The orbital state used to calculate the insolation is held fixed over the length of the model
integration. This state may be specified in one of two ways. The first method is to specify
a year for computing t. The value of the year is held constant for the entire length of the
integration. The year must fall within the range of 1950± 106. The second method is to specify
the eccentricity factor e, longitude of perihelion ω̃ − 180◦, and obliquity ε. This set of values
is sufficient to specify the complete orbital state. Settings for AMIP II style integrations under
1995 AD conditions are ε = 23.4441, e = 0.016715, and ω̃ − 180 = 102.7.
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4.8.2 Formulation of shortwave solution

The δ-Eddington approximation of Joseph et al. [1976] and Coakley et al. [1983] has been
adopted and is described in Briegleb [1992]. This approximation has been shown to simulate
quite well the effects of multiple scattering. The major differences between the shortwave pa-
rameterizations in CCM3 and CAM 3.0 are

1. the new treatment of cloud vertical overlap [Collins, 2001];

2. updated parameterization for near-infrared absorption by water vapor; and

3. inclusion of prescribed aerosol data sets for computing shortwave aerosol radiative forcing.

The solar spectrum is divided into 19 discrete spectral and pseudo-spectral intervals (7 for
O3, 1 for the visible, 7 for H2O, 3 for CO2, and 1 for the near-infrared following Collins [1998]).
The CAM 3.0 model atmosphere consists of a discrete vertical set of horizontally homogeneous
layers within which radiative heating rates are to be specified (see Figure 3.1). Each of these
layers is considered to be a homogeneous combination of several radiatively active constituents.
Solar irradiance, surface reflectivity for direct and diffuse radiation in each spectral interval,
and the cosine of the solar zenith angle are specified. The surface albedo is specified in two
wavebands (0.2-0.7 µm, and 0.7-5.0 µm) and distinguishes albedos for direct and diffuse incident
radiation. Albedos for ocean surfaces, geographically varying land surfaces, and sea ice surfaces
are distinguished.

The method involves evaluating the δ-Eddington solution for the reflectivity and transmis-
sivity for each layer in the vertical under clear and overcast conditions. The layers are then
combined together, accounting for multiple scattering between layers, which allows evaluation
of upward and downward spectral fluxes at each interface boundary between layers. This pro-
cedure is repeated for each spectral or pseudo-spectral interval and binary cloud configuration
(see “Cloud vertical overlap” below) to accumulate broad band fluxes, from which the heat-
ing rate can be evaluated from flux differences across each layer. The δ-Eddington scheme is
implemented so that the solar radiation is evaluated once every model hour (in the standard
configuration) over the sunlit portions of the model earth.

The δ-Eddington approximation allows for gaseous absorption by O3, CO2, O2, and H2O.
Molecular scattering and scattering/absorption by cloud droplets and aerosols are included.
With the exception of H2O, a summary of the spectral intervals and the absorption/scattering
data used in the formulation are given in Briegleb [1992] and Collins [1998]. Diagnostic cloud
amount is evaluated every model hour just prior to the solar radiation calculation.

The absorption by water vapor of sunlight between 1000 and 18000 cm−1 is treated using
seven pseudo-spectral intervals. A constant specific extinction is specified for each interval.
These extinctions have been adjusted to minimize errors in heating rates and flux divergences
relative to line-by-line (LBL) calculations for reference atmospheres [Anderson et al., 1986] using
GENLN3 [Edwards, 1992] combined with the radiative transfer solver DISORT2 [Stamnes et al.,
1988]. The coefficients and weights have the same properties as a k-distribution method [Lacis
and Oinas, 1991], but this parameterization is essentially an exponential sum fit (e.g., Wiscombe
and Evans [1977]). LBL calculations are performed with the HITRAN2k line database [Rothman
et al., 2003] and the Clough, Kneizys, and Davies (CKD) model version 2.4.1 [Clough et al.,
1989]. The Rayleigh scattering optical depths in the seven pseudo-spectral intervals have been
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changed for consistency with LBL calculations of the variation of water-vapor absorption with
wavelength. The updated parameterization increases the absorption of solar radiation by water
vapor relative to the treatment used in CCM and CAM since its introduction by Briegleb [1992].

For some diagnostic purposes, such as estimating cloud radiative forcing [Kiehl and Ra-
manathan, 1990] a clear-sky absorbed solar flux is required. In CAM 3.0, the clear-sky fluxes
and heating rates are computed using the same vertical grid as the all-sky fluxes. This replaces
the 2-layer diagnostic grid used in CCM3.

4.8.3 Aerosol properties and optics

Introduction

The treatment of aerosols in CAM 3.0 replaces the uniform background boundary-layer aerosol
used in previous versions of CAM and CCM. The optics for the globally uniform aerosol were
identical to the sulfate aerosols described by Kiehl and Briegleb [1993]. In the visible, the uniform
aerosol was essentially a conservative scatterer. The new treatment introduces five chemical
species of aerosol, including sea salt, soil dust, black and organic carbonaceous aerosols, sulfate,
and volcanic sulfuric acid. The new aerosols include two species, the soil dust and carbonaceous
types, which are strongly absorbing in visible wavelengths and hence increase the shortwave
diabatic heating of the atmosphere.

The three-dimensional time-dependent distributions of the five aerosol species and the op-
tics for each species are loaded into CAM 3.0 during the initialization process. This provides
considerable flexibility to:

• Change the speciated aerosol climatology / time-series as aerosol modeling improves;

• Vary the aerosol distributions for climates different from present-day conditions;

• Examine the effects of individual aerosol species and arbitrary combinations of aerosol
species; and

• Change aerosol optical properties.

In its present configuration, CAM includes the direct and semi-direct effects of tropospheric
aerosols on shortwave fluxes and heating rates. The first indirect effect, or Twomey et al. [1984]
effect, is not included in the standard version of CAM 3.0.

Description of aerosol climatologies and data sets

The data sets for the tropospheric and stratospheric aerosols are treated separately in the model.
The annually-cyclic tropospheric aerosol climatology consists of three-dimensional, monthly-

mean distributions of aerosol mass for:

• sulfate from natural and anthropogenic sources;

• sea salt;

• black and organic carbon derived from natural and anthropogenic sources; and
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• soil dust

There are four size categories of dust spanning diameters from 0.01 to 10 µm, and the black and
organic carbon are represented by two tracers each for the hydrophobic (new) and hydrophilic
(aged) components. The climatology therefore contains ten types of aerosol: sea salt, four size
bins of soil dust, sulfate, new and aged black carbon, and hydrophobic and hydrophilic organic
carbon.

The climatology is produced using an aerosol assimilation system [Collins et al., 2001, 2002b]
integrated for present-day conditions. The system consists of the Model for Atmospheric Chem-
istry and Transport (MATCH) [Rasch et al., 1997] and an assimilation of satellite retrievals
of aerosol optical depth. MATCH version 4 is integrated using the National Centers for Envi-
ronmental Prediction (NCEP) meteorological reanalysis at T63 triangular truncation [Kalnay
et al., 1996]. The satellite estimates of aerosol optical depth are from the NOAA Pathfinder II
data set [Stowe et al., 1997].

The formulation of the sulfur cycle is described in Barth et al. [2000] and Rasch et al. [2000].
The emissions inventory for SO2 is from Smith et al. [2001]. The sources for mineral dust are
based upon the approach of Zender et al. [2003] and Mahowald et al. [2003]. The emissions of
carbonaceous aerosols include contributions from biomass burning [Liousse et al., 1996], fossil
fuel burning [Cooke et al., 1999], and a source of natural organic aerosols resulting from terpene
emissions. The vertical profiles of sea salt are computed from the 10m wind speed [Blanchard
and Woodcock, 1980].

The monthly-mean mass path for each aerosol species in each layer is computed in units
of kg/m2. During the initialization of CAM 3.0, the climatology is temporally interpolated
from monthly-mean to mid-month values. At each CAM 3.0 time step, the mid-month values
bounding the current time step are vertically interpolated onto the pressure grid of CAM 3.0
and then time interpolated to the current time step. The interpolation scheme in CAM 3.0
preserves the aerosol masses for each species to 1 part in 107 relative to the climatology, and it
is guaranteed to yield positive definite mass-mixing ratios for all aerosols.

The stratospheric volcanic aerosols are treated using a single species in the standard model.
Zonal variations in the stratospheric mass loading are omitted. The volcanic input consists of
the monthly-mean masses in units of kg/m2 on an arbitrary meridional and vertical grid. The
time series for the recent past is based upon Ammann et al. [2003] following Stenchikov et al.
[1998].

Calculation of aerosol optical properties

The three intrinsic optical properties stored for each of the eleven aerosol types are specific
extinction, single scattering albedo, and asymmetry parameter. These properties are computed
on the band structure of CAM 3.0 using Chandrasekhar weighting with spectral solar insolation.
The aerosol types affected by hygroscopic growth are sulfate, sea salt, and hydrophilic organic
carbon. In previous versions of CCM and CAM 3.0, the relative humidity was held constant in
calculations of hygroscopic growth at 80%. In CAM 3.0, the actual profiles of relative humidity
computed from the model state each radiation time step are used in the calculation.

The optics for black and organic carbon are identical to the optics for soot and water-soluble
aerosols in the Optical Properties of Aerosols and Clouds (OPAC) data set [Hess et al., 1998].
The optics for dust are derived from Mie calculations for the size distribution represented by
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each size bin [Zender et al., 2003]. The Mie calculations for sulfate assume that it is comprised
of ammonium sulfate with a log-normal size distribution. The dry size parameters are a median
radius of 0.05 µm and a geometric standard deviation of 2.0. The optical properties in the
seven H2O pseudo-spectral intervals are averaged consistently with LBL calculations of the
variation of water-vapor absorption with wavelength. This averaging technique preserves the
cross correlations among the spectral variation of solar insolation, water vapor absorption, and
the aerosol optical properties. The volcanic stratospheric aerosols are assumed to be comprised
of 75% sulfuric acid and 25% water. The log-normal size distribution has an effective radius of
0.426 µm and a standard deviation of 1.25.

The bulk formulae of Cess [1985] are used to combine the optical properties of the individ-
ual aerosol species into a single set of bulk aerosol extinctions, single-scattering albedos, and
asymmetry parameters for each layer.

Calculation of aerosol shortwave effects and radiative forcing

CAM 3.0 includes a mechanism to scale the masses of each aerosol species by user-selectable
factors at runtime. These factors are global, time-independent constants. This provides the
flexibility to consider the climate effects of an arbitrary combination of the aerosol species in
the climatology. It also facilitates simulation of climates different from present-day conditions
for which the only information available is the ratio of globally averaged aerosol emissions or
atmospheric loadings. A mechanism to scale the carbonaceous aerosols with a time-dependent
unitless factor has been included to facilitate realistic simulations of the recent past.

CAM 3.0 also includes a run-time option for computing a diagnostic set of shortwave fluxes
with an arbitrary combination of aerosols multiplied with a separate set of user-selectable scale
factors. This option can be used to compute, for example, the aerosol radiative forcing relative
to an atmosphere containing no aerosols.

The diagnostic fields produced the aerosol calculation include the column-integrated opti-
cal depth and column-averaged single-scattering albedo, asymmetry parameter, and forward
scattering parameter (in the δ-Eddington approximation) for each aerosol species and spectral
interval. These fields are only computed for illuminated grid points, and for non-illuminated
points the fields are set to zero. The fraction of the time that a given grid point is illuminated
is also recorded. Time averages of, for example, the optical depth can be obtained by dividing
the time-averaged optical depths in the history files by the corresponding daylit fractions.

Globally uniform background sulfate aerosol

The option of introducing a globally uniform background sulfate aerosol is retained, although
by default the optical depth of this aerosol is set to zero. Its optical properties are computed
using the same sulfate optics as are used for the aerosol climatology. However, for consistency
with the uniform aerosol in previous versions of CAM 3.0 and CCM3, the relative humidity used
to compute hygroscopic growth is set to 80%.
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4.8.4 Cloud Optical Properties

Parameterization of effective radius

Observational studies have shown a distinct difference between maritime, polar, and continental
effective cloud drop size, re, for warm clouds. For this reason, CAM 3.0 differentiates between
the cloud drop effective radius for clouds diagnosed over maritime and continental regimes [Kiehl
et al., 1994], and over pristine surfaces (sea ice, snow covered land). Over the ocean, the cloud
drop effective radius for liquid water clouds, rel, is specified to be 14µm. Over sea ice, where we
presume pristine conditions, rel is also specified to be 14µm. Over land masses rel is determined
using

rel =


8 µm −10◦C < T

8− 6(
(

10◦+T
20◦

)
µm −30◦C ≤ T ≤ −10◦C

14 µm −30◦C > T

(4.189)

This does not necessarily correspond to the range over which the cloud ice fraction increases
from 0 to 1. In addition, rel ramps linearly toward the pristine value of 14µm as water equivalent
snow depth over land goes from 0 to 0.1 m.

An ice particle effective radius, rei, is also diagnosed by CAM 3.0. Following Kristjánsson
and Kristiansen [2000], the effective radius for ice clouds is now a function only of temperature,
as shown in Figure 4.2.

Dependencies involving effective radius

For cloud scattering and absorption, the radiative parameterization of Slingo [1989] for liquid
water droplet clouds is employed. In this parameterization, the optical properties of the cloud
droplets are represented in terms of the prognosed cloud water path (CWP, in units of kg m−2)
and effective radius re =

∫
r3n(r)dr/

∫
r2n(r)dr, where n(r) is the cloud drop size distribution

as a function of radius r.

Cloud radiative properties explicitly account for the phase of water. For shortwave radiation
we use the following generalization of the expression used by Slingo [1989] for liquid water
clouds. The cloud liquid optical properties (extinction optical depth, single scattering albedo,
asymmetry parameter and forward scattering parameter) for each spectral interval are defined
as

τ cl = CWP

[
ail +

bil
rel

]
(1− fice) (4.190)

ωcl = 1− cil − dilrel (4.191)

gcl = eil + f il rel (4.192)

f cl = (gcl )
2 (4.193)

where superscript i denotes spectral interval. The spectral intervals and coefficients for liquid
water are defined in Slingo [1989].
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Figure 4.2: Ice effective radius and terminal velocity. Top, ice effective radius versus temper-
ature. Bottom, ice velocity versus radius (left) and temperature (right); the Stokes terminal
velocity is solid and the actual velocity is dashed.
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The radiative properties of ice cloud are defined by

τ ci = CWP

[
aii +

bii
rei

]
fice (4.194)

ωci = 1− cii − diirei (4.195)

gci = eii + f ii rei (4.196)

f ci = (gci )
2 (4.197)

where the subscript i denotes ice radiative properties. The values for the coefficients ai− fi are
based on the results of Ebert and Curry [1992] for the four pseudo-spectral intervals (.25-.69 µm,
.69-1.19 µm, 1.19-2.38 µm, and 2.38-4.00 µm) employed in the CAM 3.0 shortwave radiation
model. Note that when 0 < fice < 1, then the combination of these expressions in (4.204 -
4.207) represent the radiative properties for a mixed phase cloud.

4.8.5 Cloud vertical overlap

The treatment of cloud vertical overlap follows Collins [2001]. The overlap parameterization is
designed to reproduce calculations based upon the independent column approximation (ICA).
The differences between the results from the new parameterization and ICA are governed by
a set of parameters in the shortwave code (Table 4.1 on page 116 and section 4.8.9). The
differences can be made arbitrarily small with appropriate settings of these parameters. The
current parameter settings represent a compromise between computational cost and accuracy.

The new parameterizations can treat random, maximum, or an arbitrary combination of
maximum and random overlap between clouds. The type of overlap is specified with the same
two variables for the longwave and shortwave calculations. These variables are the number of
random-overlap interfaces between adjacent groups of maximally-overlapped layers and a vector
of the pressures at each of the interfaces. The specification of the overlap is completely separated
from the radiative calculations, and if necessary the type of overlap can change at each grid cell
or time step.

Conversion of cloud amounts to binary cloud profiles

The algorithm for cloud overlap first converts the vertical profile of partial cloudiness into an
equivalent collection of binary cloud configurations. Let C(i) be the fractional amount of cloud
in layer i in a profile with K layers. The index i = 1 corresponds to the top of the model
atmosphere and i = K corresponds to the layer adjacent to the surface. Let Nm be the number
of maximally-overlapped regions in the column separated by random-overlap boundaries. If the
entire column is maximally overlapped, then Nm = 1, and if the entire column is randomly
overlapped, then Nm = K. Each region j includes all layers i between ij,min and ij,max. Within
each region, identify the nj unique, non-zero cloud amounts and sort them into a descending list
Cj,kj

with 1 ≤ kj ≤ nj. Note than in CAM 3.0, cloud amounts are not allowed to be identically
equal to 1. It is convenient to define Cj,0 = 1 and Cj,nj+1 = 0. By construction Cj,kj−1 > Cj,kj

for
1 ≤ kj ≤ nj + 1.

The binary cloud configurations are defined in terms of the sorted cloud amounts. The

number of unique cloud binary configurations in region j is nj + 1. The kthj binary cloud
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configuration C̃j,kj
in region j is given by

C̃j,kj
(i) =

{
1 if ij,min ≤ i ≤ ij,max and C(i) ≥ Cj,kj−1

0 otherwise
(4.198)

with 1 ≤ kj ≤ nj + 1. The fractional area of this configuration is

Ãj,kj
= Cj,kj−1 − Cj,kj

(4.199)

The binary cloud configurations for each maximum-overlap region can be combined into cloud
configurations for the entire column. Because of the random overlap boundaries between regions,
the number of column configurations is

Nc =
Nm∏
j′=1

(nj′ + 1) (4.200)

Let C̃[k1, . . . , kNm ] represent the column configuration with C̃1,k1 in region 1, C̃2,k2 in region 2,
etc. The vertical profile of binary cloud elements is given by:

C̃[k1, . . . , kNm ](i) =
Nm∑
j′=1

C̃j′,kj′
(i) (4.201)

The area of this configuration is

Ã[k1, . . . , kNm ] =
Nm∏
j′=1

Ãj′,kj′
(4.202)

Maximum-random overlap assumption

The cloud overlap for radiative calculations in CAM 3.0 is maximum-random (M/R). Clouds in
adjacent layers are maximally overlapped, and groups of clouds separated by one or more clear
layers are randomly overlapped. The two overlap parameters input to the radiative calculations
are the number of random-overlap interfaces, which equals Nm, and a vector of pressures ~p
at each random-overlap interface. These parameters are determined for each grid cell at each
radiation time step. Suppose there are M ≥ 0 groups of vertically contiguous clouds in a given
grid cell. The first parameter Nm = max(M, 1). Let pj represent the pressure at the bottom
interface of each group of contiguous clouds, and let ps denote the surface pressure. Both j and
pj increase from the top of the model downward. Then

~p =

{
[ps] if M ≤ 1
[p1, . . . , pM−1, ps] if M ≥ 2

(4.203)

Low, medium and high cloud overlap assumptions (diagnostics)

For diagnostic purposes, the CAM 3.0 calculates three levels of cloud fraction assuming the same
maximum-random overlap as in the radiative calculations. These diagnostics, denoted as low,
middle, and high cloud, are bounded by the pressure levels ps to 700 mb, 700 mb to 400 mb,
and 400 mb to the model top.
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Computation of fluxes and heating rates with overlap

The solution for the shortwave fluxes is calculated by determining all possible arrangements of
binary clouds which are consistent with the vertical profile of partial cloudiness, the overlap
assumption, and the parameters for accelerating the solution (Table 4.1 and section 4.8.9). The
shortwave radiation within each of these configurations is calculated using the same δ-Eddington
solver introduced in CCM3 [Briegleb, 1992]. The all-sky fluxes and heating rates for the original
profile of partial cloudiness are calculated as weighted sums of the corresponding quantities
from each configuration. The weights are equal to the horizontal fractional area occupied by
each configuration. The number of configurations is given by eqn. (4.200), and the area of
each configuration is given by eqn. (4.202). There are two steps in the calculations: first,
the calculation of the cloud-free and overcast radiative properties for each layer, and second
the combination of these properties using the adding method to calculate fluxes. These two
processes are described below.

4.8.6 δ-Eddington solution for a single layer

Details of the implementation are as follows. The CAM 3.0 model atmosphere is divided into
K + 1 layers in the vertical; an extra top layer (with index 0, above the K layers specified by
CAM 3.0) is added. This extra layer prevents excessive heating in the top layer when the top
pressure is not very low; also, as the model does not specify absorber properties above its top
layer, the optical properties of the top layer must be used for the extra layer. In CAM 3.0,
clear-sky and all-sky solar fluxes are calculated and output for the top of model (TOM) at layer
1 and the top of atmosphere (TOA) corresponding to layer 0. The TOM fluxes are used to
compute the model energetic balance, and the TOA fluxes are output for diagnostic comparison
against satellite measurements. The provision of both sets of fluxes is new in CAM 3.0. Layers
are assumed to be horizontally and vertically homogeneous for each model grid point and are
bounded vertically by layer interfaces. For each spectral band, upward and downward fluxes are
computed on the layer interfaces (which include the surface and top interface). The spectral
fluxes are summed and differenced across layers to evaluate the solar heating rate. The following
discussion refers to each of the spectral intervals.

In general, several constituents absorb and/or scatter in each homogeneous layer (e.g. cloud,
aerosol, gases...). Every constituent is defined in terms of a layer extinction optical depth τ ,
single scattering albedo ω, asymmetry parameter g, and the forward scattering fraction f . To
define bulk layer properties, the combination formulas of Cess [1985] are used:

τ =
∑
i

τi, (4.204)

ω =
∑
i

ωiτiτ, (4.205)

g =

∑
i giωiτi
ωτ

, (4.206)

f =

∑
i fiωiτi
ωτ

, (4.207)
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where the sums are over all constituents.

The δ-Eddington solution for each layer requires scaled properties for τ , ω, g, given by the
expressions:

τ ∗ = τ(1− ωf), (4.208)

ω∗ = ω

(
1− f

1− ωf

)
, (4.209)

g∗ =
g − f

1− f
. (4.210)

The scaling accounts for the scattering effects of the strong forward peak in particle scattering.
The δ-Eddington nonconservative (ω < 1) solutions for each layer for direct radiation at cosine
zenith angle µ0 are (following the notation of Coakley et al. [1983]:

R(µ0) = (α− γ)Te−τ
∗/µ0 + (α+ γ)R− (α− γ), (4.211)

T (µ0) = (α+ γ)T + (α− γ)Re−τ
∗/µ0 − (α+ γ − 1)e−τ

∗/µ0 , (4.212)

R = (u+ 1)(u− 1)(eλτ
∗ − e−λτ

∗
)N−1, (4.213)

T = 4uN−1, (4.214)

where

α =
3

4
ω∗µ0

(
1 + g∗(1− ω∗)

1− λ2µ2
0

)
, (4.215)

γ =
1

2
ω∗
(

1 + 3g∗(1− ω∗)µ2
0

1− λ2µ2
0

)
, (4.216)

N = (u+ 1)2eλτ
∗ − (u− 1)2e−λτ

∗
, (4.217)

u =
3

2
(1− ω∗g∗λ) , (4.218)

λ =
√

3(1− ω∗)(1− ω∗g∗), (4.219)

where R(µ0), T (µ0) are the layer reflectivity and transmissivity to direct radiation respectively,
and R, T are the layer reflectivity and transmissivity to diffuse radiation respectively. It should
be noted that in some cases of small but nonzero ω, the diffuse reflectivity can be negative.
For these cases, R is set to 0, which produces negligible impact on fluxes and the heating rate.
Note that in the new overlap scheme, these properties are computed separately for the clear and
cloud-filled portions of each layer [Collins, 2001].

4.8.7 Combination of layers

To combine layers, it is assumed that radiation, once scattered, is diffuse and isotropic (including
from the surface). For an arbitrary layer 1 (or combination of layers with radiative properties
R1(µ0), T1(µ0),R1,T 1) overlaying layer 2 (or combination of layers with radiative properties
R2(µ0), T2(µ0), and R2, T 2), the combination formulas for direct and diffuse radiation incident
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from above are:

R12(µ0) = R1(µ0) +
T 1{(T1(µ0)− e−τ

∗
1 /µ0)R2 + e−τ

∗
1 /µ0R2(µ0)}

1−R1R2

, (4.220)

T12(µ0) = e−τ
∗
1 /µ0T2(µ0) +

T 2{(T1(µ0)− e−τ
∗
1 /µ0) + e−τ

∗
1 /µ0R2(µ0)R1}

1−R1R2

, (4.221)

R12 = R1 +
T 1R2T 1

1−R1R2

, (4.222)

T 12 =
T 1T 2

1−R1R2

. (4.223)

Note that the transmissions for each layer (T1(µ0), T2(µ0)) and for the combined layers
(T12(µ0)) are total transmissions, containing both direct and diffuse transmission. Note also
that the two layers (or combination of layers), once combined, are no longer a homogeneous
system.

To combine the layers over the entire column, two passes are made through the layers,
one starting from the top and proceeding downward, the other starting from the surface and
proceeding upward. The result is that for every interface, the following combined reflectivities
and transmissivities are available:

e−τ
∗/µ0 = direct beam transmission from top-of-atmosphere to the

interface (τ ∗ is the scaled optical depth from top-of-atmosphere

to the interface),

Rup(µ0) = reflectivity to direct solar radiation of entire atmosphere

below the interface,

Tdn(µ0) = total transmission to direct solar radiation incident from above

to entire atmosphere above the interface,

Rup = reflectivity of atmosphere below the interface to diffuse

radiation from above,

Rdn = reflectivity of atmosphere above the interface to diffuse

radiation from below.

With these quantities, the upward and downward fluxes at every interface can be computed.
For example, the upward flux would be the directly transmitted flux (e−τ∗/µ0) times the reflec-
tion of the entire column below the interface to direct radiation (Rup(µ0)), plus the diffusely
transmitted radiation from above that reaches the interface (Tdn(µ0) − e−τ∗/µ0) times the re-
flectivity of the entire atmosphere below the interface to diffuse radiation from above (Rup), all
times a factor that accounts for multiple reflections at the interface. A similar derivation of the
downward flux is straightforward. The resulting expressions for the upward and downward flux
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Table 4.1: Parameters for Decreasing Number of SW Calculations.

Parameter Symbol Definition Value in CAM 3.0
cldmin Cmin Minimum cloud area 0.
cldeps Ceps Minimum cloud area difference 0.

areamin Ãmin Minimum configuration area 0.01
nconfgmax Nc,max Maximum # of configurations 15.

are:

Fup =
e−τ

∗/µ0Rup(µ0) + (Tdn(µ0)− e−τ
∗/µ0)Rup

1−RdnRup

, (4.224)

Fdn = e−τ
∗/µ0 +

(Tdn(µ0)− e−τ
∗/µ0) + e−τ

∗/µ0Rup(µ0)Rdn

1−RdnRup

. (4.225)

Note that in the new overlap scheme, the calculation of the combined reflectivities, transmissions,
and fluxes at layer interfaces are computed for each binary cloud configuration, subject to
techniques for significantly accelerating these calculations (below) [Collins, 2001].

4.8.8 Acceleration of the adding method in all-sky calculations

If two or more configurations of binary clouds are identical between TOA and a particular inter-
face, then Tdir = e−τ

∗/µ0 , Tdn, and R̄dn are also identical at that interface. The adding method
is applied once and the three radiative quantities are copied to all the identical configurations.
This process is applied at each interface by constructing a binary tree of identical cloud config-
urations starting at TOA down to the surface. A similar method is used for Rup and R̄up, which
are calculated using the adding method starting the surface and continuing up to a particular
interface. The copying of identical radiative properties reduces the number of calculations of
Tdir, Tdn, and R̄dn by 62% and the number of calculations of Rup and R̄up by 21% in CAM 3.0
with M/R overlap.

4.8.9 Methods for reducing the number of binary cloud configura-
tions

The computational cost of the shortwave code has two components: a fixed cost for computing
the radiative properties of each layer under clear and overcast conditions, and a variable cost for
applying the adding method for each column configuration C̃[k1, . . . , kNm ]. The variable compo-
nent can be reduced by omitting configurations which contribute small terms in the shortwave
fluxes. Several mechanisms for selecting configurations for omission have been included in the
parameterization. The parameters that govern the selection process are described in Table 4.1.

Any combination of the selection conditions may be imposed. If the parameter Cmin > 0,
cloud layers with C(i) ≤ Cmin are identified as cloud-free layers. The configurations including
these clouds are excluded from the flux calculations. If the parameter Ceps > 0, the cloud
amounts are discretized by

C(i) →
[
C(i)

Ceps

]
Ceps (4.226)
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where [x] represents rounding to the nearest integer less than x. This reduces the number
of unique, non-zero cloud amounts nj in each maximum-overlap region j. For example, if
Ceps = 0.01, then two cloud amounts are distinguished only if they differ by more than 0.01.
If the parameter Ãmin > 0, only configurations with Ã[k1, . . . , kNm ] ≥ Ãmin are retained in the
calculation. The fluxes and heating rates are normalized by the area of these configurations:

Ãtot =

n1+1∑
k1=1

· · ·
nNm+1∑
kNm=1

Ã[k1, . . . , kNm ] θ
(
Ã[k1, . . . , kNm ]− Ãmin

)
(4.227)

where θ is the Heaviside function. In CAM 3.0, Ãmin = 0.01. Finally, if the number of configura-
tions Nc > Nc,max, then only the Nc,max configurations with the largest values of Ã[k1, . . . , kNm ]
are retained. This is equivalent to setting Ãmin so that the largest Nc,max configurations are
selected. The fluxes and heating rates are normalized by Ãtot calculated with this value of Ãmin.
With the current cloud parameterizations in CAM 3.0 and with Ãmin = 0.01, the mean and
RMS Nc are approximately 5. Nc,max is set to 15, or 2 standard deviations above the mean Nc.
Only 5% of cloud configurations in CAM 3.0 have Nc ≥ Nc,max. The errors of the solutions
relative to ICA are relatively insensitive to Ãtot [Collins, 2001].

4.8.10 Computation of shortwave fluxes and heating rates

The upward and downward spectral fluxes at each interface are summed to evaluate the spec-
trally integrated fluxes, then differenced to produce the solar heating rate,

Qsol =
g

cp

Fdn(pk+1)− Fup(pk+1)− Fdn(pk) + Fup(pk)

pk+1 − pk
(4.228)

which is added to the nonlinear term (Q) in the thermodynamic equation.

4.9 Parameterization of Longwave Radiation

The method employed in the CAM 3.0 to represent longwave radiative transfer is based on an
absorptivity/emissivity formulation [Ramanathan and Downey, 1986]

F ↓(p) = B(pt)ε(pt, p) +

p∫
pt

α(p, p′)dB(p′) (4.229)

F ↑(p) = B(ps)−
ps∫
p

α(p, p′)dB(p′) , (4.230)
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where B(p) = σT (p)4 is the Stefan-Boltzmann relation. The pressures pt and ps refer to the top
of the model and the surface, respectively. α and ε are the absorptivity and emissivity

α(p, p′) =

∞∫
0

{dBν(p
′)/dT (p′)} (1− Tν(p, p′)) dν

dB(p)/dT (p)
(4.231)

ε(pt, p) =

∞∫
0

Bν(pt)(1− Tν(pt, p)) dν

B(pt)
, (4.232)

where the integration is over wavenumber ν. Bν(p) = Bν(T (p)) is the Planck function, and Tν
is the atmospheric transmission. Thus, to solve for fluxes at each model layer we need solutions
to the following:

∞∫
0

(1− Tν)F (Bν)dν, (4.233)

where F (Bν) is the Planck function for the emissivity, or the derivative of the Planck function
with respect to temperature for the absorptivity.

The general method employed for the solution of (4.233) for a given gas is based on the broad
band model approach described by Kiehl and Briegleb [1991] and Kiehl and Ramanathan [1983].
This approach is based on the earlier work of Ramanathan [1976]. The broad band approach
assumes that the spectral range of absorption by a gas is limited to a relatively small range in
wavenumber ν, and hence can be evaluated at the band center, i.e.∫ ν2

ν1

(1− Tν)F (Bν) dν ≈ F (Bν̄)

∫ ν2

ν1

(1− Tν)dν = F (Bν̄)A, (4.234)

where A is the band absorptance (or equivalent width) in units of cm−1. Note that A, in
general, is a function of the absorber amount, the local emitting temperature, and the pressure.
Thus, the broad band model is based on finding analytic expressions for the band absorptance.
Ramanathan [1976] proposed the following functional form for A:

A(u, T, P ) = 2A0 ln

{
1 +

u√
4 + u(1 + 1/β)

}
, (4.235)

where A0 is an empirical constant. u is the scaled dimensionless path length

u =

∫
S(T )

A0(T )
µρadz, (4.236)

where S(T ) is the band strength, µ is the mass mixing ratio of the absorber, and ρa is the
density of air. β is a line width factor,

β =
4

ud

∫
γ(T )

(
P

P0

)
du, (4.237)

where γ(T ) is the mean line halfwidth for the band, P is the atmospheric pressure, P0 is a
reference pressure, and d is the mean line spacing for the band. The determination of γ, d,
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S from spectroscopic line databases, such as the FASCODE database, is described in detail in
Kiehl and Ramanathan [1983]. Kiehl and Briegleb [1991] describe how (4.235) can be extended
to account for sub-bands within a spectral region. Essentially, the argument in the log function
is replaced by a summation over the sub-bands. This broad band formalism is employed for
CO2, O3, CH4, N2O, and minor absorption bands of CO2, while for the CFCs and stratospheric
aerosols we employ the exponential transmission approximation discussed by Ramanathan et al.
[1985]

T = exp [−D (S(T )/∆ν)W ] , (4.238)

where ∆ν is the band width, and W is the absorber path length

W =

∫
µρadz, (4.239)

and D is a diffusivity factor. The final problem that must be incorporated into the broad band
method is the overlap of one or more absorbers within the same spectral region. Thus, for the
wavenumber range of interest, namely 500 to 1500 cm−1, the radiative flux is determined in part
by the integral ∫ 1500

500

(1− Tν)F (Bν)dν, (4.240)

which can be re-formulated for given sub intervals in wavenumber as∫ 1500

500

(1− Tν)F (Bν)dν =

∫ 750

500

(1− T 1
CO2

T 1
N2O

TH2OT 1
H2SO4

)F (Bν)dν

+

∫ 820

750

(1− T 1
CFC11TH2OT ∗

H2SO4
)F (Bν)dν

+

∫ 880

820

(1− T 2
CFC11TH2OT 3

H2SO4
)F (Bν)dν

+

∫ 900

880

(1− T 1
CFC12TH2OT 3

H2SO4
)F (Bν)dν

+

∫ 1000

900

(1− T 2
CO2

TH2OT 3
H2SO4

T 3
CFC11T 2

CFC12)F (Bν)dν

+

∫ 1120

1000

(1− T 3
CO2

TO3TH2OT 4
H2SO4

T 4
CFC11T 3

CFC12)F (Bν)dν

+

∫ 1170

1120

(1− T 4
CFC12TH2OT 4

H2SO4
T 2
N2O

)F (Bν)dν

+

∫ 1500

1170

(1− TCH4T 3
N2O

TH2OT 5
H2SO4

)F (Bν)dν (4.241)

The factors T i
H2SO4

represent the transmissions through stratospheric volcanic aerosols. The
transmissions in each band are replaced by effective transmissions T̄ iH2SO4

given by:

T̄ iH2SO4
= exp (−Dκi,volcWvolc) (4.242)
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Table 4.2: Wavenumber Intervals for Volcanic Specific Extinctions

Index ν1 − ν2

1 500 - 650

2 650 - 800

3 800 - 1000

4 1000 - 1200

5 1200 - 2000

where D = 1.66 is the diffusivity factor, κi,volc is an effective specific extinction for the band, and
Wvolc is the mass path of the volcanic aerosols. For computing overlap with minor absorbers,
methane, and carbon dioxide, the volcanic extinctions are computed for five wavenumber inter-
vals given in table 4.2. The transmissions for overlap with the broadband absorption by water
vapor are defined in equation 4.275. The volcanic transmission for the 798 cm−1 band of N2O
is

T̄ ∗H2SO4
= 0.7T̄ 2

H2SO4
+ 0.3T̄ 3

H2SO4
(4.243)

The sub-intervals in equation 4.241, in turn, can be reformulated in terms of the absorptance
for a given gas and the “overlap” transmission factors that multiply this transmission. Note that
in the broad band formulation there is an explicit assumption that these two are uncorrelated (see
Kiehl and Ramanathan [1983]). The specific parameterizations for each of these sub-intervals
depends on spectroscopic data particular to a given gas and absorption band for that absorber.

4.9.1 Major absorbers

Details of the parameterization for the three major absorbers, H2O, CO2 and O3, are given
in Collins et al. [2002a], Kiehl and Briegleb [1991], and Ramanathan and Dickinson [1979],
respectively. Therefore, we only provide a brief description of how these gases are treated in the
CAM 3.0. Note that the original parameterization for H2O by Ramanathan and Downey [1986]
has been replaced a new formulation in CAM 3.0.

For CO2

αCO2(p, p
′) =

1

4σT 3(p′)

dBCO2

dT ′
(p′)ACO2(p

′, p). (4.244)

BCO2 is evaluated for ν̃ = 667 cm−1, where ACO2(p
′, p) is the broad–band absorptance from

Kiehl and Briegleb [1991]. Similarly,

εCO2(0, p) =
1

σT 4(0)
BCO2(0)ACO2(0, p). (4.245)

For ozone,

αO3(p, p
′) =

1

4σT 3(p′)

dBO3

dT ′
(p′)AO3(p

′, p), (4.246)
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and

εO3(0, p) =
1

σT 4(0)
BO3(0)AO3(0, p), (4.247)

where AO3 is the ozone broad–band absorptance from Ramanathan and Dickinson [1979]. The
longwave absorptance formulation includes a Voigt line profile effects for CO2 and O3. For the
mid-to-upper stratosphere (p . 10mb), spectral absorption lines are no longer Lorentzian in
shape. To account for the transition to Voigt lines a method described in Kiehl and Briegleb
[1991] is employed. Essentially the pressure appearing in the mean line width parameter, γ,

γ = γo
p

p0

(4.248)

is replaced with

γ = γ0

[
p

p0

+ δ

√
T

250

]
, (4.249)

where δ = 5.0 × 10−3 for CO2 and δ = 2.5 × 10−3 for O3. These values insure agreement with
line-by-line cooling rate calculations up to p ≈ 0.3 mb.

4.9.2 Water vapor

Water vapor cannot employ the broad–band absorptance method since H2O absorption ex-
tends throughout the entire longwave region. Thus, we cannot factor out the Planck function
dependence as in (4.234). The method of Collins et al. [2002a] is used for water–vapor absorptiv-
ities and emissivities. This parameterization replaces the scheme developed by Ramanathan and
Downey [1986] used in previous versions of the model. The new formulation uses the line-by-line
radiative transfer model GENLN3 [Edwards, 1992] to generate the absorptivities and emissiv-
ities for H2O. In this version of GENLN3, the parameters for H2O lines have been obtained
from the HITRAN2k data base [Rothman et al., 2003], and the continuum is treated with the
Clough, Kneizys, and Davies (CKD) model version 2.4.1 [Clough et al., 1989]. To generate the
absorptivity and emissivity, GENLN is used to calculate the transmission through homogeneous
atmospheres for H2O lines alone and for H2O lines and continuum. The calculation is done for
a five dimensional parameter space with coordinates equaling the emission temperature, path
temperature, precipitable water, effective relative humidity, and pressure. The limits for each
coordinate span the entire range of instantaneous values for the corresponding variable from a
1-year control integration of CAM 3.0. The resulting tables of absorptivity and emissivity are
then read into the model for use in the longwave calculations. The overlap treatment between
water vapor and other gases is described in Ramanathan and Downey [1986].

The absorptivity and emissivity can be split into terms for the window and non-window
portions of the infrared spectrum. The window is defined as 800-1200 cm−1, and the non-
window is the remainder of the spectrum between 20 to 2200 cm−1. Outside the mid-infrared
window (the so-called non-window region), the H2O continuum is dominated by the foreign
component [Clough et al., 1992]. The foreign continuum absorption has the same linear scaling
with water vapor path as line absorption, and thus in the non-window region the line and
continuum absorption are combined in a single expression. In the window region, where the
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self-broadened component of the continuum is dominant, the line and continuum absorption
have different scalings with the amount of water vapor and must be treated separately. The
formalism is identical for the absorptivity and emissivity, and for brevity only the absorptivity
is discussed in detail. The absorptivity is decomposed into two terms:

A(p1, p2) ' Aw(p1, p2) + Anw(p1, p2), (4.250)

where Aw(p1, p2) is the window component and Anw(p1, p2) is the non-window component for
the portion of the atmosphere bounded by pressures p1 and p2.

Let Ãnw(i) represent the total non-window absorption for a homogeneous atmosphere char-
acterized by a set of scaling parameters i. Scaling theory is a relationship between an inhomo-
geneous path and an equivalent homogeneous path with nearly identical line absorption for the
spectral band under consideration [Goody and Yung, 1989]. Scaling theory is used to reduce the
parameter space of atmospheric conditions that have to be evaluated. The equivalent pressure,
temperature, and absorber amount are calculated using the standard Curtis-Godson scaling the-
ory for absorption lines [Curtis, 1952; Godson, 1953]. In addition, we retain explicit dependence
on the emission temperature of the radiation following Ramanathan and Downey [1986], and we
introduce dependence on an equivalent relative humidity. It follows from Curtis-Godson scaling
theory that

Anw(p1, p2) ' Ãnw(lnw). (4.251)

In the following expressions, a tilde denotes a parameter derived using scaling theory for the
equivalence between homogeneous and inhomogeneous atmospheres. The subscript b denotes
a parameter which depends upon the spectral band under consideration. The set of scaling
parameters that determine the total non-window absorption are labeled:

lnw =
[
Ũnw, P̃nw, Te, T̃p, ρ̃

]
. (4.252)

Here Ũnw is the pressure-weighted precipitable water, P̃nw is the scaled atmospheric pressure, Te
is the emission temperature of radiation, T̃p is the absorber weighted path temperature, and ρ̃ is
the scaled relative humidity. The subscript (b =)nw indicates that the quantities are evaluated
for the non-window.

The absorber-weighted path temperature is:

T̃p =
1

W

∫ p2

p1

T (p) dW (p), (4.253)

where T (p) is the thermodynamic temperature of the atmosphere at pressure p. The H2O path
or precipitable water is:

W =

∫ p2

p1

dW (p) [g/cm2] (4.254)

dW (p) = q(p) dp/g,

where q(p) is the specific humidity at pressure p and g is the acceleration of gravity. The H2O
path and pressure for a homogeneous atmosphere with equivalent line absorption are [Goody
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and Yung, 1989]

W̃b =

∫ p2

p1

φb(T )

φb

(
T̃p

) dW (p) (4.255)

P̃b =
1

W̃b

∫ p2

p1

ψb(T )

ψb

(
T̃p

) p dW (p), (4.256)

where

φb(T ) =
N∑
k=1

Sk(T ) (4.257)

ψb(T ) =

{
N∑
k=1

[Sk(T )αk(T )]1/2
}2

. (4.258)

The factor Sk(T ) is the line strength for each line k in the spectral interval under consideration.
The characteristic width of each line at a reference pressure p0 and specific humidity q0 is αk(T ).
It is convenient to calculate the absorptance in terms of a pressure-weighted H2O path

U =

∫ p2

p1

p

p0

dW (p) (4.259)

The equivalent pressure-weighted H2O path is simply

Ũb =
P̃b
p0

W̃b (4.260)

Although the relative humidity (or H2O vapor pressure) is not included in standard Curtis-
Godson scaling theory, it must be treated as an independent parameter since the vapor pressure
determines the self-broadening of lines and the strength of the self-continuum. The effective
relative humidity ρ̃ is defined in terms of an effective H2O specific humidity q̃ and saturation
specific humidity q̃s along the path:

ρ̃ =
q̃

q̃s
(4.261)

q̃ =
g W

p2 − p1

(4.262)

q̃s =
ε es(T̃p)

P̃ − (1− ε)es(T̃p)
(4.263)

P̃ =
p0 U

W
(4.264)

where es(T ) is the saturation vapor pressure at temperature T , P̃ is an effective pressure, and
ε = 0.622 is the ratio of gas constants for air and water vapor.
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The window term Aw(p1, p2) requires a special provision for the different path parameters
for the lines and continuum. Let

Ãw(i) = absorptivity for path parameters i, lines and continuum (4.265)

Ã′
w(i) = absorptivity for path parameters i, lines only

The set of parameters for the line absorption in the window region are:

lw =
[
Ũw, P̃w, Te, T̃p, ρ̃

]
(4.266)

The set of scaling parameters that determine the continuum absorption in the window are:

cw =
[
U ′, P̃w, Te, T̃p, ρ̃

]
(4.267)

For the continuum, the pressure-weighted path length is calculated using:

U ′ =
ε

q̃

Cs(ν̄, Tref )

Cs(ν̄, T̃p)
Uc (4.268)

where Tref = 296K is a reference temperature, ν̄ is a suitably chosen wavenumber inside the
window, Uc is the self-continuum path length, and Cs(ν, T ) is the self continuum absorption
coefficient. The self-continuum path length may be approximated by

Uc =

∫ p2

p1

q

ε

p

p0

Cs(ν̄, T )

Cs(ν̄, Tref )
dW (p) (4.269)

The lines-only absorptivity can be written in terms of a line transmission factor L(i) and an
asymptotic absorptivity Aw,∞ in the limit of a black-body atmosphere. Aw,∞ is a function only
of Te [Ramanathan and Downey, 1986]. The relationship is

Ã′
w(i) = Aw,∞[1− L(i)] (4.270)

Define an effective continuum transmission C(i) by setting

Ãw(i) = Aw,∞[1− L(i)C(i)] (4.271)

We approximate the window absorptivity by:

Aw(p1, p2) ' Aw,∞[1− L(lw)C(cw)] (4.272)

This approximation for Aw(p1, p2) can be cast entirely in terms of the absorptivities defined in
equation 4.265. From equations 4.270 and 4.271, the line and continuum transmission are:

L(lw) = 1− Ã′
w(lw)

Aw,∞
(4.273)

C(cw) =
Aw,∞ − Ãw(cw)

Aw,∞ − Ã′
w(cw)

124



In the presence of stratospheric volcanic aerosols, the expressions for the absorptivity become:

Anw(p1, p2) ' Anw,∞

[
1−

(
1− Ãnw(lnw)

Anw,∞

)
T nw
H2SO4

]
Aw(p1, p2) ' Aw,∞[1− L(lw)C(cw)T w

H2SO4
] (4.274)

The volcanic transmission factor is

T b
H2SO4

= T̄ bH2SO4
= exp (−Dκb,volcWvolc) (4.275)

where D = 1.66 is the diffusivity factor, κb,volc is an effective specific extinction for the band,
and Wvolc is the mass path of the volcanic aerosols. The extinction κb,volc has been adjusted
iteratively to reproduce the heating rates calculated using the spectral bands in the original
[Ramanathan and Downey, 1986] parameterization. This completes the set of approximations
used to calculate the absorptivity (and by extension the emissivity).

4.9.3 Trace gas parameterizations

Methane. The radiative effects of methane are represented by the last term in (4.241). We
re-write this in terms of the absorptivity due to methane as∫ 1500

1170

(1− TCH4T 3
N2O

TH2OT 5
H2SO4

)F (Bν)dν =

∫
(1− TH2OT nw

H2SO4
)F (Bν)dν +∫

ACH4TH2OT 5
H2SO4

F (Bν)dν +

∫
A3
N2O

TCH4TH2OT 5
H2SO4

F (Bν)dν (4.276)

Note that this expression also incorporates the absorptance due to the 7.7 micron band of nitrous
oxide as well. The first term is due to the rotation band of water vapor and is already accounted
for in the CAM 3.0 radiation model by the parameterization described in Ramanathan and
Downey [1986]. The second term in (4.276) accounts for the absorptance due to the 7.7 micron
band of methane. The spectroscopic parameters are from Donner and Ramanathan [1980]. In
terms of the broad band approximation we have,∫

ACH4TH2OT 5
H2SO4

F (Bν)dν ≈ ACH4T̄H2OT̄
5
H2SO4

F (Bν̄) (4.277)

where according to (4.235),

ACH4 = 6.00444
√
Tp ln

{
1 +

u√
4 + u(1 + 1/β)

}
(4.278)

where Tp is a path weighted temperature,

Tp =

∫
T (p)dp∫
dp

(4.279)

The dimensionless path length is,

u =
D 8.60957× 104

g

∫
µCH4√
T
dp (4.280)
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and the mean line width factor is,

β = 2.94449

∫
1
T

(
P
P0

)
µCH4dp∫

1√
T
µCH4dp

(4.281)

where µCH4 is the mass mixing ratio of methane, T is the local layer temperature in Kelvin and
P is the pressure in Pascals, and P0 is 1 × 105 Pa. D is a diffusivity factor of 1.66. The water
vapor overlap factor for this spectral region is,

T̄H2O = exp(−UH2O) (4.282)

where,

UH2O = D

∫
µH2O

(
P

P0

)
dp

g
(4.283)

and µH2O is the mass mixing ratio of water vapor.

Nitrous Oxide. For nitrous oxide there are three absorption bands of interest: 589, 1168
and 1285 cm−1 bands. The radiative effects of the 1285 cm−1 band is given by the last term in
(4.276), ∫

A3
N2O

TCH4TH2OT 5
H2SO4

F (Bν)dν ≈ A3
N2O

T̄CH4T̄H2OT̄
5
H2SO4

F (Bν̄) (4.284)

The absorptance for the 1285 cm−1 N2O band is given by

A3
N2O

= 2.35558
√
Tp ln

{
1 +

u3
0√

4 + u3
0(1 + 1/β3

0)
+

u3
1√

4 + u3
1(1 + 1/β3

1)

}
(4.285)

where u3
0, β

3
0 account for the fundamental transition, while u3

1, β
3
1 account for the first “hot”

band transition. These parameters are defined as

u3
0 = D 1.02346× 105

∫
µN2O√
T

dp

g
(4.286)

and,

β3
0 = 19.399

∫
1√
T

(
P
P0

)
du0∫

du3
0

(4.287)

While the “hot” band parameters are defined as

u3
1 = D 2.06646× 105

∫
1√
T
e−847.36/TµN2O

dp

g
(4.288)

and,

β3
1 = 19.399

∫
1√
T

(
P
P0

)
du3

1∫
du3

1

(4.289)
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The overlap factors in (4.284) due to water vapor is the same factor defined by (4.282), while the
overlap due to methane is obtained by using the definition of the transmission factor in terms
of the equivalent width [Ramanathan, 1976].

T̄CH4 = e−ACH4
/2A0 (4.290)

Substitution of (4.278) into (4.284) leads to,

T̄CH4 =
1

1 + 0.02 u√
4+u(1+1/β)

(4.291)

where u and β are given by (4.280) and (4.281), respectively, and the 0.02 factor is an empirical
constant to match the overlap effect obtained from narrow band model benchmark calculations.
This factor can physically be justified as accounting for the fact that the entire methane band
does not overlap the N2O band.

The 1168 cm−1 N2O band system is represented by the seventh term on the RHS of (4.241).
This term can be re-written as

1170∫
1120

(1− T 4
CFC12TH2OT 4

H2SO4
T 2
N2O

)F (Bν)dν =

∫
(1− TH2OT w

H2SO4
)F (Bν)dν +

∫
A4
CFC12TH2OT 4

H2SO4
F (Bν)dν +

∫
A2
N2O

T 4
CFC12TH2OT 4

H2SO4
F (Bν)dν (4.292)

where the last term accounts for the 1168 cm−1 N2O band. For the broad band formulation this
expression becomes,∫

A2
N2O

T 4
CFC12TH2OT 4

H2SO4
F (Bν)dν ≈ A2

N2O
T̄ 4
CFC12T̄H2OT̄

4
H2SO4

F (Bν̄) (4.293)

The band absorptance for the 1168 cm−1 N2O band is given by

A2
N2O

= 2.54034
√
Tp ln

{
1 +

u2
0√

4 + u2
0(1 + 1/β2

0

}
(4.294)

where the fundamental band path length and mean line parameters can be simply expressed in
terms of the parameters defined for the 1285 cm−1 band (eq. 4.286-4.287).

u2
0 = 0.0333767u3

0 (4.295)

and,

β2
0 = 0.982143β3

0 (4.296)

Note that the 1168 cm−1 band does not include a “hot” band transition. The overlap by water
vapor includes the effects of water vapor rotation lines, the so called “e-type” and “p-type”
continua (e.g. Roberts et al. [1976]). The combined effect of these three absorption features is,

T̄H2O = T̄lT̄eT̄p (4.297)
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where the contribution by line absorption is modeled by a Malkmus model formulation,

T̄l = exp

{
−δ1Π̄

(√
1 + δ2

ūl
Π̄
− 1

)}
(4.298)

where δ1 and δ2 are coefficients that are obtained by fitting (4.298) to the averaged transmission
from a 10 cm−1 narrow band Malkmus. The path length ūl is,

ūl = D Φ̄

∫
ρw
dP

g
(4.299)

and,

Π̄ =

(
P

P0

)(
Ψ̄

Φ̄

)
, (4.300)

where Φ̄ and Ψ̄ account for the temperature dependence of the spectroscopic parameters [Rodgers
and Walshaw, 1966]

Ψ̄ = e−α|Tp−250|−β|Tp−250|2 (4.301)

Φ̄ = e−α
′|Tp−250|−β′|Tp−250|2 (4.302)

The coefficients for various spectral intervals are given in Table 4.3. The transmission due to
the e-type continuum is given by

T̄e = e−δ3ūe (4.303)

where the path length is defined as

ūe =
D

P0εg

∫
e1800( 1

T
− 1

296 )w2
H2O

PdP (4.304)

The p-type continuum is represented by

Tp = e−δ4ūp (4.305)

where,

ūp =
D

gP0

∫
e1800( 1

T
− 1

296
)wH2OPdP (4.306)

The factors δ1, δ2, δ3 and δ4 are listed for specific spectral intervals in Table 4.4.
The final N2O band centered at 589 cm−1 is represented by the first term on the RHS of

(4.241),

750∫
500

(1− T 1
CO2

T 1
N2O

TH2OT 1
H2SO4

)F (Bν)dν =

∫
(1− T 1

CO2T H2OT
1
H2SO4

)F (Bν)dν +

∫
A1
N2O

T 1
CO2

TH2OT 1
H2SO4

F (Bν)dν (4.307)
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Table 4.3: Coefficients for the Temperature Dependence Factors in (4.301) and (4.302).

Index ν1 − ν2 α β α′ β′

1 750 - 820 2.9129e-2 -1.3139e-4 3.0857e-2 -1.3512e-4

2 820 - 880 2.4101e-2 -5.5688e-5 2.3524e-2 -6.8320e-5

3 880 - 900 1.9821e-2 -4.6380e-5 1.7310e-2 -3.2609e-5

4 900 - 1000 2.6904e-2 -8.0362e-5 2.6661e-2 -1.0228e-5

5 1000 - 1120 2.9458e-2 -1.0115e-4 2.8074e-2 -9.5743e-5

6 1120 - 1170 1.9892e-2 -8.8061e-5 2.2915e-2 -1.0304e-4

Table 4.4: Coefficients for the broad-band water vapor overlap transmission factors.

Index ν1 − ν2 δ1 δ2 δ3 δ4
1 750 - 820 0.0468556 14.4832 26.1891 0.0261782

2 820 - 880 0.0397454 4.30242 18.4476 0.0369516

3 880 - 900 0.0407664 5.23523 15.3633 0.0307266

4 900 - 1000 0.0304380 3.25342 12.1927 0.0243854

5 1000 - 1120 0.0540398 0.698935 9.14992 0.0182932

6 1120 - 1170 0.0321962 16.5599 8.07092 0.0161418
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where the last term in (4.307) represents the radiative effects of the 589 cm−1 N2O band,∫
A1
N2O

T 1
CO2

TH2OT 1
H2SO4

F (Bν)dν ≈ A1
N2O

T̄ 1
CO2

T̄H2OT̄
1
H2SO4

F (Bν̄) (4.308)

The absorptance for this band includes both the fundamental and hot band transitions,

A1
N2O

= 2.65581
√
Tp ln

{
1 +

u1
0√

4 + u1
0(1 + 1/β1

0)
+

u1
1√

4 + u1
1(1 + 1/β1

1)

}
(4.309)

where the path lengths for this band can also be defined in terms of the 1285 cm−1 band path
length and mean lines parameters (4.286 - 4.289),

u1
0 = 0.100090u3

0 (4.310)

and,

β1
0 = 0.964282β3

0 (4.311)

and,

u1
1 = 0.0992746u3

1 (4.312)

and,

β1
1 = 0.964282β3

1 (4.313)

The overlap effect of water vapor is given by the transmission factor for the 500 to 800 cm−1

spectral region defined by Ramanathan and Downey [1986] in their Table A2. This expression
is thus consistent with the transmission factor for this spectral region employed for the water
vapor formulation of the first term on the right hand side of (4.307). The overlap factor due to
the CO2 bands near 589 cm−1 is obtained from the formulation in Kiehl and Briegleb [1991],

T̄ 1
CO2

=
1

1 + 0.2
uCO2√

4+uCO2
(1+1/βCO2

)

(4.314)

where the functional form is obtained in the same manner as the transmission factor for CH4

was determined in (4.290). The 0.2 factor is empirically determined by comparing (4.314) with
results from 5 cm−1 Malkmus narrow band calculations. The path length parameters are given
by

uCO2 =
D 4.9411× 104(1− e−960/T )3√

Tp
e−960/T

∫
wCO2

dP

g
(4.315)

and,

βCO2 =
5.3228√

Tp

{
P

P0

+ 5× e−3

√
T

250

T

300

}
(4.316)
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CFCs. The effects of both CFC11 and CFC12 are included by using the approach of Ra-
manathan et al. [1985]. Thus, the band absorptance of the CFCs is given by

ACFC = ∆ν
(
1− e−D

S
∆ν

uCFC

)
(4.317)

where ∆ν is the width of the CFC absorption band, S is the band strength, uCFC is the
abundance of CFC (g cm−2),

uCFC =

∫
µCFC

dp

g
(4.318)

where µCFC is the mass mixing ratio of either CFC11 or CFC12. D is the diffusivity factor. In
the linear limit D = 2, since (4.317) deviates slightly from the pure linear limit we let D = 1.8.
We account for the radiative effects of four bands due to CFC11 and four bands due to CFC12.
The band parameters used in (4.317) for these eighth bands are given in Table 4.5.

The contribution by these CFC absorption bands is accounted for by the following terms in
(4.241).
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820∫
750

(1− T 1
CFC11TH2OT ∗

H2SO4
)F (Bν)dν =

∫
(1− TH2OT nw

H2SO4
)F (Bν)dν

+

∫
A1
CFC11TH2OT ∗

H2SO4
F (Bν)dν (4.319)

880∫
820

(1− T 2
CFC11TH2OT 3

H2SO4
)F (Bν)dν =

∫
(1− TH2OT w

H2SO4
)F (Bν)dν

+

∫
A2
CFC11TH2OT 3

H2SO4
F (Bν)dν (4.320)

900∫
880

(1− T 1
CFC12TH2OT 3

H2SO4
)F (Bν)dν =

∫
(1− TH2OT w

H2SO4
)F (Bν)dν

+

∫
A1
CFC12TH2OT 3

H2SO4
F (Bν)dν (4.321)

1000∫
900

(1− T 2
CO2

TH2OT 3
H2SO4

T 3
CFC11T 2

CFC12)F (Bν)dν =

∫
(1− TH2OT w

H2SO4
)F (Bν)dν

+

∫
A2
CFC12TH2OT 3

H2SO4
F (Bν)dν +

∫
A3
CFC11TH2OT 3

H2SO4
T 2
CFC12F (Bν)dν (4.322)

+

∫
A2
CO2

TH2OT 3
H2SO4

T 3
CFC11T 2

CFC12F (Bν)dν

1120∫
1000

(1− T 3
CO2

TO3TH2OT 4
H2SO4

T 4
CFC11T 3

CFC12)F (Bν)dν =

∫
(1− TH2OT w

H2SO4
)F (Bν)dν

+

∫
AO3TH2OT 4

H2SO4
F (Bν)dν +

∫
A3
CO2

TO3TH2OT 4
H2SO4

T 4
CFC11T 3

CFC12F (Bν)dν

+

∫
A4
CFC11TO3TH2OT 4

H2SO4
F (Bν)dν +

∫
A3
CFC12TO3TH2OT 4

H2SO4
F (Bν)dν (4.323)

For the 798 cm−1 CFC11 band, the absorption effect is given by the second term on the right
hand side of (4.319),∫

A1
CFC11TH2OT ∗

H2SO4
F (Bν)dν ≈ A1

CFC11T̄H2OT̄
∗
H2SO4

F (Bν̄) (4.324)

where the band absorptance for the CFC is given by (4.317) and the overlap factor due to
water vapor is given by (4.297) using the index 1 factors from Tables 4.3 and 4.4. Similarly, the
846 cm−1 CFC11 band is represented by the second term on the RHS of (4.320),∫

A2
CFC11TH2OT 3

H2SO4
F (Bν)dν ≈ A2

CFC11T̄H2OT̄
3
H2SO4

F (Bν̄) (4.325)

where the H2O overlap factor is given by index 2 in Tables 4.3 and 4.4. The 933 cm−1 CFC11
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Table 4.5: Band Parameters for the CFCs transmission factors.

Band Number Band Center ∆ν S/∆ν
(cm−1) (cm−1) (cm2 gm−1)

CFC11
11 798 50 54.09

22 846 60 5130.03

31 933 60 175.005

42 1085 100 1202.18
CFC12

11 889 45 1272.35

22 923 50 5786.73

32 1102 80 2873.51

42 1161 70 2085.59

1 Data are from Kagann et al. [1983].
2 Data are from Varanasi and Chudamani [1988].

band is given by the third term on the RHS of (4.322),∫
A3
CFC11TH2OT 3

H2SO4
T 2
CFC12F (Bν)dν ≈ A3

CFC11T̄H2OT̄
3
H2SO4

T 2
CFC12F (Bν̄) (4.326)

where the H2O overlap factor is defined as index 4 in Tables 4.3 and 4.4, and the CFC12
transmission factor is obtained from (4.317). The final CFC11 band centered at 1085 cm−1 is
represented by the fourth term on the RHS of (4.323),∫

A4
CFC11TO3TH2OT 4

H2SO4
F (Bν)dν ≈ A4

CFC11T̄O3T̄H2OT̄
4
H2SO4

F (Bν̄) (4.327)

where the transmission due to the 9.6 micron ozone band is defined similar to (4.314) for CO2

as

T̄O3 =
1

1 +
2∑
i=1

ui
O3√

4+ui
O3

(1+1/βi
O3

)

(4.328)

where the path lengths are defined in Ramanathan and Dickinson [1979]. The H2O overlap
factor is defined by index 5 in Tables 4.3 and 4.4.

For the 889 cm−1 CFC12 band the absorption is defined by the second term in (4.321) as∫
A1
CFC12TH2OT 3

H2SO4
F (Bν)dν ≈ A1

CFC12T̄H2OT̄
3
H2SO4

F (Bν̄) (4.329)

where the H2O overlap factor is defined by index 3 of Tables 4.3 and 4.4, and the CFC ab-
sorptance is given by (4.317). The 923 cm−1 CFC12 band is described by the second term in
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(4.322), ∫
A2
CFC12TH2OT 3

H2SO4
F (Bν)dν ≈ A2

CFC12T̄H2OT̄
3
H2SO4

F (Bν̄) (4.330)

where the H2O overlap is defined as index 4 in Tables 4.3 and 4.4. The 1102 cm−1 CFC12 band
is represented by the last term on the RHS of (4.323),∫

A3
CFC12TO3TH2OT 4

H2SO4
F (Bν)dν ≈ A3

CFC12T̄O3T̄H2OT̄
4
H2SO4

F (Bν̄) (4.331)

where the transmission by ozone is described by (4.328) and the H2O overlap factor is represented
by index 5 in Tables 4.3 and 4.4. The final CFC12 band at 1161 cm−1 is represented by the
second term on the RHS of (4.292),∫

A4
CFC12TH2OT 4

H2SO4
F (Bν)dν ≈ A4

CFC12T̄H2OT̄
4
H2SO4

F (Bν̄) (4.332)

where the H2O overlap factor is defined as index 6 in Tables 4.3 and 4.4.

Minor CO2 Bands. There are two minor bands of carbon dioxide that were added to the
CCM3 longwave model. These bands play a minor role in the present day radiative budget,
but are very important for high levels of CO2, such as during the Archean. The first band we
consider is centered at 961 cm−1. The radiative contribution of this band is represented by the
last term in (4.322),∫

A2
CO2

TH2OT 3
H2SO4

T 3
CFC11T 2

CFC12F (Bν)dν ≈ A2
CO2

T̄H2OT̄
3
H2SO4

T̄ 3
CFC11T̄

2
CFC12F (Bν̄) (4.333)

where the transmission factors for water vapor, CFC11 and CFC12 are defined in the previous
section for the 900 to 1000 cm−1 spectral interval. The absorptance due to CO2 is given by

A2
CO2

= 3.8443
√
Tp ln

{
1 +

3∑
i=1

ui√
4 + ui(1 + 1/βi)

}
(4.334)

where the path length parameters are defined as

u1 = 3.88984× 103α(Tp)we
−1997.6/T (4.335)

u1 = 3.88984× 103α(Tp)we
−1997.6/T (4.336)

u3 = 6.50642× 103α(Tp)we
−2989.7/T (4.337)

and the pressure parameter is,

β1 = 2.97558

(
P

P0

)
1√
T

(4.338)

β2 = β1 (4.339)

β3 = 2β1 (4.340)
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and,

α(Tp) =

(
1− e−1360.0/Tp

)3√
Tp

(4.341)

The CO2 band centered at 1064 cm−1 is represented by the third term on the RHS of (4.323),∫
A3
CO2

TO3TH2OT 4
H2SO4

T 4
CFC11T 3

CFC12F (Bν)dν ≈ A3
CO2

T̄O3T̄H2OT̄
4
H2SO4

T̄ 4
CFC11T̄

3
CFC12F (Bν̄)

(4.342)
where the transmission factors due to ozone, water vapor, CFC11 and CFC12 are defined in the
previous section. The absorptance due to the 1064 cm−1 CO2 band is given by

A3
CO2

= 3.8443
√
Tp ln

{
1 +

3∑
i=1

ui√
4 + ui(1 + 1/βi)

}
(4.343)

where the dimensionless path length is defined as

u1 = 3.42217× 103α(Tp)we
−1849.7/T (4.344)

u2 = 6.02454× 103α(Tp)we
−2782.1/T (4.345)

u3 = 5.53143× 103α(Tp)we
−3723.2/T (4.346)

where

α(Tp) =

(
1− e−1540.0/Tp

)3√
Tp

(4.347)

The pressure factor, β1, for (4.343) is the same as defined in (4.338), while the other factors
are,

β2 = 2β1 (4.348)

β3 = β2 (4.349)

In the above expressions, w is the column mass abundance of CO2,

w =

∫
µCO2

dP

g
=
µCO2

g
∆P (4.350)

where µCO2 is the mass mixing ratio of CO2 (assumed constant).

4.9.4 Mixing ratio of trace gases

The mixing ratios of methane, nitrous oxide, CFC11 and CFC12 are specified as zonally averaged
quantities. The stratospheric mixing ratios of these various gases do vary with latitude. This is
to mimic the effects of stratospheric circulation on these tracers. The exact latitude dependence
of the mixing ratio scale height was based on information from a two dimensional chemical

135



model (S. Solomon, personal communication). In the troposphere the gases are assumed to be
well mixed,

µ0
CH4

= 0.55241wCH4 (4.351)

µ0
N2O

= 1.51913wN2O (4.352)

µ0
CFC11 = 4.69548wCFC11 (4.353)

µ0
CFC12 = 4.14307wCFC12 (4.354)

where w denotes the volume mixing ratio of these gases. The CAM 3.0 employs volume mixing
ratios for the year 1992 based on IPCC [1995], wCH4 = 1.714 ppmv, wN2O = 0.311 ppmv,
wCFC11 = 0.280 ppbv and wCFC12 = 0.503 ppbv. The pressure level (mb) of the tropopause is
defined as

ptrop = 250.0− 150.0 cos2 φ (4.355)

For p ≤ ptrop, the stratospheric mixing ratios are defined as

µCH4 = µ0
CH4

(
p

ptrop

)XCH4

(4.356)

µN2O = µ0
N2O

(
p

ptrop

)XN2O

(4.357)

µCFC11 = µ0
CFC11

(
p

ptrop

)XCFC11

(4.358)

µCFC12 = µ0
CFC12

(
p

ptrop

)XCFC12

(4.359)

where the mixing ratio scale heights are defined as

XCH4 = 0.2353
XN2O = 0.3478 + 0.00116 |φ|
XCFC11 = 0.7273 + 0.00606 |φ|
XCFC12 = 0.4000 + 0.00222 |φ|

 |φ| ≤ 45 (4.360)

and,
XCH4 = 0.2353 + 0.22549 |φ|
XN2O = 0.4000 + 0.01333 |φ|
XCFC11 = 1.0000 + 0.01333 |φ|
XCFC12 = 0.5000 + 0.02444 |φ|

 |φ| ≥ 45 (4.361)

where φ is latitude in degrees.

4.9.5 Cloud emissivity

The clouds in CAM 3.0 are gray bodies with emissivities that depend on cloud phase, condensed
water path, and the effective radius of ice particles. The cloud emissivity is defined as

εcld = 1− e−DκabsCWP (4.362)
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where D is a diffusivity factor set to 1.66, κabs is the longwave absorption coefficient (m2g−1),
and CWP is the cloud water path (gm−2). The absorption coefficient is defined as

κabs = κl (1− fice) + κifice (4.363)

where κl is the longwave absorption coefficient for liquid cloud water and has a value of 0.090361,
such that Dκl is 0.15. κi is the absorption coefficient for ice clouds and is based on a broad
band fit to the emissivity given by Ebert and Curry’s formulation,

κi = 0.005 +
1

rei
. (4.364)

4.9.6 Numerical algorithms and cloud overlap

The treatment of cloud overlap follows Collins [2001]. The new parameterizations can treat
random, maximum, or an arbitrary combination of maximum and random overlap between
clouds. This scheme replaces the treatment in CCM3, which was an exact treatment for random
overlap of plane-parallel infinitely-thin gray-body clouds. The new method is an exact treatment
for arbitrary overlap among the same type of clouds. It is therefore more accurate than the
original matrix method of Manabe and Strickler [1964] and improved variants of it [Raisanen,
1998; Li, 2000].

If longwave scattering is omitted, the upwelling and downwelling longwave fluxes are solu-
tions to uncoupled ordinary differential equations [Goody and Yung, 1989]. The emission from
clouds is calculated using the Stefan-Boltzmann law applied to the temperatures at the cloud
boundaries. The cloud boundaries correspond to the interfaces of the model layers. This ap-
proximation greatly simplifies the mathematical form of the flux solutions since the clouds can
be treated as boundary conditions for the differential equations. The approximation becomes
more accurate as the clouds become more optically thick.

The solutions are formulated in terms of the same conversion of vertical cloud distributions
to binary cloud profiles used for the shortwave calculations (p. 111). First consider the flux
boundary conditions for a maximum-overlap region j. The downward flux at the upper boundary
of the region is spatially heterogeneous and has terms contributed by all the binary configurations
above the region. Similarly, the upward flux at the lower boundary of the region has terms
contributed by all the binary configurations below the region. The fluxes within the region are
area-weighted sums of the fluxes calculated for all possible combinations of these boundary terms
and the cloud configurations within the region. Fortunately the arithmetic can be simplified
because the solutions to the longwave equations are linear in the boundary conditions. Therefore
the downward (upward) fluxes can be computed by summing the solutions for each configuration
in the region for a single boundary condition given by the area-averaged fluxes at the region
interfaces denoted by F̄ ↓(ij,min) (F̄ ↑(ij,max)). The mathematics is explained in Collins [2001].
In the absorptivity-emissivity method, the boundary conditions are included in the solution
using the emissivity array. In the standard formulation [Manabe and Möller, 1961; Ramanathan
and Downey, 1986] used in CAM 3.0, this array is only defined for boundary conditions at the
top of the model domain for computational economy. It is not possible to treat arbitrary flux
boundary conditions inside the domain (e.g., F̄ ↓(ij,min)) using the emissivity array. However,
the flux boundary conditions F̄ ↓(ij,min) and F̄ ↑(ij,max) are mathematically equivalent to the
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fluxes from a single “pseudo” cloud deck above and below the region, respectively. The pseudo
clouds have unit area and occupy a single model layer. The vertical positions and emissivities
of these clouds are chosen so that the net area-mean fluxes incident on the top and bottom
of the region equal F̄ ↓(ij,min) and F̄ ↑(ij,max). With the introduction of the pseudo clouds, the
fluxes inside each maximum-overlap region can be calculated using the standard absorptivity-
emissivity formulation.

The total upward and downward mean fluxes at a layer i within a maximum-overlap region
j are given by:

F̄ ↑(i) =

nj+1∑
kj=1

Ãj,kj
F̄ [kj]

↑(i)

F̄ ↓(i) =

nj+1∑
kj=1

Ãj,kj
F̄ [kj]

↓(i) (4.365)

where F̄ [kj]
↑(i) and F̄ [kj]

↓(i) are the upward and downwelling fluxes for the cloud configuration
C̃j,kj

. The symbols required to write these fluxes are defined in Table 4.6.

Table 4.6: Definition of terms in fluxes.

σ Stefan-Boltzmann constant
p pressure
pt(i) pressure at top of layer i
pb(i) pressure at bottom of layer i (pb(i) > pt(i))
T (p) temperature at pressure p
B(p) σ T 4(p)

i↓p,j layer containing pseudo cloud for F̄ ↓(ij,min) b.c.

i↑p,j layer containing pseudo cloud for F̄ ↑(ij,max) b.c.
εcld(i) emissivity of cloud in layer i

εp,j(i) emissivity of pseudo clouds at i = i↓p,j and i↑p,j
α(p, p′) clear-sky absorptivity from pressure p′ to p

F ↓
clr(i) downwelling clear-sky flux at layer i

F ↑
clr(i) upwelling clear-sky flux at layer i

t↑↓j,kj
(i) weights for up/downwelling clear-sky flux at layer i

T ↑↓j,kj
(i, i′) weights for up/downwelling flux at layer i from cloud at i′

The downward and upward fluxes for each configuration can be derived by iterating the
longwave equations from TOA and the surface to the layer i. At each iteration, the solutions
are advanced between successive cloud layers. The final form of the fluxes in configuration C̃j,kj
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is:

F̄ [kj]
↑(i) = F ↑

clr(i)t
↑
j,kj

(i) + (4.366)

N∑
i′=i

{
B (pt(i

′))−
∫ pt(i′)

pt(i)

α(pt(i), p
′)
dB(p′)

dp′
dp′

}
T ↑j,kj

(i, i′)

F̄ [kj]
↓(i) = F ↓

clr(i)t
↓
j,kj

(i) + (4.367)

i∑
i′=1

{
B (pb(i

′)) +

∫ pb(i)

pb(i′)

α(pb(i), p
′)
dB(p′)

dp′
dp′

}
T ↓j,kj

(i, i′)

The clear-sky and cloudy-sky weights are:

t↑j,kj
(i) =

N∏
l=i

[
1− ε̃j,kj

(l)
]

(4.368)

t↓j,kj
(i) =

i∏
l=1

[
1− ε̃j,kj

(l)
]

(4.369)

T ↑j,kj
(i, i′) = ε̃j,kj

(i′)
i′−1∏
l=i

[
1− ε̃j,kj

(l)
]

(4.370)

T ↓j,kj
(i, i′) = ε̃j,kj

(i′)
i∏

l=i′+1

[
1− ε̃j,kj

(l)
]

(4.371)

ε̃j,kj
(l) =


εcld(l)C̃j,kj

(l) if ij,min ≤ l ≤ ij,max

εp,j(i
↓
p,j) if l = i↓p,j

εp,j(i
↑
p,j) if l = i↑p,j

0 otherwise

(4.372)

The longwave atmospheric heating rate is obtained from

Q`w(pk) =
g

cp

F̄ ↑(k + 1)− F̄ ↓(k + 1)− F̄ ↑(k) + F̄ ↓(k)

pk+1 − pk
. (4.373)

which is added to the nonlinear term (Q) in the thermodynamic equation.
The full calculation of longwave radiation (which includes heating rates as well as boundary

fluxes) is computationally expensive. Therefore, modifications to the longwave scheme were
developed to improve its efficiency for the diurnal framework. For illustration, consider the
clear-sky fluxes defined in (4.229) and (4.230). Well over 90% of the longwave computational
cost involves evaluating the absorptivity α and emissivity ε. To reduce this computational
burden, α and ε are computed at a user defined frequency that is set to every 12 model hours
in the standard configuration, while longwave heating rates are computed at the diurnal cycle
frequency of once every model hour.

Calculation of α and ε with a period longer than the evaluation of the longwave heating
rates neglects the dependence of these quantities on variations in temperature, water vapor,
and ozone. However, variations in radiative fluxes due to changes in cloud amount are fully
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Figure 4.3: Subdivision of model layers for radiation flux calculation

accounted for at each radiation calculation, which is regarded to be the dominant effect on
diurnal time scales. The dominant effect on the heating rates of changes in temperature occurs
through the Planck function and is accounted for with this method.

The continuous equations for the longwave calculations require a sophisticated vertical finite–
differencing scheme due to the integral term

∫
αdB in Equations (4.229)–(4.230). The reason

for the additional care in evaluating this integral arises from the nonlinear behavior of α across
a given model layer. For example, if the flux at interface pk is required, an integral of the form∫ pk

ps
α(p′, pk)dB(p′) must be evaluated. For the nearest layer to level pk, the following terms will

arise: ∫ pk

pk+1

α(p′, pk)dB(p′) =
[α(pk+1, pk) + α(pk, pk)]

2
[B(pk)−B(pk+1)] , (4.374)

employing the trapezoidal rule. The problem arises with the second absorptivity α(pk, pk), since
this term is zero. It is also known that α is nearly exponential in form within a layer. Thus, to
accurately account for the variation of α(p, p′) across a layer, many more grid points are required
than are available in CAM 3.0. The nearest layer must, therefore, be subdivided and α must be
evaluated across the subdivided layers. The algorithm that is employed in is to use a trapezoid
method for all layers except the nearest layer. For the nearest layer a subdivision, as illustrated
in Figure 4.3, is employed.

For the upward flux, the nearest layer contribution to the integral is evaluated from∫ pk+1
H

pk
H

αdB(p′) = α22

[
B(pk+1

H )−B(pk)
]
+ α21

[
B(pk)−B(pkH)

]
, (4.375)

while for the downward flux, the integral is evaluated according to∫ pk
H

pk+1
H

αdB(p′) = α11

[
B(pk)−B(pkH)

]
+ α12

[
B(pk+1

H )−B(pk)
]
. (4.376)

The αij, i = 1, 2; j = 1, 2, are absorptivities evaluated for the subdivided paths shown in
Figure 4.3. The path–length dependence for the absorptivities arises from the dependence on the
absorptance A(p, p′) [e.g., Eq. (4.373)]. Temperatures are known at model levels. Temperatures
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at layer interfaces are determined through linear interpolation in log p between layer midpoint
temperatures. Thus, B(pk) = σBT

4
k can be evaluated at all required levels. The most involved

calculation arises from the evaluation of the fraction of layers shown in Figure 4.3. In general,
the absorptance of a layer can require the evaluation of the following path lengths:

ξ(pk, pk+1) = f(T )p∆p, (4.377)
and

u(pk, pk+1) = g(T )∆p, (4.378)
and

β(pk, pk+1) = h(T )p, (4.379)

where f, g, and h are functions of temperature due to band parameters (see Kiehl and Ra-
manathan [1983], and T is an absorber mass–weighted mean temperature.

These path lengths are used extensively in the evaluation of AO3 [Ramanathan and Dickinson,
1979] and ACO2 [Kiehl and Briegleb, 1991] and the trace gases. But path lengths dependent
on both p2 (i.e. ξ) and p (i.e. u) are also needed in calculating the water–vapor absorptivity,
αH2O [Ramanathan and Downey, 1986]. To account for the subdivided layer, a fractional layer
amount must be multiplied by ξ and u, e.g.

ξ11 = ξ(pkHp
k+1
H )× UINPL(1, k), (4.380)

u11 = u(pkH , p
k+1
H )×WINPL(1, k), (4.381)

and

β11 = β(pkH , p
k+1
H )× PINPL(1, k), (4.382)

where UINPL, WINPL, and PINPL are factors to account for the fractional subdivided
layer amount. These quantities are derived for the case where the mixing ratio is assumed
to be constant within a given layer (CO2 and H2O). For ozone, the mixing ratio is assumed
to interpolate linearly in physical thickness; thus, another fractional layer amount ZINPL is
required for evaluating AO3(p, p

′) across subdivided layers.
Consider the subdivided path for α22; the total path length from pkH to pk+1

H for the p2 path
length will be

ξ(pkH , p
k+1
H ) ≈ pH

[
pkH − pk+1

H

]
, (4.383)

where pH ≡
pk

H+pk+1
H

2
. The total layer path length is, therefore, proportional to

ξ(pkH , p
k+1
H ) ≈ 1

2
(
(
pkH
)2 − (pk+1

H

)2
). (4.384)

The path length ξ for α22 requires the mean pressure

p22 ≈
1

2

{
pk + pk+1

H

2
+ pk+1

H

}
, (4.385)

and the pressure difference

∆p22 ≈
pk + pk+1

H

2
− pk+1

H . (4.386)
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Therefore, the path ξ22 is

ξ22 ≈ p22 ∆p22 =
1

2

{(
pk + pk+1

H

2

)2

−
(
pk+1
H

)2}
. (4.387)

The fractional path length is obtained by normalizing this by ξ(pkH , p
k+1
H ),

UINPL(2, k) = DAF3(k)

{(
pk + pk+1

H

2

)2

−
(
pk+1
H

)2}
, (4.388)

where

DAF3(k) =
1(

pkH
)2 − (pk+1

H

)2 . (4.389)

Similar reasoning leads to the following expressions for the remaining fractional path lengths,
for α21,

UINPL(3, k) = DAF3(k)

{(
pk + pkH

2

)2

−
(
pk+1
H

)2}
, (4.390)

for α11,

UINPL(1, k) = DAF3(k)

{(
pkH
)2 − (pk + pkH

2

)2
}
, (4.391)

and for α12,

UINPL(4, k) = DAF3(k)

{(
pkH
)2 − (pk + pk+1

H

2

)2
}
. (4.392)

The UINPL are fractional layer amounts for path length that scale as p2, i.e., ξij.
For variables that scale linearly in p, e.g. uij, the following fractional layer amounts are used:

WINPL(1, k) = DAF4(k)

{
pkH − pk

2

}
, (4.393)

WINPL(2, k) = DAF4(k)

{
pk − pk+1

H

2

}
, (4.394)

WINPL(3, k) = DAF4(k)

{(
pkH + pk

2

)
− pk+1

H

}
, (4.395)

WINPL(4, k) = DAF4(k)
{
pkH −

(
pk+1
H + pk2

)}
, (4.396)

where

DAF4(k) =
1

pkH − pk+1
H

. (4.397)
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These fractional layer amounts are directly analogous to the UINPL, but since u is linear
in p, the squared terms are not present.

The variable βij requires a mean pressure for the subdivided layer. These are

PINPL(1, k) =
1

2

{
pk + pkH

2
+ pkH

}
, (4.398)

PINPL(2, k) =
1

2

{
pk + pk+1

H

2
+ pk+1

h

}
, (4.399)

PINPL(3, k) =
1

2

{
pk + pkH

2
+ pk+1

H

}
, (4.400)

PINPL(4, k) =
1

2

{
pk + pk+1

H

2
+ pkH

}
. (4.401)

Finally, fractional layer amounts for ozone path lengths are needed, since ozone is interpolated
linearly in physical thickness. These are given by

ZINPL(1, k) =
1

2

ln
(
pk

H

pk

)
ln
(

pk
H

pk+1
H

) , (4.402)

ZINPL(2, k) =
1

2

ln
(

pk

pk+1
H

)
ln
(

pk
H

pk+1
H

) , (4.403)

ZINPL(3, k) = ZINPL(1, k) + 2ZINPL(2, k), (4.404)

ZINPL(4, k) = ZINPL(2, k) + 2ZINPL(1, k). (4.405)

4.10 Surface Exchange Formulations

The surface exchange of heat, moisture and momentum between the atmosphere and land,
ocean or ice surfaces are treated with a bulk exchange formulation. We present a description of
each surface exchange separately. Although the functional forms of the exchange relations are
identical, we present the descriptions of these components as developed and represented in the
various subroutines in CAM 3.0. The differences in the exchange expressions are predominantly
in the definition of roughness lengths and exchange coefficients. The description of surface
exchange over ocean follows from Bryan et al. [1996], and the surface exchange over sea ice is
discussed in chapter 6. Over lakes, exchanges are computed by a lake model embedded in the
land surface model described in the following section.

4.10.1 Land

In CAM 3.0, the NCAR Land Surface Model (LSM) [Bonan, 1996] has been replaced by the
Community Land Model CLM2 [Bonan et al., 2002]. This new model includes components
treating hydrological and biogeochemical processes, dynamic vegetation, and biogeophysics.
Because of the increased complexity of this new model and since a complete description is
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available online, users of CAM 3.0 interested in CLM should consult this documentation at
http://www.cgd.ucar.edu/tss/clm/. A discussion is provided here only of the component of
CLM which controls surface exchange processes.

Land surface fluxes of momentum, sensible heat, and latent heat are calculated from Monin-
Obukhov similarity theory applied to the surface (i.e. constant flux) layer. The zonal τx and
meridional τy momentum fluxes (kg m−1s−2), sensible heat H (W m−2) and water vapor E
(kg m−2s−1) fluxes between the surface and the lowest model level z1 are:

τx = −ρ1(u′w′) = −ρ1u
2
∗(u1/Va) = ρ1

us − u1

ram
(4.406)

τy = −ρ1(v′w′) = −ρ1u
2
∗(v1/Va) = ρ1

vs − v1

ram
(4.407)

H = ρ1cp(w′θ′) = −ρ1cpu∗θ∗ = ρ1cp
θs − θ1

rah
(4.408)

E = ρ1(w′q′) = −ρ1u∗q∗ = ρ1
qs − q1
raw

(4.409)

ram = Va/u
2
∗ (4.410)

rah = (θ1 − θs)/u∗θ∗ (4.411)

raw = (q1 − qs)/u∗q∗ (4.412)

where ρ1, u1, v1, θ1 and q1 are the density (kg m−3), zonal wind (m s−1), meridional wind (m s−1),
air potential temperature (K), and specific humidity (kg kg−1) at the lowest model level. By
definition, the surface winds us and vs equal zero. The symbol θ1 represents temperature, and
q1 is specific humidity at surface. The terms ram, rah, and raw are the aerodynamic resistances
(s m−1) for momentum, sensible heat, and water vapor between the lowest model level at height
z1 and the surface at height z0m + d [z0h + d]. Here z0m [z0h] is the roughness length (m) for
momentum [scalar] fluxes, and d is the displacement height (m).

For the vegetated fraction of the grid, θs = Taf and qs = qaf , where Taf and qaf are the air
temperature and specific humidity within canopy space. For the non-vegetated fraction, θs = Tg
and qs = qg, where Tg and qg are the air temperature and specific humidity at ground surface.
These terms are described by Dai et al. [2001].

Roughness lengths and zero-plane displacement

The aerodynamic roughness z0m is used for wind, while the thermal roughness z0h is used for
heat and water vapor. In general, z0m is different from z0h, because the transfer of momentum
is affected by pressure fluctuations in the turbulent waves behind the roughness elements, while
for heat and water vapor transfer no such dynamical mechanism exists. Rather, heat and water
vapor must ultimately be transferred by molecular diffusion across the interfacial sublayer. Over
bare soil and snow cover, the simple relation from Zilitinkevich [1970] can be used [Zeng and
Dickinson, 1998]:

ln
z0m

z0h

= a
(u∗z0m

ν

)0.45

(4.413)

a = 0.13 (4.414)

ν = 1.5× 10−5m2s−1 (4.415)
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Over canopy, the application of energy balance

Rn −H − Lv E = 0 (4.416)

(where Rn is the net radiation absorbed by the canopy) is equivalent to the use of different z0m

versus z0h over bare soil, and hence thermal roughness is not needed over canopy [Zeng et al.,
1998].

The roughness z0m is proportional to canopy height, and is also affected by fractional vegeta-
tion cover, leaf area index, and leaf shapes. The roughness is derived from the simple relationship
z0m = 0.07hc, where hc is the canopy height. Similarly, the zero-plane displacement height d
is proportional to canopy height, and is also affected by fractional vegetation cover, leaf area
index, and leaf shapes. The simple relationship d/hc = 2/3 is used to obtain the height.

Monin-Obukhov similarity theory

(1) Turbulence scaling parameters
A length scale (the Monin-Obukhov length) L is defined by

L =
θvu

2
∗

kgθv∗
(4.417)

where k is the von Kàrman constant, and g is the gravitational acceleration. L > 0 indicates
stable conditions, L < 0 indicates unstable conditions, and L = ∞ applies to neutral conditions.
The virtual potential temperature θv is defined by

θv = θ1(1 + 0.61q1) = Ta

(
ps
pl

)R/cp
(1 + 0.61q1) (4.418)

where T1 and q1 are the air temperature and specific humidity at height z1 respectively, θ1 is
the atmospheric potential temperature, pl is the atmospheric pressure, and ps is the surface
pressure. The surface friction velocity u∗ is defined by

u2
∗ = [u′w′2 + v′w′2]1/2 (4.419)

The temperature scale θ∗ and θ∗v and a humidity scale q∗ are defined by

θ∗ = −w′θ′/u∗ (4.420)

q∗ = −w′q′/u∗ (4.421)

θv∗ = −w′θ′v/u∗

≈ −(w′θ′ + 0.61θw′q′)/u∗ (4.422)

= θ∗ + 0.61θq∗

(where the mean temperature θ serves as a reference temperature in this linearized form of θv ).
The stability parameter is defined as

ς =
z1 − d

L
, (4.423)
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with the restriction that −100 6 ς 6 2. The scalar wind speed is defined as

V 2
a = u2

1 + v2
1 + U2

c (4.424)

Uc =

{
0.1 ms−1 , if ς > 0 (stable)

βw∗ = β
(
zi

g
θv
θv∗u∗

)1/3

, if ς < 0 (unstable) .
(4.425)

Here w∗ is the convective velocity scale, zi is the convective boundary layer height, and β = 1.
The value of zi is taken as 1000 m
(2) Flux-gradient relations [Zeng et al., 1998]

The flux-gradient relations are given by:

k(z1 − d)

θ∗

∂θ

∂z
= φh(ς) (4.426)

k(z1 − d)

q∗

∂q

∂z
= φq(ς) (4.427)

φh = φq (4.428)

φm(ς) =

{
(1− 16ς)−1/4 for ς < 0
1 + 5ς for 0 < ς < 1

(4.429)

φh(ς) =

{
(1− 16ς)−1/2 for ς < 0
1 + 5ς for 0 < ς < 1

(4.430)

Under very unstable conditions, the flux-gradient relations are taken from Kader and Yaglom
[1990]:

φm = 0.7k2/3(−ς)1/3 (4.431)

φh = 0.9k4/3(−ς)−1/3 (4.432)

To ensure the functions φm(ς) and φh(ς) are continuous, the simplest approach (i.e., without
considering any transition regions) is to match the above equations at ςm = −1.574 for φm(ς)
and ςh = −0.465 for φh(ς) .

Under very stable conditions (i.e., ς > 1 ), the relations are taken from Holtslag et al. [1990]:

φm = φh = 5 + ς (4.433)

(3) Integral forms of the flux-gradient relations
Integration of the wind profile yields:

Va =
u∗
k
fM(ς) (4.434)

fM(ς) =

{[
ln

(
ςmL

z0m

)
− ψm(ςm)

]
+ 1.14[(−ς)1/3 − (−ςm)1/3]

}
, ς < ςm = −1.574 (4.434a)

fM(ς) =

[
ln

(
z1 − d

z0m

)
− ψm(ς) + ψm

(z0m

L

)]
, ςm < ς < 0 (4.434b)

fM(ς) =

[
ln

(
z1 − d

z0m

)
+ 5ς

]
, 0 < ς < 1 (4.434c)

fM(ς) =

{[
ln

(
L

z0m

)
+ 5

]
+ [5 ln(ς) + ς − 1]

}
, ς > 1 (4.434d)
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Integration of the potential temperature profile yields:

θ1 − θs =
θ∗
k
fT (ς) (4.435)

fT (ς) =

{[
ln

(
ςhL

z0h

)
− ψh(ςh)

]
+ 0.8[(−ςh)−1/3 − (−ς)−1/3]

}
, ς < ςh = −0.465 (4.435a)

fT (ς) =

[
ln

(
z1 − d

z0h

)
− ψh(ς) + ψh

(z0h

L

)]
, ςh < ς < 0 (4.435b)

fT (ς) =

[
ln

(
z1 − d

z0h

)
+ 5ς

]
, 0 < ς < 1 (4.435c)

fT (ς) =

{[
ln

(
L

z0h

)
+ 5

]
+ [5 ln(ς) + ς − 1]

}
, ς > 1 (4.435d)

The expressions for the specific humidity profiles are the same as those for potential temper-
ature except that (θ1 − θs ), θ∗ and z0h are replaced by (q1 − qs ), q∗ and z0q respectively. The
stability functions for ς < 0 are

ψm = 2 ln

(
1 + χ

2

)
+ ln

(
1 + χ2

2

)
− 2 tan−1 χ+

π

2
(4.436)

ψh = ψq = 2 ln

(
1 + χ2

2

)
(4.437)

where

χ = (1− 16ς)1/4 (4.438)

Note that the CLM code contains extra terms involving z0m/ς, z0h/ς, and z0q/ς for com-
pleteness. These terms are very small most of the time and hence are omitted in Eqs. 4.434 and
4.435.

In addition to the momentum, sensible heat, and latent heat fluxes, land surface albedos
and upward longwave radiation are needed for the atmospheric radiation calculations. Surface
albedos depend on the solar zenith angle, the amount of leaf and stem material present, their
optical properties, and the optical properties of snow and soil. The upward longwave radiation
is the difference between the incident and absorbed fluxes. These and other aspects of the land
surface fluxes have been described by Dai et al. [2001].

4.10.2 Ocean

The bulk formulas used to determine the turbulent fluxes of momentum (stress), water (evapo-
ration, or latent heat), and sensible heat into the atmosphere over ocean surfaces are

(τ , E,H) = ρA |∆ v| (CD∆ v, CE∆ q, CpCH∆θ), (4.439)

where ρA is atmospheric surface density and Cp is the specific heat. Since CAM 3.0 does not
allow for motion of the ocean surface, the velocity difference between surface and atmosphere
is ∆ v = vA, the velocity of the lowest model level. The potential temperature difference
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is ∆θ = θA − Ts, where Ts is the surface temperature. The specific humidity difference is
∆ q = qA−qs(Ts), where qs(Ts) is the saturation specific humidity at the sea-surface temperature.

In (4.439), the transfer coefficients between the ocean surface and the atmosphere are com-
puted at a height ZA and are functions of the stability, ζ:

C(D,E,H) = κ2

[
ln

(
ZA
Z0m

)
− ψm

]−1[
ln

(
ZA

Z0(m,e,h)

)
− ψ(m,s,s)

]−1

(4.440)

where κ = 0.4 is von Kármán’s constant and Z0(m,e,h) is the roughness length for momentum,
evaporation, or heat, respectively. The integrated flux profiles, ψm for momentum and ψs for
scalars, under stable conditions (ζ > 0) are

ψm(ζ) = ψs(ζ) = −5ζ. (4.441)

For unstable conditions (ζ < 0), the flux profiles are

ψm(ζ) =2 ln[0.5(1 +X)] + ln[0.5(1 +X2)]

− 2 tan−1X + 0.5π, (4.442)

ψs(ζ) =2 ln[0.5(1 +X2)], (4.443)

X =(1− 16ζ)1/4. (4.444)

The stability parameter used in (4.441)–(4.444) is

ζ =
κ g ZA
u∗2

(
θ∗

θv
+

Q∗

(ε−1 + qA)

)
, (4.445)

where the virtual potential temperature is θv = θA(1 + εqA); qA and θA are the lowest level
atmospheric humidity and potential temperature, respectively; and ε = 0.606. The turbulent
velocity scales in (4.445) are

u∗ =C
1/2
D |∆ v|,

(Q∗, θ∗) =C(E,H)
|∆ v|
u∗

(∆ q,∆θ). (4.446)

Over oceans, Z0e = 9.5 × 10−5 m under all conditions and Z0h = 2.2 × 10−9 m for ζ > 0,
Z0h = 4.9 × 10−5 m for ζ ≤ 0, which are given in Large and Pond [1982]. The momentum
roughness length depends on the wind speed evaluated at 10 m as

Zom = 10 exp

[
−κ
(
c4
U10

+ c5 + c6 U10

)−1
]
,

U10 = UA

[
1 +

√
CN

10

κ
ln

(
ZA
10

− ψm

)]−1

, (4.447)

where c4 = 0.0027 m s−1, c5 = 0.000142, c6 = 0.0000764 m−1 s, and the required drag coefficient
at 10-m height and neutral stability is CN

10 = c4U
−1
10 + c5 + c6U10 as given by Large et al. [1994].

The transfer coefficients in (4.439) and (4.440) depend on the stability following (4.441)–
(4.444), which itself depends on the surface fluxes (4.445) and (4.446). The transfer coefficients
also depend on the momentum roughness, which itself varies with the surface fluxes over oceans
(4.447). The above system of equations is solved by iteration.
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4.10.3 Sea Ice

The fluxes between the atmosphere and sea ice are described in detail in chapter 6.

4.11 Vertical Diffusion and Boundary Layer Processes

The vertical diffusion parameterization in CAM 3.0 provides the interface to the turbulence
parameterization, computes the molecular diffusivities (if necessary) and finally computes the
tendencies of the input variables. The diffusion equations are actually solved implicitly, so the
tendencies are computed from the difference between the final and initial profiles.

In the near future, the gravity wave parameterization will also be called from within the
vertical diffusion. This will allow the turbulent and, especially, the molecular diffusivity to be
passed to the gravity wave parameterization to damp vertically propagating waves. The gravity
wave parameterization may return additional diffusivities and tendencies to be applied before
the actual diffusion is applied.

As in CCM2 and CCM3, the turbulence parameterization in CAM 3.0 includes computa-
tion of diffusivities for the free atmosphere, based on the gradient Richardson number, and an
explicit, non-local Atmospheric Boundary Layer (ABL) parameterization. The ABL parameter-
ization includes a determination of the boundary layer depth. In practice, the free atmosphere
diffusivities are calculated first at all levels. The ABL scheme then determines the ABL depth
and diffusivities and replaces the free atmosphere values for all levels within the ABL, returning
both the updated diffusivities and the non-local transport terms. The implementation of the
ABL parameterization in CCM2 is discussed in [Holtslag and Boville, 1993], while the formalism
only is discussed here. Following the ABL scheme, molecular diffusivities are computed if the
model top extends above ∼90 km (0.1 Pa).

As described in Boville and Bretherton [2003], a general vertical diffusion parameterization
can be written in terms of the divergence of diffusive fluxes:

∂

∂t
(u, v, q) = −1

ρ

∂

∂z
(Fu, Fv, Fq) (4.448)

∂

∂t
s = −1

ρ

∂

∂z
FH +D (4.449)

where s = cpT + gz is the dry static energy, z is the geopotential height above the local surface
(does not include the surface elevation) and D is the heating rate due to the dissipation of
resolved kinetic energy in the diffusion process. The diffusive fluxes are defined as:

Fu,v = −ρKm
∂

∂z
(u, v), (4.450)

Fq,H = −ρKq,H
∂

∂z
(q, s) + ρKt

q,Hγq,H . (4.451)

The viscosity Km and diffusivities Kq,H are the sums of: turbulent components Kt
m,q,H , which

dominate below the mesopause; and molecular components Km,q,H , which dominate above 120
km. The turbulent diffusivities are the sum of two components, free atmosphere and boundary
layer diffusivities, defined below. In the future, these terms also may include effective diffusivities
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from the gravity wave parameterization. The non-local transport terms γq,H are given by the
ABL parameterization. Note that Fq, as defined in (4.451) and implemented in CAM 3.0, does
not include the term which causes diffusive separation of constituents of differing molecular
weights. The molecular diffusion in CAM 3.0 is currently incomplete and should be used with
caution. The molecular viscosity and diffusivities are all currently defined as 3.55× 10−7T 2/3/ρ.
A more complete form, allowing separation of constituents, will be implemented later.

The kinetic energy dissipation term D in (4.449) is determined by forming the equation for
total energy from (4.448–4.449):

∂E

∂t
= u

∂u

∂t
+ v

∂v

∂t
+
∂s

∂t
(4.452)

= −1

ρ

(
u
∂Fu
∂z

+ v
∂Fv
∂z

+
∂FH
∂z

)
+D (4.453)

= −1

ρ

(
∂FKE
∂z

+
∂FH
∂z

)
. (4.454)

The diffusive kinetic energy flux in (4.454) is

FKE ≡ uFu + vFv (4.455)

and the kinetic energy dissipation is

D ≡ −1

ρ

(
Fu
∂u

∂z
+ Fv

∂v

∂z

)
. (4.456)

To show that D is positive definite, we use (4.450) to expand for Fu and Fv:

D = (Kt
m +Km

m)

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]
≥ 0. (4.457)

We show that energy is conserved in the column by integrating (4.454) in the vertical, from
the surface (z = 0), to the top of the model (z = ztop):∫ ztop

0

ρ
∂E

∂t
dz = (FKE + FH)|0ztop

. (4.458)

Therefore, the vertically integrated energy will only change because of the boundary fluxes of
energy, of which only the surface heat flux, FH(z = 0), is usually nonzero. It is typically assumed
that the surface wind vanishes, even over oceans and sea ice, giving FKE(z = 0) = 0. Then, the
surface stress Fu,v(z = 0) does not change the total energy in the column, but does result in
kinetic energy dissipation and heating near the surface (see below) For coupled models, nonzero
surface velocities can be accommodated by including FKE on both sides of the surface interface.

4.11.1 Free atmosphere turbulent diffusivities

The free atmospheric turbulent diffusivities are typically taken as functions of length scales `c
and local vertical gradients of wind and virtual potential temperature, e.g.

Kc = `c
2SFc(Ri). (4.459)
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Here S is the local shear, defined by

S =

∣∣∣∣∂V∂z
∣∣∣∣ , (4.460)

and the mixing length `c is generally given by

1

`c
=

1

kz
+

1

λc
, (4.461)

where k is the Von Karman constant, and λc is the so-called asymptotic length scale, taken to
be 30 m above the ABL. Since the lowest model level is always greater than 30 m in depth, `c
is simply set to 30 m in CAM 3.0. Furthermore, Fc(Ri) denotes a functional dependence of Kc

on the gradient Richardson number:

Ri =
g

θv

∂θv/∂z

S2
, (4.462)

where θv is the virtual potential temperature,

θv = θ

[
1 +

(
Rv

R
− 1

)
q

]
. (4.463)

For simplicity, in the free atmosphere, we specify the same stability functions Fc for all c.
For unstable conditions (Ri < 0) we choose

Fc(Ri) = (1− 18Ri)1/2, (4.464)

and for stable conditions (Ri > 0) we use.

Fc(Ri) =
1

1 + 10Ri (1 + 8Ri)
, (4.465)

This means that no distinction is made between turbulent vertical diffusion of heat, scalars and
momentum outside the boundary layer. However, separate coefficient arrays are maintained and
other parameterizations (such as gravity wave drag) may provide distinct diffusivities. We also
note the the turbulent diffusivity is the same for all constituents, even within the ABL. However,
the molecular diffusivities differ for each constituent since they depend on it’s molecular weight.

4.11.2 “Non-local” atmospheric boundary layer scheme

The free atmosphere turbulent diffusivities, described above, are an example of the local diffusion
approach. In such an approach, the turbulent flux of a quantity is proportional to the local
gradient of that quantity (e.g. (4.450)–(4.451)). In addition, the eddy diffusivity depends on
local gradients of mean wind and mean virtual temperature (see (4.459)). These are reasonable
assumptions when the length scale of the largest turbulent eddies is smaller than the size of the
domain over which the turbulence extends. In the Atmospheric Boundary Layer (ABL) this is
typically true for neutral and stable conditions only. For unstable and convective conditions,
however, the largest transporting eddies may have a size similar to the boundary layer height
itself, and the flux can be counter to the local gradient [Deardorff, 1972; Holtslag and Moeng,
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1991]. In such conditions a local diffusion approach is no longer appropriate, and the eddy
diffusivity is better represented with turbulent properties characteristic of the ABL. We will
refer to such an approach as non-local diffusion.

To account for “non-local” transport by convective turbulence in the ABL, the local diffusion
term for constituent c is modified as in (4.451):

w′C ′ = −Kc

(
∂C

∂z
− γc

)
, (4.466)

where Kc is the non-local eddy diffusivity for the quantity of interest. The term γc is a “non-
local” transport term and reflects non-local transport due to dry convection. Eq. (4.466) applies
to static energy, water vapor, and passive scalars. No countergradient term is applied to the
wind components, so (4.450) does not contain these terms. For stable and neutral conditions
the non-local term is not relevant for any of the quantities. The eddy diffusivity formalism is,
however, modified for all conditions.

In the non-local diffusion scheme the eddy diffusivity is given by

Kc = k wt z
(
1− z

h

)2

, (4.467)

where wt is a turbulent velocity scale and h is the boundary layer height. Equation (4.467)
applies for heat, water vapor and passive scalars. The eddy diffusivity of momentum Km, is also
defined as (4.467) but with wt replaced by another velocity scale wm. With proper formulation
of wt (or wm) and h, it can be shown that equation (4.467) behaves well from very stable to very
unstable conditions in horizontally homogeneous and quasi-stationary conditions. For unstable
conditions wt and wm are proportional to the so-called convective velocity scale w∗, while for
neutral and stable conditions wt and wm are proportional to the friction velocity u∗.

The major advantage of the present approach over the local eddy diffusivity approach is that
large eddy transport in the ABL is accounted for and entrainment effects are treated implicitly.
Above the ABL, γc = 0 so (4.466) reduces to a local form with Kc given by (4.459). Near the
top of the ABL we use the maximum of the values by (4.459) and (4.467), although (4.467)
almost always gives the larger value in practice.

The non-local transport term in (4.466), γc, represents non-local influences on the mixing by
turbulence [Deardorff, 1972]. As such, this term is small in stable conditions, and is therefore
neglected under these conditions. For unstable conditions, however, most heat and moisture
transport is achieved by turbulent eddies with sizes on the order of the depth h of the ABL. In
such cases, a formulation for γc consistent with the eddy formulation of (4.466) is given by

γc = a
w∗(w′C ′)s
wm2h

, (4.468)

where a is a constant and (w′C ′)s is the surface flux (in kinematic units) of the transported
scalar. The form of (4.468) is similar to the one proposed in Holtslag and Moeng [1991]. The
non-local correction vanishes under neutral conditions, for which w∗ = 0.

The formulations of the eddy-diffusivity and the non-local terms are dependent on the bound-
ary layer height h. The CCM2 configuration of this non-local scheme made use of a traditional
approach to estimating the boundary layer depth by assuming a constant value for the bulk

152



Richardson number across the boundary layer depth so that h was iteratively determined using

h =
Ricr {u(h)2 + v(h)2}
(g/θs) (θv(h)− θs)

, (4.469)

where Ricr is a critical bulk Richardson number for the ABL; u(h) and v(h) are the horizontal
velocity components at h; g/θs is the buoyancy parameter and θv(h) is the virtual temperature at
h. The quantity θs is a measure of the surface air temperature, which under unstable conditions
was given by

θs = θv (zs) + b
(w′θ′v)s
wm

, (4.470)

where b is a constant, (w′θ′v)s is the virtual heat flux at the surface, θv (zs) is a virtual tempera-
ture in the atmospheric surface layer (nominally 10 m), b (w′θ′v)s/wm represents a temperature
excess (a measure of the strength of convective thermals in the lower part of the ABL) and
unstable conditions are determined by (w′θ′v)s > 0. The quantity θv (zs) was calculated from the
temperature and moisture of the first model level and of the surface by applying the procedure in
Geleyn [1988]. The value of the critical bulk Richardson number Ricr in (4.469), which generally
depends on the vertical resolution of the model, was chosen as Ricr = 0.5 for the CCM2.

Vogelezang and Holtslag [1996] have recently studied the suitability of this formulation in
the context of field observations, large-eddy simulations [Moeng and Sullivan, 1994], and an
E − ε turbulence closure model [Duynkerke, 1988]. They propose a revised formulation which
combines shear production in the outer region of the boundary layer with surface friction, where
the Richardson number estimate is based on the differences in wind and virtual temperature
between the top of the ABL and a lower height that is well outside the surface layer (i.e. 20
m - 80 m). In addition to providing more realistic estimates of boundary layer depth, the
revised formulation provides a smoother transition between stable and neutral boundary layers.
Consequently, CAM 3.0 employs the Vogelezang and Holtslag [1996] formulation for estimating
the atmospheric boundary layer height, which can be written as

h = zs +
Ricr {(u(h)− uSL)2 + (v(h)− vSL)2 + Bu2

∗}
(g/θSL) (θv(h)− θSL)

. (4.471)

The quantities uSL, vSL, and θSL represent the horizontal wind components and virtual potential
temperature just above the surface layer (nominally 0.1h). In practice, the lowest model level
values for these quantities are used to iteratively determine h for all stability conditions, where
the critical Richardson number, Ricr, is assumed to be 0.3. The disposable parameter B has
been experimentally determined to be equal to 100 (see Vogelezang and Holtslag [1996]). The
computation starts by calculating the bulk Richardson number Ri between the level of θSL and
subsequent higher levels of the model. Once Ri exceeds the critical value, the value of h is
derived by linear interpolation between the level with Ri > Ricr and the level below.

Using the calculated value for h and the surface fluxes, we calculate the velocity scales,
the eddy diffusivities with (4.467), and the countergradient terms with (4.468), for each of the
transported constituents. Subsequently, the new profiles for θ, q, u, and v are calculated using
an implicit diffusion formulation.

The turbulent velocity scale of (4.467) depends primarily on the relative height z/h (h is
boundary layer height), and the stability within the ABL. Here stability is defined with respect
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to the surface virtual heat flux (w′θ′v)s. Secondly, the velocity scales are also generally dependent
on the specific quantity of interest. We will assume that the velocity scales for mixing of passive
scalars and specific humidity are equal to the one for heat, denoted by wt. For the wind
components, the velocity scale is different and denoted by wm. The specification of wt and wm
is given in detail by Troen and Mahrt [1986]. Holtslag et al. [1990] have rewritten the velocity
scale, in terms of the more widely accepted profile functions of Dyer [1974], and have given a
new formulation for very stable conditions. Below we follow the latter approach.

For stable ((w′θ′v)s < 0) and neutral surface conditions ((w′θ′v)s = 0), the velocity scale for
scalar transport is

wt =
u∗
φh

, (4.472)

where u∗ is the friction velocity defined by

u∗ =
[
(u′w′)2

s + (v′w′)2
s

]1/4
. (4.473)

Furthermore, φh is the dimensionless vertical temperature gradient given by Dyer [1974],

φh = 1 + 5
z

L
, (4.474)

for 0 ≤ z/L ≤ 1. Here L is the Obukhov length, defined by

L =
−u3

∗

k(g/θv0)(w′θ′v)0

. (4.475)

For z/L > 1,

φh = 5 +
z

L
, (4.476)

which matches (4.474) for z/L = 1. Equation (4.476) is a simple means to prevent φh from
becoming too large (and Kc too small) in very stable conditions. In stable conditions, the
exchange coefficients for heat and momentum are often found to be similar. Therefore we may
use wm=wt.

For unstable conditions (w′θ′v)s > 0, we have that wt and wm differ in the surface layer
(z/h ≤ 0.1) and in the outer layer of the ABL (z/h > 0.1). For the surface layer, wt is given by
(4.472) with

φh =
(
1− 15

z

L

)−1/2

. (4.477)

Similarly, wm is written as

wm =
u∗
φm

, (4.478)

where φm is the dimensionless wind gradient given by

φm =
(
1− 15

z

L

)−1/3

. (4.479)

In the surface layer, the scalar flux is normally given by

(w′c′)0 = −ku∗z
φh

(
∂C

∂z

)
. (4.480)
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Comparison with (4.466) and (4.467) shows that, in the surface layer, we should have a = 0 in
(4.468) for consistency.

For the outer layer, wt and wm are given by

wt = wm/Pr , (4.481)

where

wm =
(
u3
∗ + c1w

3
∗
)1/3

, (4.482)

and

w∗ =
(
(g/θv0) (w′θ′v)0h

)1/3
(4.483)

is the convective velocity scale. Furthermore, Pr is the turbulent Prandtl number and c1 is a
constant. The latter is obtained by evaluating the dimensionless vertical wind gradient φm by
(4.479) at the top of the surface layer, as discussed by Troen and Mahrt [1986]. This results in
c1 = 0.6. For very unstable conditions (h � −L or w∗/u∗ � 0), it can be shown with (4.481)
that wm is proportional to 0.85 w∗, while for the neutral case wm = u∗. The turbulent Prandtl
number Pr (= Km/Kh = wm/wt) of (4.481) is evaluated from

Pr =
φh
φm

( z
L

)
+ ak

z

h

w∗
wm

(4.484)

for z = 0.1h. Equation (4.484) arises from matching (4.466), (4.467), (4.468), and (4.480) at the
top of the surface layer. As in Troen and Mahrt we assume that Pr is independent of height
in the unstable outer layer. Its value decreases from Pr = 1 for the neutral case (z/L = 0 and
w∗ = 0), to Pr = 0.6 for w∗/u∗ ' 10 in very unstable conditions.

In very unstable conditions, the countergradient term of (4.468) approaches

γc = d
wC0

w∗h
, (4.485)

where d ' a/0.852, because for very unstable conditions we obtain wm ' 0.85w∗. Since typically
d ' 10 Troen and Mahrt [1986], we have a = 7.2. Similarly, the temperature excess of (4.470)
reads in this limit as d(w′θ′v)0/w∗. This leads to b (= 0.85 d) = 8.5 in (4.470).

Finally, using the velocity scales described above, the flux equation (4.466) is continuous in
relative height (z/h) and in the boundary layer stability parameter (h/L or w∗/u∗).

4.11.3 Discretization of the vertical diffusion equations

In CAM 3.0, as in previous version of the CCM, (4.448–4.451) are cast in pressure coordinates,
using

dp = −ρgdz, (4.486)

and discretized in a time-split form using an Euler backward time step. Before describing the
numerical solution of the diffusion equations, we define a compact notation for the discrete
equations. For an arbitrary variable ψ, let a subscript denote a discrete time level, with current
step ψn and next step ψn+1. The model has L layers in the vertical, with indexes running from

155



top to bottom. Let ψk denote a layer midpoint quantity and let ψk− denote the value on the
upper interface of layer k while ψk+ denotes the value on the lower interface. The relevant
quantities, used below, are then:

ψk+ = (ψk + ψk+1)/2, k ∈ (1, 2, 3, ..., L− 1)

ψk− = (ψk−1 + ψk)/2, k ∈ (2, 3, 4..., L)

δkψ = ψk+ − ψk−,

δk+ψ = ψk+1 − ψk,

δk−ψ = ψk − ψk−1, (4.487)

ψn+ = (ψn + ψn+1)/2,

δnψ = ψn+1 − ψn,

δt = tn+1 − tn,

∆k,l = 1, k = l,

= 0, k 6= l.

Like the continuous equations, the discrete equations are required to conserve momentum,
total energy and constituents. The discrete forms of (4.448–4.449) are:

δn(u, v, q)
k

δt
= g

δkFu,v,q
δkp

(4.488)

δns
k

δt
= g

δkFH
δkp

+Dk. (4.489)

For interior interfaces, 1 ≤ k ≤ L− 1,

F k+
u,v =

(
gρ2Km

)k+
n

δk+(u, v)n+1

δk+p
(4.490)

F k+
q,H =

(
gρ2Kq,H

)k+
n

δk+(u, v)n+1

δk+p

+
(
ρKt

q,Hγq,H
)k+
n
. (4.491)

Surface fluxes FL+
u,v,q,H are provided explicitly at time n by separate surface models for land,

ocean, and sea ice while the top boundary fluxes are usually F 1−
u,v,q,H = 0. The turbulent

diffusion coefficients Kt
m,q,H and non-local transport terms γq,H are calculated for time n by

the turbulence model described above, which is identical to CCM3. The molecular diffusion
coefficients, described earlier, are only included if the model top is above ∼ 90 km, in which
case nonzero top boundary fluxes may be included for heat and some constituents.

The free atmosphere turbulent diffusivities Kk+
n , given by (4.459–4.465), are discretized as

Kk+
n = Kk+

N · Fc
(
Rk+
I

)
≥ 0.01. (4.492)

The stability function is:

Fc(RI) =

1/ (1 + 10RI [1 + 8RI ]) for RI ≥ 0 (stable),
√

1− 18RI for RI < 0 (unstable),
(4.493)
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The neutral KN is calculated by

Kk+
N = `2

[(
δk+un

)2
+
(
δk+vn

)2]1/2
δk+zn

, (4.494)

with ` = 30 m. The Richardson number in the free atmosphere is calculated from

Rk+
I =

g

θk+v
× δk+znδ

k+θv

(δk+un)
2 + (δk+vn)

2 (4.495)

where

θkv = θkn

(
1.0 +

(
Rv

R
− 1

)
qkn

)
. (4.496)

Similarly to the continuous form (4.456), Dk is determined by separating the kinetic energy
change over a time step into the kinetic energy flux divergence and the kinetic energy dissipation.
The discrete system is required to conserve energy exactly:

L∑
k=1

[
(ukn+1)

2 + (vkn+1)
2 + skn+1

]
δkp = (4.497)

L∑
k=1

[
(ukn)

2 + (vkn)
2 + skn

]
δkp+ δt(FL+

H + F 1−
H ),

where we have assumed zero boundary fluxes for kinetic energy. This leads to

Dk =
g

2δkp
(dk+u + dk−u + dk+v + dk−v ) (4.498)

dk+u,v = δk+(u, v)n+F
k+
u,v , 1 ≤ k ≤ L− 1 (4.499)

dL+
u,v = −2(u, v)Ln+F

L+
u,v (4.500)

According to (4.498), the internal dissipation of kinetic energy in each layer Dk is the average
of the dissipation on the bounding interfaces dk±u,v, given by (4.499) and (4.500). Expanding
(4.499) using (4.490) and recalling that un+ = (un+1 + un)/2,

dk+u =
(gρ2Km)

k+

2δk+p

[(
δk+un+1

)2
+ δk+un+1δ

k+un

]
, (4.501)

for 1 ≤ k ≤ L− 1 and similarly for dk+v . The discrete kinetic energy dissipation is not positive
definite, because the last term in (4.501) is the product of the vertical difference of momentum
at two time levels. Although dk+u,v will almost always be > 0, values ≤ 0 may occur occasionally.
The kinetic energy dissipation at the surface is

dL+
u,v = −

[
(u, v)Ln+1 + (u, v)Ln

]
FL+
u,v . (4.502)

Since the surface stress is opposed to the bottom level wind, the surface layer is heated by the
frictional dissipation. However, dL+

u,v is not guaranteed to be positive, since it involves the bottom
level wind at two time levels.

Note that it has been assumed that the pressure does not change within the vertical diffusion,
even though there are boundary fluxes of constituents, including water. This assumption has
been made in all versions of the CCM and is still made in CAM 3.0. This assumption will
be removed in a future version of CAM 3.0, since the implied horizontal fluxes of dry air, to
compensate for the boundary flux of water, cause implied fluxes of other constituents.
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4.11.4 Solution of the vertical diffusion equations

A series of time-split operators is actually defined by (4.488–4.491) and (4.498–4.500). Once
the diffusivities (Km,q,H) and the non-local transport terms (γq,H) have been determined, the
solution of (4.488–4.491), proceeds in several steps.

1. update the q and s profiles using γq,H ;

2. update the bottom level values of u, v, q and s using the surface fluxes;

3. invert (4.488) and (4.490) for u, vn+1;

4. compute D and use to update the s profile;

5. invert (4.488,4.489) and (4.491) for sn+1 and qn+1;

Note that since all parameterizations in CAM 3.0 return tendencies rather than modified
profiles, the actual quantities returned by the vertical diffusion are δn(u, v, s, q)/δt.

The non-local transport terms, γq,H , given by (4.468), cannot be treated implicitly because
they depend on the surface flux, the boundary layer depth and the velocity scale, but not explic-
itly on the profile of the transported quantity. Therefore, application of γq is not guaranteed to
give a positive value for q and negative values may not be removed by the subsequent implicit
diffusion step. This problem is not strictly numerical; it arises under highly non-stationary
conditions for which the ABL formulation is not strictly applicable. In practice, we evaluate

qn∗ = qn +
gδt

δkp
δk
[
ρKt

qγq
]
n

(4.503)

and check the qn∗ profile for negative values (actually for qkn∗ < qmin, where qmin may be > 0).
If any negative values are found, we set qn∗ = qn for that constituent profile (but not for other
constituents at the same point).

Equations (4.488–4.491) constitute a set of four tridiagonal systems of the form

−Akψk+1
n+1 +Bkψkn+1 − Ckψk−1

n+1 = ψkn′, (4.504)

where ψn′ indicates u, v, q, or s after updating from time n values with the nonlocal and
boundary fluxes. The super-diagonal (Ak), diagonal (Bk) and sub-diagonal (Ck) elements of
(4.504) are:

Ak =
1

δkp

δt

δk+p

(
g2ρ2K

)k+
n
, (4.505)

Bk = 1 + Ak + Ck, (4.506)

Ck =
1

δkp

δt

δk−p

(
g2ρ2K

)k−
n
. (4.507)

The solution of (4.504) has the form

ψkn+1 = Ekψk−1
n+1 + F k, (4.508)
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or,
ψk+1
n+1 = Ek+1ψkn+1 + F k+1. (4.509)

Substituting (4.509) into (4.504),

ψkn+1 =
Ck

Bk − AkEk+1
ψk−1
n+1 +

ψkn′ + AkF k+1

Bk − AkEk+1
. (4.510)

Comparing (4.508) and (4.510), we find

Ek =
Ck

Bk − AkEk+1
, L > k > 1, (4.511)

F k =
ψkn′ + AkF k+1

Bk − AkEk+1
, L > k > 1. (4.512)

The terms Ek and F k can be determined upward from k = L, using the boundary conditions

EL+1 = FL+1 = AL = 0. (4.513)

Finally, (4.510) can be solved downward for ψkn+1, using the boundary condition

C1 = 0 ⇒ E1 = 0. (4.514)

CCM1-3 used the same solution method, but with the order of the solution reversed, which
merely requires writing (4.509) for ψk−1

n+1 instead of ψk+1
n+1. The order used here is particularly

convenient because the turbulent diffusivities for heat and all constituents are the same but
their molecular diffusivities are not. Since the terms in (4.511-4.512) are determined from the
bottom upward, it is only necessary to recalculate Ak, Ck, Ek and 1/(Bk − AkEk+1) for each
constituent within the region where molecular diffusion is important. Note that including the
diffusive separation term for constituents (which will be in the next version of CAM 3.0) adds
additional terms to the definitions of Ak, Bk, and Ck, but does not otherwise change the solution
method.

4.11.5 Discrete equations for s, T , and z

The dry static energy at step n and level k is

skn = cdpT
k
n + gzk, (4.515)

which can be calculated from Tn by integrating the hydrostatic equation using the perfect gas
law.

gz ≡ Φ = Φs +

∫ p

ps

RTd ln p′, (4.516)

where Φ is the geopotential, Φs is the geopotential at the Earth’s surface and ps is the surface
pressure. A fairly arbitrary discretization of (4.516) can be represented using a triangular
hydrostatic matrix Hkl,

Φk = Φs +
k∑
l=L

RlHklT l. (4.517)
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Note that (4.517) is often written in terms of the virtual temperature Tv = TR/Rd. The
apparent gas constant R includes the effect of water vapor and is defined as

R = Rd + (Rw −Rd)q, (4.518)

where Rd is the apparent gas constant for dry air and Rw is the gas constant for water vapor.
Using (4.517) in (4.515), we have

skn = cdpT
k
n +

k∑
l=L

RlHklT ln, (4.519)

=
(
cdp +RkHkk

)
T kn + Φk+

n . (4.520)

The interface geopotential in (4.520) is defined as

Φk+ =
k+1∑
l=L

RkHklT l, (4.521)

and Rk is evaluated from (4.518), using qkn. Although the correct boundary condition on (4.521)
is ΦL+ = Φs, within the parameterization suite it is usually sufficient to take ΦL+ = 0.

The definition of the hydrostatic matrix H depends on the numerical method used in the
dynamics and is subject to constraints from energy and mass conservation. The definitions of
H for the three dynamical methods used in CAM 3.0 are given in the dynamics descriptions.

After sn is modified by diabatic heating in a time split process, the new sn+1 = sn + Qnδt
can be converted into Tn+1 and Φn+1 using (4.520):

skn+1 =
(
cdp +RkHkk

)
T kn+1 + Φk+

n+1 (4.522)

T kn+1 =
(
skn+1 − Φk+

n+1

) (
cp +RkHkk

)−1
(4.523)

with Rk evaluated from using qkn+1. Once H is defined, (4.521) and (4.523) can be solved for
Tn+1 and Φn+1 from the bottom up. Since the latter must normally recalculated if T is modified,
calculating T and Φ from s involves the same amount of computation as calculating Φ and s
from T .

4.12 Sulfur Chemistry

It is also possible to set CAM to predict sulfate aerosols. These aerosols can be run as passive
(non-interacting) constituents, or the model can be set to allow sulfate to interact with the
radiative transfer formulation. The CAM 3.0 release of the model allows only the direct radiative
effect of the aerosols, although it is a straightforward modification of the model to allow indirect
effects as well.

The formulation for the parameterization follows closely that described in Barth et al. [2000]
and Rasch et al. [2000]. The module was used to examine the influence of sulfate aerosols on
the atmospheric radiation budget in Kiehl et al. [2000] The standard emission inventory used
for prognostic aerosols is not the same as that used to produce the climatological prescribed
sulfate aerosols described in section 4.8.3.

160



The sulfur chemistry represented in the model includes emissions, transport, gas and aqueous
reactions, and wet and dry deposition of DMS, SO2, SO2−

4 , and H2O2. Sources and sinks
represented in the description of the sulfur cycle include emissions of DMS and anthropogenic
sulfur, gas-phase oxidation of DMS and SO2, gas-phase production and destruction of H2O2,
aqueous-phase oxidation of S(IV) by H2O2 and O3, dry deposition of H2O2, SO2, and aerosol
sulfate, and wet deposition of H2O2, SO2, and aerosol sulfate.

Transport processes of trace gases and aerosols include resolved-scale advection and subgrid-
scale convection and diffusion. The convective transport of trace gases and aerosols is performed
on the interstitial fraction of these species in the cloudy volume and the fraction of dissolved
material in the cloud drops that do not undergo microphysical transformation to precipitation.
The species can be can be detrained at higher levels in the model by the convective processes.

4.12.1 Emissions

Emissions of sulfur species in the model include anthropogenic emissions of SO2 and SO2−
4

and oceanic emissions of DMS; volcanic and biomass burning sources currently are excluded.
Anthropogenic emissions come from the Smith et al. [2001] inventory. The seasonally averaged
emissions data were provided at the surface and at 100 m and above to accommodate emissions
from industry stacks

The anthropogenic emissions are assumed to be 98% by mole SO2 and 2% SO2−
4 . Since

the emissions inventory supplied data at two levels and the height of the interface between
the bottom two model levels was generally above 100 m (average height was ∼120 m), we
apportioned a fraction of the emissions data from above 100 m to the bottom level of the model.
The fraction into the bottom level was determined as

zi(1)− 100

zi(2)− 100
,

where zi(1) is the height of the top of the lowest level of the model and zi(2) is the height of
the top of the second lowest level of the model.

The emissions of DMS were obtained from the biogenic sulfur emissions inventory of Kettle
et al. [1999].

4.12.2 Chemical Reactions

The order of the chemistry calculations is as follows. The aqueous chemistry is performed after
the cloud water mixing ratio is determined. The new H2O2, SO2, and SO2−

4 concentrations are
then used for the gas chemistry calculations. The modified H2O2, SO2, and SO2−

4 concentrations
then are used in the wet deposition calculation. After the chemistry and wet deposition are
calculated, transport through subgrid convective cores is determined for the interstitial fraction
of each species (because of their high solubility, sulfate aerosols are not convectively transported).
Because a centered time step is used, a time filter couples the concentrations from the odd and
even time step integrations. Then the emissions and dry deposition calculations are performed.

The reactions used for the sulfur cycle are described in Table 4.7.
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Table 4.7: Reactions Included in the Global Sulfur Model

k298
1 E

R Reference2

Gas Chemistry
(R1) SO2+ OH + M → SO2−

4 + M ko=3.0× 10−31( T
300)−3.3 NASA97

k∞=1.5× 10−12

(R2) DMS + OH → αSO2+ (1 - α) MSA3 Y90
(R3) DMS + NO3 → SO2+ HNO3 1.0× 10−12 500. NASA97
(R4) HO2+ HO2 → H2O2+ O2 8.6× 10−12 -590. NASA97
(R5) H2O2+ hν → 2OH see text
(R6) H2O2+ OH → HO2+ H2O 1.7× 10−12 160. NASA97

Aqueous Chemistry
(R7) HSO−

3 + H2O2 → SO2−
4 + 2H++ H2O 2.7× 107 4 4750. HC85

(R8) HSO−
3 + O3 → SO2−

4 + H++ O2 3.7× 105 5300. HC85
(R9) SO2−

3 + O3 → SO2−
4 + O2 1.5× 109 5280. HC85

Equilibrium Reactions
(R10) H2O2(g) 
 H2O2(aq) 7.4× 104 -6621. LK86
(R11) O3(g) 
 O3(aq) 1.15× 10−2 -2560. NBS65
(R12) SO2(g) 
 SO2 (aq) 1.23 -3120. NBS65
(R13) H2SO3 
 HSO−

3 + H+ 1.3× 10−2 -2015. M82
(R14) HSO−

3 
 SO2−
3 + H+ 6.3× 10−8 -1505. M82

Gas-Phase Reactions

Oxidation of SO2 to form sulfate, oxidation of DMS to form SO2, and production and destruction
of H2O2 are represented in the model.

In R1, it is assumed that the SO2 + OH reaction is the rate-limiting step of the multistep
process of forming aerosol sulfate. Concentrations of short-lived radicals OH, NO3, and HO2

are prescribed using three-dimensional, monthly averaged concentrations obtained from the
Intermediate Model of Global Evolution of Species (IMAGES) [Müller and Brasseur, 1995]. The
diurnal variation of these oxidants is not included in our calculations, but instead, the diurnally
averaged value is used at each time step. The rate coefficient for (R2) follows Benkovitz et al.
[1994], who followed the work of Yin et al. [1990b,a]. The rate of H2O2 photolysis is determined
via a look-up table method where the photolysis rate depends on the diurnally averaged zenith
angle and the height of the grid point, assuming that the albedo for ultraviolet radiation is 0.3.
Because R4 is nonlinear and the diurnally averaged rate of reaction does not equal the reaction
rate of diurnally averaged HO2 mixing ratios, the HO2 mixing ratios are adjusted by the amount
of daylight at any given latitude. The rates of the sulfur reactions are determined by the effective

1Units for first order reactions are s−1, for the second-order gas reactions are molecules−1 cm3 s−1, for the
third-order gas reactions molecules−2 cm6 s−1, and for the second-order aqueous reactions are M−1 s−1. Units
for solubility constants are M atm−1, and units for dissociation constants are M. Reaction rates are of the form
k = k298exp[−E

R ( 1
T −

1
298 )] unless otherwise noted.

2NASA97, Demore et al. [1997]; Y90, Yin et al. [1990b,a]; HC85, Hoffmann and Calvert [1985]; LK86, Lind
and Kok [1986]; NBS65, National Bureau of Standards [1965]; and M82, Maahs [1982].

3Here k = Te−234/T +8.46×10−10e7230/T +2.68×10−10e7810/T

1.04×1011T+88.1e7460/T .
4Here k = k298exp[−E

R ( 1
T −

1
298 )][H+]

1+13[H+] .
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first-order rate coefficient and using a quasi-steady state approximation [Hesstvedt et al., 1978].
The H2O2 concentration determined from the gas-phase reactions is calculated using an Euler
forward approximation.

Aqueous-Phase Reactions

Oxidation of aqueous SO2 by O3 and H2O2 to form SO2−
4 aerosol is included in the model

(Table 4.7). The concentrations of O3 are prescribed using three-dimensional, monthly averaged
concentrations obtained from the IMAGES model. Prescribed species (O3, OH, HO2, and NO3)
are set according to the linearly interpolated concentration for the location of the grid point and
the time of year.

The pH of the drops is determined diagnostically assuming an NH+
4 to SO2−

4 molar ratio of
1.0.

[H+] = [HSO−
3 ] + [SO2−

4 ].

The liquid water content in a grid cell is determined by combining the resolved-scale cloud
water mixing ratio that is predicted, the subgrid-scale deep convective and shallow convective
cloud water mixing ratios, and the resolved-scale rain mixing ratio that is diagnosed from the
precipitation rate using a mass-weighted fall speed, which is determined assuming a Marshall
Palmer size distribution for rain. SO2 and H2O2 are depleted and SO2−

4 is produced only in the
cloudy region of the grid box. The grid box concentration of these species is found by multiplying
the cloudy region concentration times the cloud fraction and the clear air concentration times
the fraction of clear air in the grid box.

Because the rate of S(IV) (= SO2 · H2O + HSO−
3 + SO2−

4 ) oxidation by O3 depends on the
pH of the drops, the aqueous-phase reactions are evaluated using a 2-min time step with an
Euler forward numerical approximation. At the end of each 2-min time step the hydrogen ion
concentration is recalculated so that the influence of pH on S(IV) oxidation is captured.

4.12.3 Wet Deposition

The wet deposition rates are calculated separately for gases and aerosols. Cloud water and rain
mixing ratios from both the resolved clouds and the subgrid-scale clouds are determined for the
cloudy volume in each grid column. Trace gases are scavenged only by the liquid hydrometeors,
whereas aerosols can also be scavenged by snow.

The fraction of a trace gas that is in the liquid water is determined through each species’
Henry’s law coefficient, which is temperature- and/or pH-dependent. At any particular level in
the model the flux of the dissolved trace gas in the precipitation entering the grid cell from above
is found. The trace gas is reequilibrated with the current model level’s properties. Then the
flux of the dissolved trace gas exiting the model level is determined. The rate of wet deposition
is found from the flux divergence, maintaining mass conservation.

The wet deposition of aerosols is performed in a similar flux method. Any layer in the model
can undergo both below-cloud and in-cloud scavenging.

The below-cloud scavenging follows Dana and Hales [1976] and Balkanski et al. [1993]. It is
assumed that both rain and snow, which has graupel-like characteristics (and therefore charac-
teristics similar to rain), scavenge the aerosol below cloud. Removal is assumed to take place
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by a first-order loss process. That is,

LW,bc = 0.1Pq

where LW,bc is the loss rate by below-cloud scavenging, 0.1 is the collection efficiency, P is the
precipitation flux expressed in mm h−1, and q is the species mass mixing ratio.

In-cloud scavenging is performed assuming that the some fraction (currently 30%) of the
aerosol reside in the cloud water. That fraction is then removed in proportion to the fraction of
cloud water that is converted to rain through coalescence and accretion processes. This fraction
of the aerosol is removed through wet deposition.

Evaporation of rain is accounted for in the wet deposition rate calculation by releasing a
proportionate mass of aerosol to the atmosphere (i.e., if 10% of the precipitation evaporates,
then 10% of the sulfate aerosol is released back to the air). This last assumption could lead to
an overestimate of sulfate mixing ratios in the air [Barth et al., 1992] because the number of
drops that completely evaporate (and therefore the amount of sulfate aerosol released from the
drop to the air) is not necessarily proportional to the mass of rain that evaporates.

4.12.4 Dry Deposition

In Barth et al. [2000] we used of dry deposition similar to that described by Benkovitz et al.
[1994]. The deposition velocity of SO2 is determined following the series resistance method
outlined by Wesely [1989] where the deposition velocity is inversely proportional to the sum of the
aerodynamic resistance, the resistance to transport across the atmospheric sublayer in contact
with surface elements, and the surface resistance. The aerodynamic and sublayer resistances
are determined using boundary layer meteorological parameters. The surface resistance is found
through a parameterization outlined by Wesely [1989].

We are in the process of integrating this calculation with the surface process characterization
produced by the Common Land Model (CLM). When complete, the internal consistency of the
parameterization will be much improved.

In the meantime, we have chosen to prescribe our deposition velocities following Feichter
et al. [1996]. For SO2 we use 0.6 cm/s for land, 0.8 cm/s over ocean, and 0.1 cm/s over ice and
snow. Deposition velocities for SO2−

4 are set to 0.2cm/s everywhere.

4.13 Prognostic Greenhouse Gases

The principal greenhouse gases whose longwave radiative effects are included in CAM 3.0 are
H2O, CO2, O3, CH4, N2O, CFC11, and CFC12. The prediction of water vapor is described
elsewhere in this chapter, and CO2 is assumed to be well mixed. Monthly O3 fields are specified
as input, as described in chapter 7. The radiative effects of the other four greenhouse gases
(CH4, N2O, CFC11, and CFC12) may be included in CAM 3.0 through specified concentration
distributions [Kiehl et al., 1998] or prognostic concentrations [Boville et al., 2001].

The specified distributions are globally uniform in the troposphere. Above a latitudinally
and seasonally specified tropopause height, the distributions are zonally symmetric and decrease
upward, with a separate latitude-dependent scale height for each gas.
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Prognostic distributions are computed following Boville et al. [2001]. Transport equations for
the four gases are included, and losses have been parameterized by specified zonally symmetric
loss frequencies: ∂q/∂t = −α(y, z, t)q. Monthly averaged loss frequencies, α, are obtained from
the two-dimensional model of Garcia and Solomon [1994].

We have chosen to specify globally uniform surface concentrations of the four gases, rather
than their surface fluxes. The surface sources are imperfectly known, particularly for CH4 and
N2O in preindustrial times. Even given constant sources and reasonable initial conditions, ob-
taining equilibrium values for the loading of these gases in the atmosphere can take many years.
CAM 3.0 was designed for tropospheric simulation with relatively coarse vertical resolution in
the upper troposphere and lower stratosphere. It is likely that the rate of transport into the
stratosphere will be misrepresented, leading to erroneous loading and radiative forcing if surface
fluxes are specified. Specifying surface concentrations has the advantage that we do not need
to worry much about the atmospheric lifetime. However, we cannot examine observed features
such as the interhemispheric gradient of the trace gases. For climate change experiments, the
specified surface concentrations are varied but the stratospheric loss frequencies are not.

Oxidation of CH4 is an important source of water vapor in the stratosphere, contributing
about half of the ambient mixing ratio over much of the stratosphere. Although CH4 is not
generally oxidized directly into water vapor, this is not a bad approximation, as shown by Le
Texier et al. [1988]. In CAM 3.0, it is assumed that the water vapor (volume mixing ratio) source
is twice the CH4 sink. This approach was also taken by Mote et al. [1993] for middle atmosphere
studies with an earlier version of the CCM. This part of the water budget is of some importance
in climate change studies, because the atmospheric CH4 concentrations have increased rapidly
with time and this increase is projected to continue into the next century (e.g., Alcamo et al.
[1995]) The representation of stratospheric water vapor in CAM 3.0 is necessarily crude, since
there are few levels above the tropopause. However, the model is capable of capturing the main
features of the CH4 and water distributions.
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Chapter 5

Slab Ocean Model

The Slab Ocean Model (SOM) configuration enables a simple but tightly coupled ocean modeling
component combined with a thermodynamic sea ice component based on the CCSM3 sea ice
model. This configuration of the atmospheric model allows for a fully-interactive treatment of
surface exchange processes in the CAM 3.0. The ocean prognostic variable is the mixed layer
temperature To, while the thermodynamic sea ice model treats snow depth, surface temperature,
ice thickness, ice fractional coverage, and internal energy at four layers for a single thickness
category. The ocean mixed layer contains an internal heat source Q (also called a Q flux), whose
values are generally specified by a CAM control run, representing seasonal deep water exchange
and horizontal ocean heat transport. For example, using prescribed sea surface temperatures
and sea ice distributions, the net surface energy flux over the ocean surface can be evaluated
to yield the heat source Q. Additional exchange of heat occurs between the ocean mixed layer
and the sea ice model during ice formation and ice melt. To ensure the CAM 3.0 SOM sea ice
simulation compares well to the observed ice distribution, and to moderate sea ice changes in
climate change experiments, the Q flux term is adjusted under the ice in a globally conserving
manner.

5.1 Open Ocean Component

The general formulation for the open ocean slab model is taken from Hansen et al. [1984],
although we have modified it to allow for a fractional sea ice coverage. The governing equation
for ocean mixed layer temperature To is:

ρoCoho
∂To
∂t

= (1− A)F +Q+ AFoi + (1− A)Ffrz (5.1)

where To is the ocean mixed layer temperature, ρo is the density of ocean water, Co is the
heat capacity of ocean water, ho is the annual mean ocean mixed layer depth (m), A is the
fraction of the ocean covered by sea ice, F is the net atmosphere to ocean heat flux (Wm−2), Q
is the internal ocean mixed layer heat flux (Wm−2), simulating deep water heat exchange and
ocean transport, Foi is the heat exchanged with the sea ice (Wm−2) (including solar radiation
transmitted through the ice, see Eq. 6.39) and Ffrz is the heat gained when sea ice grows over
open water (Wm−2). ρo and Co are constants (see Table 5.1 for values of the constants), and
the nomenclature is such that all right-hand-side fluxes are positive down.
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Table 5.1: Constants for the Slab Ocean Model

Temperatures
Tf = −1.8 ◦C

Ocean
ρo = 1.026× 103 kg m−3

Co = 3.93× 103 J kg−1 K−1

Ice
Li = 3.014× 108 J m−3

The geographic structure of ocean mixed layer depth ho is specified from Levitus [1982].
Monthly mean mixed layer depths are determined using this dataset’s standard measure of
salinity σt = (ρS − 1) · 103 (ρS is the density of sea water for a specified salinity, temperature,
and atmospheric pressure) where the equality σt(ho)−σt(surface) = .125 is satisfied on a 1◦×1◦

grid. These data are then averaged to the standard CAM 3.0 grid (all data falling within a CAM
3.0 grid box are equally weighted), horizontally smoothed 10 times using a 1-2-1 smoother, and
capped at 200m (to prevent excessively long adjustment times in coupled atmosphere ocean
experiments). The resulting mixed layer depths in the tropics are generally shallow (10m-30m)
while at high latitudes in both hemispheres there are large seasonal variations (from 10m up to
the 200m maximum). The annually-averaged geographically-varying mixed layer depth, which
is used for purposes related to energy conservation, is produced by averaging the monthly mean
values.

The geographic distribution of the internal heat source Q is generally specified on a monthly
basis using a control CAM 3.0 integration as described below. During a SOM numerical integra-
tion Q is linearly interpolated between monthly values (taken as mid month) to the appropriate
model time step. The energy fluxes associated with ice formation and ice melt (Ffrz and Fmlt
respectively) are explicitly predicted.

The net atmosphere-to-ocean heat flux in the absence of sea ice, F , is defined as:

F = FS − FL− SH − LH (5.2)

where FS is the net solar flux absorbed by the ocean mixed layer, FL is the net longwave energy
flux of the ocean surface to the atmosphere, SH is the sensible heat flux from the ocean to the
atmosphere, and LH is the latent heat flux from the ocean to the atmosphere. The surface
temperature used in evaluating these fluxes is To.

The evolution of the mixed-layer temperature field, To, is evaluated using an explicit forward
time step. At iteration n the required information to advance the forecast include T no , ho, F

n, Qn,
and An, where ho is time invariant and Qn is linearly interpolated in time between prescribed
mid-monthly values. It is assumed that the exchange between the ocean mixed layer and the
atmosphere occurs faster than deep adjustments. Hence, the first adjustment to To is evaluated
as:

T (n+1)′

o = T no +
(1− An)F n

ρoCoho
∆t (5.3)

where ∆t is the model time step. We note that An is computed from the fraction of the total
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CAM 3.0 grid box that is not covered by land, since only ocean and sea ice covered portion of
the grid cell are considered for the SOM configuration:

An =
icefracn

(1− landfrac)
(5.4)

where icefrac is the fraction of ice in the CAM 3.0 grid cell and landfrac is the fraction of land
in the CAM 3.0 grid box.

The Qn flux is then adjusted since it is possible (using monthly specified values of Q) to
introduce a non-physical cooling of the mixed layer when its temperature is at the freezing

point. Therefore, if Qn > 0 and T
(n+1)′
o < 0◦C, then

Qn′ = QnfT (5.5)

where fT = (Tf − T
(n+1)′
o )/Tf , and Tf is the ocean freezing temperature of -1.8◦C (where To is

expressed in units of ◦C). This adjustment smoothly reduces the loss of heat from the mixed
layer (if any) to zero as its temperature approaches the specified freezing point of sea water.

To ensure that the predicted SOM sea ice distribution compares favorably with the con-
trol simulation, and is bounded against unchecked growth or loss for atmospheric conditions
significantly different from present day, an additional adjustment to Q under sea ice is applied:

Qn′′ = Qn′ + [Anf(hi)qhem] (5.6)

where

f(hi) = hi/(1 + hi) qhem < 0

f(hi) = 1/(1 + hi) qhem > 0 (5.7)

hi is the local ice thickness, and qhem is a tuning constant which may have different values
for the Northern and Southern hemispheres. The coefficient An ensures this adjustment only
occurs under sea ice covered ocean. The function f(hi) is empirical, and is designed to ensure
that the hemispheric adjustments asymptote properly for very small and very large values of
ice thickness. For present-day climate simulations the values of qhem which yield good control
sea ice distributions are +15W/m2 and -10W/m2 for the Northern and Southern hemispheres
respectively.

The adjusted Qn (Qn′′) is then used to update all ocean points due to deep ocean heat
exchange and transport as:

T (n+1)′′

o = T (n+1)′

o − Qn′′ + AnF n
oi

(ρoCoho)
∆t (5.8)

where F n
oi is the energy flux associated with any ice melt and shortwave radiation transmitted

through the sea ice from the previous time step.
The quantity F n

frz is nonzero only if the temperature of the slab ocean falls below the freezing
point:

F n+1
frz = (ρoCoho)max(Tf − T (n+1)′′

o , 0)/∆t (5.9)
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If F n+1
frz is nonzero, new ice forms over the ice-free portion of the grid cell and T n+1

o is returned
to the freezing temperature:

T (n+1)′′

o = max(T (n+1)′′

o , Tf ) (5.10)

A renormalization is necessary to ensure energy is conserved when Q is adjusted as described
above. We distinguish warm ocean as those points for which To > 0◦C. An adjustment for warm
ocean points is computed after all modifications to Q are completed. Let Qo be the original
unadjusted Q, and let < Qo > be the global (area weighted) mean. The final (total) Q applied
to warm ocean points is:

Q′′′ = Q′′ + [(< Qo > − < Q′′ >)(Ao/Aw)] (5.11)

where Ao is the global area over all ocean, and Aw the corresponding area over warm ocean.
Taking the global mean of the bracketed quantity (which is zero over non-warm oceans) results in
a multiplicative factor (Aw/Ao). Thus, < Q′′′ >=< Qo >, satisfying global energy conservation
of Q for every time step. In practice, the bracket term adjustment is applied to warm ocean
points after the Q redistribution is completed.

5.2 Thermodynamic Sea Ice Model

After the slab ocean component computes the atmosphere-ocean heat fluxes and updates To and
Ffrz, the thermodynamic sea ice model takes the latter two variables as input and computes the
atmosphere-ice and ocean-ice heat fluxes and advances the state of the sea ice, including snow
depth, surface temperature, ice thickness, ice fractional coverage, and internal energy profile in
the ice. The physics of the sea ice component model in CAM 3.0 are discussed in detail in the
next chapter.

5.3 Evaluation of the Ocean Q Flux

The ocean Q flux is generally evaluated using a CAM 3.0 control simulation driven by prescribed
sea surface temperature and sea ice distributions. Let

Fnet = FS − FL− LH − SH (5.12)

over ocean (regardless of whether the ocean surface is open or ice covered), for each of 12
ensemble mean months (n=1,...,12). The Q flux distribution for each month n is then evaluated:
(note that here we use the CAM 3.0 sign convention on the Q flux).

Q = Qocean −Qice − Fnet (5.13)

where:

Qocean = (ρoCoho/daysmonth(m)){(1− A(m+ 1))To(m+ 1)− (1− A(m− 1))To(m− 1)}
(5.14)
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Qice = Li{A(m+ 1)hi(m+ 1)− A(m− 1)hi(m− 1)}/daysmonth(m) (5.15)

where daysmonth is the number of days in each month, Li is the latent heat of fusion for ice, and
hi is the regionally specified ice thickness. We then define an annual average using the monthly
mean data:

Q =
∑

m=1,12

daysmonth(m)Q(m)/365 (5.16)

By definition
Qocean = 0 (5.17)

Qice = 0 (5.18)

so that
Q = −Fnet (5.19)

Since Fnet is the monthly mean flux into the ocean directly from the control, Q must be
constrained to ensure that the actual Q applied in the SOM configuration has the same annual
mean as −Fnet. Otherwise, the application of the Q flux would introduce a source or sink of
heat with respect to the control.

The actual Q applied in the SOM configuration is based on linear interpolation between
monthly means, taken as midpoints. Since the months have different lengths, in general the
annual mean of the Q flux applied to the SOM will not equal −Fnet. Thus, we must define
another annual mean, based on the time interpolated Q, to ensure that the SOM applied Q has
the identical annual mean as the fluxes Fnet from the control run.
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Chapter 6

Sea Ice Thermodynamics

This chapter describes the physics of the sea ice thermodynamics beginning with basic assump-
tions and followed by a description of the fundamental equations, various parameterization, and
numerical approximations. The philosophy behind the design of the sea ice formulation of CAM
3.0 is to use the same physics, where possible, as in the sea ice model within CCSM, which is
known as CSIM for community sea ice model. The sea ice formulation in CAM 3.0 uses param-
eterizations from CSIM for predicting snow depth, brine pockets, internal shortwave radiative
transfer, surface albedo, ice-atmosphere drag, and surface exchange fluxes. The full CSIM is
described in detail in an NCAR technical note by Briegleb et al. [2002]. The pieces of CSIM
that are also used in CAM 3.0 (without the flux coupler) are described here.

The features of the sea ice model that are used in CAM 3.0 depend on the boundary con-
ditions over ice-free ocean. If sea surface temperatures (SSTs) are prescribed, then sea ice
concentration and thickness are also prescribed. In this case, the primary function of the sea
ice model in CAM 3.0 is to compute surface fluxes. However, if the slab ocean model is em-
ployed, sea ice thickness and concentration are computed within CAM 3.0. These two types of
surface boundary conditions within CAM 3.0 will be referred to as uncoupled and coupled in
this chapter.

6.1 Basic assumptions

When CAM 3.0 is run uncoupled (i.e., without an ocean model), sea ice thickness and concen-
tration must be specified. Sea ice concentrations are known with reasonable accuracy owing
to satellite microwave instruments and ship observations. However, no adequate measurements
of thickness exist to produce a comprehensive dataset. Therefore, when ice thickness must be
specified, the thickness of the ice covered portion of the grid cell is fixed in space and time at 2
m in the Northern Hemisphere and 0.5 m in the Southern Hemisphere. Ice concentrations are
interpolated from monthly input data, which may vary in space and time.1

For either coupled or uncoupled integrations, snow depth on sea ice is prognostic as snow
accumulates when precipitation falls as snow, and it melts when allowed by the surface energy
balance. For uncoupled simulations only, the maximum snow depth is fixed at 0.5 m. Rain has
no effect on sea ice or snow on sea ice in the model.

1Mid-month concentrations are input and then interpolated to daily values. The input data are constructed
to correctly recover the observed monthly means value using the method of Taylor et al. [2001]
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6.2 Fundamental Equations

The method for computing the surface turbulent heat and radiative exchange, evaporative flux,
and surface drag is integrally coupled with the formulation of heat transfer through the sea ice
and snow. The equation governing vertical heat transfer in the ice and snow, which allows for
internal absorption of penetrating solar radiation, is

ρc
∂T

∂t
=

(
∂

∂z
k
∂T

∂z
+QSW

)
(6.1)

where ρ is the density, c is the heat capacity, T is the temperature, k is the thermal conductivity,
QSW is shortwave radiative heating, z is the vertical coordinate, and t is time. Note that ρ, c,
and k differ for snow and sea ice, and also the latter two depend on temperature and salinity
within the sea ice to account for the behavior of brine pockets.

The boundary condition for the heat equation at the surface is

FTOP (Ts) = FSW − ISW + FLW + FSH + FLH + k
dT

dz
(6.2)

where Ts is the surface temperature, FSW is the absorbed shortwave flux, ISW is the shortwave
flux that penetrates into the ice interior, FLW is the net longwave flux, FSH is the sensible heat
flux, and FLH is the latent heat flux. All fluxes are taken as positive down. If FTOP (Ts = 0) ≥ 0,
then the surface is assumed to be melting and a temperature boundary conditions (i.e., Ts = 0)
is used for the upper boundary with Eq. 6.1. However if FTOP (Ts = 0) < 0 in Eq. 6.2, then the
surface is assumed to be freezing and a flux boundary condition is used for Eq. 6.1, and Eqs.
6.1 and 6.2 are solved simultaneously with FTOP (Ts) = 0 in the latter.

Snow melt and accumulation is computed from

ρs
dhs
dt

=
−FTOP
Li

+
FLH

Li + Lv
+ FSNW (6.3)

where hs is the snow depth, ρs is the snow density, Li and Lv are the latent heats of fusion and
vaporization, and FSNW is the snowfall rate (see Table 6.1 for values of constants).

When CAM 3.0 is coupled to the mixed layer ocean and the sea ice is snow-free, sea ice
surface melt is computed from

dhi
dt

=
FTOP
q

+
FLH

−q + ρiLv
(6.4)

where hi is the ice thickness, ρi is the ice density, and q is the energy of melting of sea ice (q < 0
by definition, see section 6.6 on brine pockets). Basal growth or melt is computed from

dhi
dt

=
FBOT
q

− k

q

dT

dz
(6.5)

where FBOT is the heat flux from the ocean to the ice (see section 6.5). Finally an equation is
needed to describe the evolution of the ice concentration A:

dA

dt
= A (6.6)
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where A accounts for new ice formation over open water and lateral melt (see section 6.7)

Parameterizations of albedo, surface fluxes, brine pockets, and shortwave radiative transfer
within the sea ice are given next. Finally, the numerical solution to Eq. 6.1 is described.
Numerical methods for Eqs. 6.2 –6.6 are straight-forward and hence are not described here.

Table 6.1: List of Physical Constants

Symbol Description Value
ρs Density of snow 330 kg m−3

ρi Density of ice 917 kg m−3

ρo Density of surface ocean water 1026 kg m−3

Cp Specific heat of atmosphere dry 1005 J kg−1 K−1

Cpwv Specific heat of atmosphere water 1810 J kg−1 K−1

Co Specific heat of ocean water 3996 J kg−1 K−1

cs Specific heat of snow 0 J kg−1 K−1

co Specific heat of fresh ice 2054 J kg−1 K−1

zi Aerodynamic roughness of ice 5.0x10−4 m
zref Reference height for bulk fluxes 10 m
q1(ice) saturation specific humidity constant 11637800
q2(ice) saturation specific humidity constant 5897.8
ks Thermal conductivity of snow 0.31 W m−1 K−1

ko Thermal conductivity of fresh ice 2.0340 W m−1 K−1

β Thermal conductivity ice constant 0.1172 W m−1 ppt−1

Li Latent heat of fusion of ice 3.340x105 J kg−1

Lv Latent heat of vaporization 2.501x106 J kg−1

Tmelt Melting temperature of top surface 0 ◦C
µ Ocean freezing temperature constant 0.054 ◦C ppt−1

σsb Stefan-Boltzmann constant 5.67x10−8 W m−2 K−4

ε Ice emissivity 0.95
κvs Ice SW visible extinction coefficient 1.4 m−1

κni Ice SW near-ir extinction coefficient 17.6 m−1

NOTE: CSIM in CAM 3.0 uses the shared constants defined in Appendix A.

6.3 Snow and Ice Albedo

The albedo depends upon spectral band, snow thickness, ice thickness and surface temperature.
Snow and ice spectral albedos (visible = vs, wavelengths < 0.7µm and near-infrared = ni,
wavelengths > 0.7µm) are distinguished, as both snow and ice spectral reflectivities are signifi-
cantly higher in the vs band than in the ni band. This two-band separation represents the basic
spectral dependence. The near-infrared spectral structure, with generally decreasing reflectivity
with increasing wavelength [Ebert and Curry, 1993] is ignored. The zenith angle dependence
of snow and ice is ignored [Ebert and Curry, 1993; Grenfell et al., 1994], and hence there is
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no distinction between downwelling direct and diffuse shortwave radiation. The approximations
made for the albedo are further described by Briegleb et al. [2002].

Here we ignore the dependence of snow albedo on age, but retain the melting/non-melting
distinction and thickness dependence. Dry snow spectral albedos are:

αsvsdf (dry) =0.96

αsnidf (dry) =0.68
. (6.7)

To represent melting snow albedos, the surface temperature is used. Springtime warming pro-
duces a rapid transition from sub-zero to melting temperatures, while late fall values transition
more slowly to sub-zero conditions. This is approximated by a temperature dependence out to
−1◦C. If Ts ≥ −1◦C, then

∆Ts =Ts + 1.0

αsvsdf (melt) =αsvsdf (dry)− 0.10∆Ts

αsnidf (melt) =αsnidf (dry)− 0.15∆Ts

. (6.8)

For bare non-melting sea ice thicker than 0.5 m, as is the case for all sea ice prescribed in
CAM 3.0, the albedos are

αvsdf (dry) =0.73

αnidf (dry) =0.33
. (6.9)

For bare melting sea ice, melt ponds can significantly lower the area averaged albedo. This effect
is crudely approximated by the following temperature dependence:

αvsdf (melt) =αvsdf (dry)− 0.075∆Ts

αnidf (melt) =αnidf (dry)− 0.075∆Ts
(6.10)

for Ts ≥ −1◦C.
The horizontal fraction of surface covered with snow is assumed to be

fs =
hs

hs + 0.02
. (6.11)

Finally, combining ice and snow albedos by averaging over the horizontal coverage results in

αvsdf =αvsdf (1− fs) + fsα
s
vsdf

αnidf =αnidf (1− fs) + fsα
s
nidf

. (6.12)

The same equations applies for direct albedos.

6.4 Ice to Atmosphere Flux Exchange

Atmospheric states and downwelling fluxes, along with surface states and properties, are used to
compute atmosphere-ice shortwave and longwave fluxes, stress, sensible and latent heat fluxes.
Surface states are temperature Ts and albedos αvsdr, αvsdf , αnidr, αnidf (see section 6.3), while
surface properties are longwave emissivity ε and aerodynamic roughness zi (note that these
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properties in general vary with ice thickness, but are here assumed constant). Additionally,
certain flux temperature derivatives required for the ice temperature calculation are computed,
as well as a reference diagnostic surface air temperature.

The following formulas are for the absorbed shortwave fluxes and upwelling longwave flux:

FSWvs =FSWvsdr(1− αvsdr) + FSWvsdf (1− αvsdf )

FSWni =FSWnidr(1− αnidr) + FSWnidf (1− αnidf )

FSW =FSWvsn + FSWnin

FLWUP =− εσsbT
4
s + (1− ε)FLWDN

(6.13)

for Ts in Kelvin and σsb denotes the Stefan-Boltzmann constant. The downwelling shortwave
flux and albedos distinguish between visible (vs, λ < 0.7µm), near-infrared (ni, λ > 0.7µm),
direct (dr) and diffuse (df) radiation for each category. Note that the upwelling longwave flux
has a reflected component from the downwelling longwave whenever ε < 1.

For stress components τax and τay and sensible and latent heat fluxes the following bulk
formulas are used [Bryan et al., 1996]:

τax =ρarmu
∗ua

τay =ρarmu
∗va

FSH =ρacarhu
∗ (θa − Ts)

FLH =ρa(Li + Lv)reu
∗ (qa − q∗) .

(6.14)

The quantities from the lowest layer of the atmosphere include wind components ua and va,
the density of air ρa, the potential temperature θa, and the specific humidity qa. The surface
saturation specific humidity is

q∗ = (q1/ρa)e
−q2/Ts (6.15)

where the values of q1 and q2 were kindly supplied by Xubin Zeng of the University of Arizona.
The specific heat of the air in the lowest layer is evaluated from

ca =Cp(1 + Cpvirq
∗)

Cpvir =(Cpwv/Cp)− 1
(6.16)

where specific heat of dry air and water vapor are Cp and Cpwv, respectively. Values for the
exchange coefficients for momentum, sensible and latent heat rm,h,e and the friction velocity u∗

require further consideration.
The bulk formulas are based on Monin-Obukhov similarity theory. Among boundary layer

scalings, this is the most well tested [Large, 1998]. It is based on the assumption that in the
surface layer (typically the lowest tenth of the atmospheric boundary layer), but away from the
surface roughness elements, only the distance from the boundary and the surface kinematic fluxes
are important in the turbulent exchange. The fundamental turbulence scales that are formed
from these quantities are the friction velocity u∗, the temperature and moisture fluctuations θ∗

and q∗ respectively, and the Monin-Obukhov length scale L:

u∗ =rmVmag

θ∗ =rh(θa − Ts)

q∗ =re(qa − q∗))

L =u∗3/(κF )

(6.17)
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with

Vmag = max(1.0,
√
u2
a + v2

a), (6.18)

to prevent zero or small fluxes under quiescent wind conditions, κ is von Karman’s constant
(0.4), and F is the buoyancy flux, defined as:

F =
u∗

g

[
θ∗

θv
+

q∗

z−1
v + qa

]
(6.19)

with g the gravitational acceleration and the virtual potential temperature θv = θa(1 + zvqa)
where zv = ρwv/ρa − 1.

Similarity theory holds that the vertical gradients of mean horizontal wind, potential tem-
perature and specific humidity are universal functions of stability parameter ζ = z/L, where z
is height above the surface (ζ is positive for a stable surface layer and negative for an unstable
surface layer). These universal similarity functions are determined from observations in the at-
mospheric boundary layer [Hogstrom, 1988] though no single form is widely accepted. Integrals
of the vertical gradient relations result in the familiar logarithmic mean profiles, from which the
exchange coefficients can be defined, where ζ = za/L:

rm =r0

{
1 +

r0
κ

[ln(za/zref )− χm(ζ)]
}−1

rh =r0

{
1 +

r0
κ

[ln(za/zref )− χh(ζ)]
}−1

re =rh

(6.20)

with the neutral coefficient

r0 =
κ

ln(zref/zi)
. (6.21)

The flux profile functions (integrals of the similarity functions mentioned above) for momentum
m and heat/moisture h are:

χm(ζ) = χh(ζ) = −5ζ (6.22)

for stable conditions (ζ > 0). For unstable conditions (ζ < 0):

χm(ζ) = ln{(1 +X(2 +X))(1 +X2)/8} − 2 tan−1(X) + 0.5π (6.23)

χh(ζ) = 2 ln{(1 +X2)/2} (6.24)

with

X =
{
max((1− 16ζ)1/2), 1

}1/2
. (6.25)

The stability parameter ζ is a function of the turbulent scales and thus the fluxes, so an
iterative solution is necessary. The coefficients are initialized with their neutral value r0, from
which the turbulent scales, stability, and then flux profile functions can be evaluated. This order
is repeated for five iterations to ensure convergence to an acceptable solution.
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The surface temperature derivatives required by the ice temperature calculation are evaluated
as:

dFLWUP

dTs
= −4εσsbT

3
s (6.26)

dFSH
dTs

= −ρacarhu∗ (6.27)

dFLH
dTs

= −ρaLsreu∗
dq∗(Ts)

dTs
(6.28)

where the small temperature dependencies of ca, the exchange coefficients rh and re and velocity
scale u∗ are ignored.

For diagnostic purposes, an air temperature (TREF ) at the reference height of z2m = 2m
is computed, making use of the stability and momentum/sensible heat exchange coefficients.
Defining bm = κ/rm, and bh = κ/rh, we have:

lnm = ln{(1 + z2m/za)(e
bm − 1)}

lnh = ln{(1 + z2m/za)(e
bm−bh − 1)}.

(6.29)

For stable conditions (ζ > 0)

fint = (lnm−(z2m/za)(bm − bh))/bh (6.30)

and for unstable conditions (ζ < 0)

fint = (lnm− lnh)/bh (6.31)

where fint is bounded by 0 and 1. The resulting reference temperature is:

Tref = Ts + (Ta − Ts)fint. (6.32)

6.5 Ice to Ocean Flux Exchange

This section is only relevant when CAM 3.0 is coupled to a slab ocean. When sea ice is present,
only a fraction of the melting potential from heat stored in the ocean actually reaches the ice
at the base and side. The melting potential is

Fmax = −hoρoCo(To − Tf ) (6.33)

where ho, ρo, Co, and To are the ocean layer thickness, density, heat capacity, and temperature
and Tf is the freezing temperature of the layer (assumed to be -1.8oC).

Usually only a fraction of Fmax is available to melt ice at the base and side, and these
fractions are determined from boundary-layer theories at the ice-ocean interfaces. However, it is
critical that the sum of the fractions never exceeds one, otherwise ice formation might become
unstable. Hence we compute the upper-limit partitioning of Fmax, even though these amounts
are rarely reached. The partitioning assumes Foi is dominated by shortwave radiation and that
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shortwave radiation absorbed in the ocean surface layer above the mean ice thickness causes
side melting and below it causes basal melting:

fbot =Re−h/ζ1 + (1−R)e−h/ζ2

fsid =1− fbot
(6.34)

where R = 0.68, ζ1 = 1.2 m−1, ζ2 = 28 m−1 [Paulson and Simpson] and fbot and fsid are
the fractions of bottom and side melt flux available, respectively. Thus the maximum fluxes
available for melt are fbotFoi and fsidFoi. The actual amount used for bottom melting, FBOT , is
based on boundary layer theory of McPhee [1992]:

FBOT = max(−ρoCochu∗(To − Tf ), fbotFmax) (6.35)

where the empirical drag coefficient ch=0.006 and the skin friction speed u∗ = 1 cm/s [Steele,
1995].

The heat flux for lateral melt is the product of the vertically-summed, thickness-weighted
energy of melting of snow and ice Etot with the interfacial melting rate Ma and the total floe
perimeter pf per unit floe area Af . The interfacial melting rate is taken from the empirical
expression of Maykut and Perovich [1987] based on Marginal Ice Zone Experiment observations:
Ma = m1(To−Tf )m2 , where m1 = 1.6×10−6m s−1 degm2 and m2 = 1.36. The lead-ice perimeter
depends on the ice floe distribution and geometry. For a mean floe diameter d and number of
floes nf , pf = nfπd and the floe area Af = ηlmd

2 [Rothrock and Thorndike, 1984]. Thus the
heat flux for lateral melt is Etot(pf/Af )Ma, so that the actual amount used is:

FSID = max(
Etotπ

ηlmd
m1(To − Tf )

m2 , fsidFmax) (6.36)

where ηlm = 0.66 [Rothrock and Thorndike, 1984]. Based partially on tuning and partially on
the results of floe distribution measurements, the mean floe diameter of d=300 m was chosen.
The ice area, volume, snow volume, and ice energy are all reduced by side melt in time ∆t by
the fraction Rside = |FSID∆t

Etot
|.

The heat flux that is actually used by the ice model is then:

FBOT + FSID ≤ Fmax. (6.37)

The net flux exchanged between ocean and ice Foi also includes the shortwave flux transmit-
ted to the ocean through sea ice

FSWo = I0vse
−κvsh + I0nie

−κnih (6.38)

(see Eq. 6.45). Hence
Foi = FSWo + FBOT + FSID. (6.39)

6.6 Brine Pockets and Internal Energy of Sea Ice

Shortwave radiative heating within the sea ice and conduction warms the sea ice and opens
brine pockets, melting the ice internally and storing latent heat. This storage of latent heat
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is accounted for explicitly by using a heat capacity and thermal conductivity that depend on
temperature and salinity following the work of Maykut and Untersteiner [1971] and Bitz and
Lipscomb [1999]. The equation for the heat capacity for sea ice c was first postulated by
Untersteiner [1961] and then later derived from first principles by Ono [1967]:

c(T, S) = co +
LiµS

T 2
, (6.40)

where co is the heat capacity for fresh ice, S is the sea ice salinity, T is the temperature, and
µ is an empirical constant relating the freezing temperature of sea water linearly to its salinity
(Tf = −µS).

Equation 6.40 can be multiplied by the sea ice density and integrated to give the amount of
energy Q required to raise the temperature of a unit volume of sea ice from T to T ′:

Q(S, T, T ′) = ρico(T
′ − T )− ρiLoµS

(
1

T ′
− 1

T

)
. (6.41)

If we take T ′ to be the melting temperature of ice with salinity S, then at T ′ sea ice consists
entirely of brine; that is, the brine pockets have grown to encompass the entire mass of ice.
The amount of energy needed to melt a unit volume of sea ice of salinity S at temperature T ,
resulting in meltwater at Tf , is equal to

q(S, T ) = ρico(−µS − T ) + ρiLo

(
1 +

µS

T

)
. (6.42)

q is referred to as the energy of melting of sea ice, and it appears in Eqs. 6.4 and 6.5.
The thermal conductivity for sea ice k is

k(S, T ) = ko +
βS

T
(6.43)

where ko and β are empirical constants from Untersteiner [1961].
The vertical salinity profile is prescribed based on the work of Maykut and Untersteiner

[1971] to be

S(w) = 1.6
[
1− cos

(
πw

0.407
0.573+w

)]
(6.44)

with the normalized coordinate w = z/h. This results in a profile that varies from 0 ppt at ice
surface increasing to 3.2 ppt at ice base. Snow is assumed fresh.

Shortwave radiative heating within the sea ice QSW is equal to the vertical gradient of the
radiative transfer within the sea ice:

QSW = − d

dz
{I0vse−κvsz + I0nie

−κniz} (6.45)

where I0vs and I0ni, the visible and near infrared radiation fluxes that penetrate the surface,
are reduced according to Beer’s law with the sea ice spectral extinction coefficients κvs and κni,
respectively. For simplicity no shortwave radiation is allowed to penetrate through snow and all
of the near-infrared radiation and 30% of the visible radiation is assumed to be absorbed at the
surface of sea ice (Gary Maykut, personal communication):
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I0vs = 0.70FSWvsn(1− fs) (6.46)

I0ni = 0.0 (6.47)

where fs is the horizontal fraction of surface covered by snow (see Eq. 6.11).

6.7 Open-Water Growth and Ice Concentration Evolu-

tion

When coupled to a mixed layer ocean, the ice model must account for new ice growth over
open water and other processes that alter the lateral sea ice coverage. New ice growth occurs
whenever the surface layer in the ocean is at the freezing temperature and the fluxes would
draw additional heat out of the ocean (see Eq. 5.1). In this case the additional heat comes from
freezing sea water, as the ocean cannot supercool in this model. Hence

qf
∂hnew
∂t

= Ffrz (1− A) (6.48)

where qf is the energy of melting for new ice growth (assuming the salinity is 4psu and the new
ice temperature is -1.8oC), hnew is the thickness of the new ice, and Ffrz is the additional heat
lost by slab ocean once it reaching the freezing point (see section 5.1). When new ice grows over
open water, it is recombined with the rest of the ice in the grid cell by first reshaping the new
ice volume so its thickness is at least 15 cm - this recreates ice-free ocean if the thickness was
below 15 cm. Then the new ice is added to the old ice in the grid cell and a new thickness and
concentration are computed by conserving ice volume.

In motionless sea ice model, such as this one, open water is not created by deformation as in
nature, and hence the ice concentration would tend to 0 or 100% unless open water production
is parameterized somehow. A typical method is to assume the ice thickness on a subgrid-scale
is linearly distributed between 0 and 2h, so that when ice melts vertically, it also reduces the
concentration: (

A− ∂A

∂t

)2

=
A2

hi

(
h− ∂hi

∂t

)
(6.49)

The ice concentration is also reduced by a lateral heat flux from the ocean (see Eq. 6.36):

∂A

∂t
= A

FSID
ETOT

(6.50)

although it is typically only a small contribution to the concentration tendency.
It is not possible to combine Eqs. 6.48–6.50 to make a single analytic expression for A in

Eq. 6.6. Instead the model using time splitting to solve the three equations independently.

6.8 Snow-Ice Conversion

Snow to ice conversion occurs if the snow layer overlying the sea ice becomes thick enough
to depress the snow-ice interface below freeboard (the ocean surface). This process is only

182



accounted for when CAM 3.0 is coupled to a mixed layer ocean, otherwise the snow depth is
merely capped at 0.5 m. The interface height is:

zint = h− (ρshs + ρih)/ρo. (6.51)

If zint < 0, then an amount of snow equal to −zintρi/ρs is removed from the snow layer and
added to the ice. It is assumed that ocean water floods the depressed snow, and then converts
it into ice of thickness −zint. The energy of melting of the newly formed ice is: qflood = qsρi/ρs.
Note that such conversion is assumed to occur with no heat or salt exchange with the ocean.

6.9 Numerics

The heat content change within the sea ice over the time interval t to t′ corresponding to
temperatures T and T ′, respectively, allowing for temperature dependent heat capacity, thermal
conduction (see section 6.6) and internal absorption of penetrating solar radiation, is given by:∫ T ′

T

ρicdT = ρico(T
′ − T )

(
1 +

LiµS

coT ′T

)
=

∫ t′

t

(
∂

∂z
k
∂T

∂z
+QSW

)
dt (6.52)

The heat equation is discretized using a backwards-Euler, space-centered scheme. Using a
staggered grid with Tl representing the layer temperature and kl representing conductivity at
the layer interfaces, for interior layers we have

ρico(T
m+1
l − Tml )

(
1 +

LiµSl

coT
m+1
l Tml

)
=

∆t

∆hm

(
kml+1

Tm+1
l+1 − Tm+1

l

∆hm
− kml

Tm+1
l − Tm+1

l−1

∆hm
+ Iml

)
,

(6.53)
where ∆hm = hm/L, the conductivity is

kml = k

(
Sl + Sl+1

2
,
Tml + Tml+1

2

)
, (6.54)

and the absorbed solar radiation is

Iml = I0vs(e
−κvsl∆hm − e−κvs(l+1)∆hm

) + I0ni(e
−κnil∆h

m − e−κni(l+1)∆hm

). (6.55)

See Figure 6.1 for a diagram on the vertical level structure.
For a purely implicit backward scheme, k should be evaluated at the m + 1 time level.

However, when k is evaluated at time level m, experiments show that the solution is stable and
converges to the same solution one gets when evaluating k at m+ 1.

The discrete heat equation for the surface layers is modified slightly from Eq. 6.53 to maintain
second-order accuracy for ∂T/∂z. The equation for the bottom layer (l = L) is

ρico(T
m+1
L − TmL )

(
1 +

LiµSL

coT
m+1
L TmL

)
=

∆t

∆hm

(
3kL+1

Tb − Tm+1
L

∆hm
− 1

3
kL+1

Tb − Tm+1
L−1

∆hm
− kmL

Tm+1
L − Tm+1

L−1

∆hm
+ ImL

)
,

(6.56)

where the L+ 1 interface in contact with the underlying ocean is assumed to be at temperature
Tb = −1.8◦C, and where the conductivity is simply kL+1 = k(Sb, Tb). The equations for the top
surface depend on the surface conditions, of which there are four possibilities, as outlined in
Table 6.2.
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Figure 6.1: Vertical grid of the sea ice (a) when snow is present and (b) when the ice is snow
free; ∆h is the thickness of an ice layer and hs is the thickness of the snow layer. The surface
temperature in either case is Ts. Modified from Bitz and Lipscomb [1999].

Table 6.2: Top Surface Boundary Cases
snow accumulated melting

case I yes no
case II no no
case III yes yes
case IV no yes

6.9.1 Case I: Snow accumulated with no melting

The discrete heat equation for the uppermost layer (i.e, the snow layer) is

ρscs(T
m+1
0 − Tm0 ) =

∆t

hms

[
km1

Tm+1
1 − Tm+1

0

(∆hm + hms )/2
− αks

Tm+1
0 − Tm+1

s

hms
− βks

Tm+1
1 − Tm+1

s

hms

]
. (6.57)

The heat equation solver is formulated for the general case where the heat capacity of snow cs
may be specified, although it is taken to be 0. The parameters α and β are defined to give
second-order accurate spatial differencing for ∂T/∂z across the changing layer spacing at the
snow/ice boundary;

α =
hms + ∆hm/2

hms /2

2

hms + ∆hm
hms

β =
−hms /2

hms + ∆hm/2

2

hms + ∆hm
hms .

(6.58)
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The conductivity at the snow–ice interface is found by equating conductive fluxes above and
below the interface;

km1 =
2ksk(S1, T

m
1 )

hms k(S1, Tm1 ) + ∆hmks

hms + ∆hm

2
. (6.59)

Because Ts is below melting, a flux boundary condition is used, and an additional equation is
required in the coupled set:

Fo(T
m+1
s ) + αks

Tm+1
0 − Tm+1

s

hms
+ βks

Tm+1
1 − Tm+1

s

hms
= 0, (6.60)

where Fo(T
m+1
s ) is the sum of all terms on the right-hand side of Eq. 6.2 except k∂T/∂z. The

net surface flux Fo(T
m+1
s ) is approximated as linear in Tm+1

s ; thus

Fo(T
m+1
s ) ∼ Fo(T

m
s ) +

∂Fo
∂Ts

∣∣∣∣
Tm

s

(Tm+1
s − Tms ). (6.61)

with
∂Fo
∂Ts

∣∣∣∣
Tm

s

=
∂FLWUP

∂Ts

∣∣∣∣
Tm

s

+
∂FSH
∂Ts

∣∣∣∣
Tm

s

+
∂FLH
∂Ts

∣∣∣∣
Tm

s

(6.62)

To simplify our set of equations, we define

ĉm+1
l = ρi

(
co +

LiµS

Tm+1
l Tml

)
, (6.63)

where the hat implies that ĉm+1
l depends on Tml as well as on Tm+1

l , and

χm+1
l =

∆t

∆hm
1

ĉm+1
l

. (6.64)

Also, let

kl =
kml

∆hm
. (6.65)

for l ≥ 2 and

k0 =
ks
hms

(6.66)

k1 =
km1

(∆hm + hms )/2
(6.67)

and suppress the index m for Iml , so that for interior layers (l = 1...L− 1),

Tm+1
l − Tml = χm+1

l

[
kl+1(T

m+1
l+1 − Tm+1

l )− kl(T
m+1
l − Tm+1

l−1 ) + Il
]

(6.68)

and at the bottom layer

Tm+1
L − TmL = χm+1

L

[
3kb(Tb − Tm+1

L )− 1

3
kb(Tb − Tm+1

L−1 )

− kL(Tm+1
L − Tm+1

L−1 ) + IL

]
(6.69)
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where kb = kL+1/∆h
m. The equation describing the snow layer is written

ρscs(T
m+1
0 −Tm0 ) =

∆t

hms

[
k1(T

m+1
1 − Tm+1

0 )− αk0(T
m+1
0 − Tm+1

s )− βk0(T
m+1
1 − Tm+1

s )
]
. (6.70)

Finally, the flux boundary condition becomes

Fo(T
m
s ) +

∂Fo
∂Ts

∣∣∣∣
Tm

s

(Tm+1
s − Tms ) = −αk0(T

m+1
0 − Tm+1

s )− βk0(T
m+1
1 − Tm+1

s ). (6.71)

The complete set of coupled equations for case I can be written with all of the terms that
explicitly depend on temperature at the m+ 1 time step gathered on the right-hand side:

−Fo(Tms ) +
∂Fo
∂Ts

∣∣∣∣
Tm

s

Tms = Tm+1
s

(
∂Fo
∂Ts

∣∣∣∣
Tm

s

− αk0 − βk0

)
+ Tm+1

0 αk0 + Tm+1
1 βk0

ρscsT
m
0 = Tm+1

s

(
−∆t

hms

)
(αk0 + βk0)

+ Tm+1
0

(
ρscs +

∆t

hms
(αk0 + k1)

)
+ Tm+1

1

∆t

hms
(βk0 − k1)

Tml + χm+1
l Il = Tm+1

l−1 (−χm+1
l kl)

+ Tm+1
l (1 + χm+1

l kl + χm+1
l kl+1)

+ Tm+1
l+1 (−χm+1

l kl+1)

TmL + χm+1
L IL +

8

3
χm+1
L kbTb = Tm+1

L−1

(
−1

3
χm+1
L kb − χm+1

L kL

)
+ Tm+1

L (1 + 3χm+1
L kb + χm+1

L kL).

(6.72)

These equations are subsequently related to the following abbreviated form

rs = Tm+1
s bs + Tm+1

0 cs + Tm+1
1 ds

r0 = Tm+1
s a0 + Tm+1

0 b0 + Tm+1
1 c0

r1 = Tm+1
0 a1 + Tm+1

1 b1 + Tm+1
2 c1

...

rL = Tm+1
L−1 aL + Tm+1

L bL.

(6.73)

The first two rows can be combined to eliminate the coefficient on Tm+1
1 in the first row, allowing

the set to be written in tridiagonal form:

r =


rsc0 − r0ds

r0
r1
...

 A =


bsc0 − a0ds csc0 − b0ds

a0 b0 c0
a1 b1 c1

. . .

 T =


Tm+1
s

Tm+1
0

Tm+1
1
...

 . (6.74)
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Because the matrix A depends on χm+1
l , which in turn depends on Tm+1

l , the system of equations
is solved iteratively. An initial guess is used for the temperature dependence of χm+1

l , and then
χm+1
l is updated successively after each iteration. Under most conditions the method approaches

a solution in less than four iterations with a maximum error tolerance of ∆Terr for Tl with an
initial guess of Tm+1

l = Tml .

6.9.2 Case II: Snow free with no melting

Nearly the same method applies when the ice is snow free, except one less equation is needed
to describe the evolution of the temperature profile. The equation for the uppermost ice layer
is written

ρico(T
m+1
1 − Tm1 )

(
1 +

LiµS1

coT
m+1
1 Tm1

)
=

∆t

∆hm

(
km2

Tm+1
2 − Tm+1

1

∆hm
− 3km1

Tm+1
1 − Tm+1

s

∆hm
+

1

3
km1

Tm+1
2 − Tm+1

s

∆hm
+ Im1

)
,

(6.75)

where km1 = k(S1, T
m
1 ). After the definitions from Eqs. 6.63–6.65 are applied, Eq. 6.75 becomes

Tm+1
1 − Tm1 = χm+1

1

[
k2(T

m+1
2 − Tm+1

1 )− 3k1(T
m+1
1 − Tm+1

s ) +
1

3
k1(T

m+1
2 − Tm+1

s ) + Im1

]
.

(6.76)
The flux boundary condition follows after linearizing Fo(T

m+1
s ) in Tm+1

s :

Fo(T
m
s ) +

∂Fo
∂Ts

∣∣∣∣
Tm

s

(Tm+1
s − Tms ) = −3k1(T

m+1
1 − Tm+1

s ) +
1

3
k1(T

m+1
2 − Tm+1

s ). (6.77)

The complete set of coupled equation includes Eqs. 6.72 for layers 2 to L with the following two
equations for the surface and upper ice layer:

−Fo(Tms ) +
∂Fo
∂Ts

∣∣∣∣
Tm

s

Tms = Tm+1
s

(
∂Fo
∂Ts

∣∣∣∣
Tm

s

− k1
8

3

)
+ Tm+1

1 3k1 + Tm+1
2 (−k1/3)

Tm1 + χm+1
1 Im1 = Tm+1

s

(
−χm+1

1 k1
8

3

)
+ Tm+1

1 (1 + χm+1
1 k2 + 3χm+1

1 k1)

+ Tm+1
2 (−χm+1

1 k2 −
1

3
χm+1

1 k1),

(6.78)

which can be written
rs = Tm+1

s bs + Tm+1
1 cs + Tm+1

2 ds

r1 = Tm+1
s a1 + Tm+1

1 b1 + Tm+1
2 c1.

(6.79)

These two equations can be combined to eliminate the coefficient on Tm+1
2 , allowing the set to

be written in tridiagonal form:

r =


rsc1 − r1ds

r1
r2
...

 A =


bsc1 − a1ds csc1 − b1ds

a1 b1 c1
a2 b2 c2

. . .

 T =


Tm+1
s

Tm+1
1

Tm+1
2
...

 . (6.80)
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As for case I, this system of equations must be solved iteratively.

6.9.3 Case III: Snow accumulated with melting

Case III describes melting conditions in the presence of a snow layer at the surface. Here a
temperature boundary condition is used, which simplifies the solution because the first row in
Eqs. 6.72 is not needed and Ts = Tmelt = 0◦C in the second row. Hence the complete set of
coupled equations is identical to Eqs. 6.72 for layers 1 to L, with the addition of an equation
for the snow layer,

ρscsT
m
0 + Tmelt

∆t

hs
(α+ β)k0 = Tm+1

0

[
ρscs +

∆t

hs
(k1 + αk0)

]
− Tm+1

1

∆t

hs
(k1 − βk0). (6.81)

This set of equations can be written in tridiagonal form, without the need to eliminate any
terms, as was required in cases I and II. However, the solution must still be iterated.

6.9.4 Case IV: No snow with melting

Like case III, case IV describes melting conditions, but here the sea ice is snow free. Hence,
the first two rows of Eqs. 6.72 are not needed, and Ts = Tmelt for l = 1. The set of coupled
equations comprises those from Eqs. 6.72 for layers 2 to L and the following equation for layer
1:

Tm1 +χm+1
1 Im1 +Tmeltχ

m+1
1 k1

8

3
= Tm+1

1

(
1 + χm+1

1 k2 + 3χm+1
1 k1

)
+Tm+1

2

(
−χm+1

1 k2 −
1

3
χm+1

1 k1

)
.

(6.82)
As in case III, this set of equations can immediately be written in the tridiagonal form and
solved iteratively.

6.9.5 Temperature Adjustment Due to Melt/Growth

The energy of melting of the ice and snow layers needs to be adjusted when the layer spacing
changes after growth/melt, evaporation/sublimation, and flooding (see Figure 6.2). This calcu-
lation is only made when CAM 3.0 is coupled to a mixed layer ocean. The adjusted energy of
melting is

q′l =


∑L

k=1wk,1qk − qflood
zint

∆h′
; l = 1∑L

k=1wk,lqk; 1 < l < L,∑L
k=1wk,Lqk + qbmax(

δh|basal

∆h′
, 0); l = L

(6.83)

where wk,l are weights computed from the relative overlap of layer l with each layer k from the
old layer spacing and ∆h′ is the new layer spacing.
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Figure 6.2: Diagram showing energy content before (a) and after (b) changing the layer spacing
for an ice model with four vertical layers that experiences melt at the top surface and growth
at the bottom surface. From Bitz [2000]
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Chapter 7

Initial and Boundary Data

7.1 Initial Data

In this section, we describe how the time integration is started from data consistent with the
spectral truncation. The land surface model requires its own initial data, as described by Bonan
[1996]. The basic initial data for the model consist of values of u, v, T, q,Π, and Φs on the
Gaussian grid at time t = 0. From these, U, V, T ′, and Π are computed on the grid using (3.11),
and (3.49). The Fourier coefficients of these variables Um, V m, T ′m,Πm, and Φm

s are determined
via an FFT subroutine (3.149), and the spherical harmonic coefficients T ′mn ,Πm

n , and (Φs)
m
n are

determined by Gaussian quadrature (3.150). The relative vorticity ζ and divergence δ spherical
harmonic coefficients are determined directly from the Fourier coefficients Um and V m using the
relations,

ζ =
1

a(1− µ2)

∂V

∂λ
− 1

a

∂U

∂µ
, (7.1)

δ =
1

a(1− µ2)

∂U

∂λ
+

1

a

∂V

∂µ
. (7.2)

The relative vorticity and divergence coefficients are obtained by Gaussian quadrature directly,
using (3.154) for the λ–derivative terms and (3.157) for the µ–derivatives.

Once the spectral coefficients of the prognostic variables are available, the grid–point values
of ζ, δ, T ′,Π, and Φs may be calculated from (3.180), the gradient ∇Π from (3.183) and (3.184),
and U and V from (3.189) and (3.190). The absolute vorticity η is determined from the relative
vorticity ζ by adding the appropriate associated Legendre function for f (3.117). This process
gives grid–point fields for all variables, including the surface geopotential, that are consistent
with the spectral truncation even if the original grid–point data were not. These grid–point
values are then convectively adjusted (including the mass and negative moisture corrections).

The first time step of the model is forward semi–implicit rather than centered semi–implicit,
so only variables at t = 0 are needed. The model performs this forward step by setting the
variables at time t = −∆t equal to those at t = 0 and by temporarily dividing 2∆t by 2 for this
time step only. This is done so that formally the code and the centered prognostic equations of
chapter 3 also describe this first forward step and no additional code is needed for this special
step. The model loops through as indicated sequentially in chapter 3. The time step 2∆t is set
to its original value before beginning the second time step.
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7.2 Boundary Data

In addition to the initial grid–point values described in the previous section, the model also
requires lower boundary conditions. The required data are surface temperature (Ts) at each
ocean point, the surface geopotential at each point, and a flag at each point to indicate whether
the point is land, ocean, or sea ice. The land surface model requires its own boundary data, as
described by Bonan [1996]. A surface temperature and three subsurface temperatures must also
be provided at non-ocean points.

For the uncoupled configuration of the model, a seasonally varying sea–surface tempera-
ture, and sea–ice concentration dataset is used to prescribe the time evolution of these surface
quantities. This dataset prescribes analyzed monthly mid-point mean values of SST and ice
concentration for the period 1950 through 2001. The dataset is a blended product, using the
global HadISST OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981 (see
Hurrell, 2002). In addition to the analyzed time series, a composite of the annual cycle for the
period 1981-2001 is also available in the form of a mean “climatological” dataset. The sea–
surface temperature and sea ice concentrations are updated every time step by the model at
each grid point using linear interpolation in time. The mid-month values have been evaluated
in such a way that this linear time interpolation reproduces the mid-month values.

Earlier versions of the global atmospheric model (the CCM series) included a simple land-
ocean-sea ice mask to define the underlying surface of the model. It is well known that fluxes of
fresh water, heat, and momentum between the atmosphere and underlying surface are strongly
affected by surface type. The CAM 3.0 provides a much more accurate representation of flux
exchanges from coastal boundaries, island regions, and ice edges by including a fractional spec-
ification for land, ice, and ocean. That is, the area occupied by these surface types is described
as a fractional portion of the atmospheric grid box. This fractional specification provides a
mechanism to account for flux differences due to sub-grid inhomogeneity of surface types.

In CAM 3.0 each atmospheric grid box is partitioned into three surface types: land, sea ice,
and ocean. Land fraction is assigned at model initialization and is considered fixed throughout
the model run. Ice concentration data is provided by the external time varying dataset described
above, with new values determined by linear interpolation at the beginning of every time-step.
Any remaining fraction of a grid box not already partitioned into land or ice is regarded as
ocean.

Surface fluxes are then calculated separately for each surface type, weighted by the appro-
priate fractional area, and then summed to provide a mean value for a grid box:

FψT = ai Fψi + ao Fψo + al Fψl , (7.3)

where F denotes the surface flux of the arbitrary scalar quantity ψ, a denotes fractional area,
and the subscripts T, i, o, and l respectively denote the total, ice, ocean, and land components of
the fluxes. For each time-step the aggregated grid box fluxes are passed to the atmosphere and
all flux arrays which have been used for the accumulations are reset to zero in preparation for
the next time-step. The fractional land values for CAM 3.0 were calculated from Navy 10-Min
Global Elevation Data. An area preserving binning algorithm was used to interpolate from the
high-resolution Navy dataset to standard model resolutions.

The radiation parameterization requires monthly mean ozone volume mixing ratios to be
specified as a function of the latitude grid, 23 vertical pressure levels, and time. The ozone path
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lengths are evaluated from the mixing–ratio data. The path lengths are interpolated to the model
η–layer interfaces for use in the radiation calculation. As with the sea–surface temperatures, the
seasonal version assigns the monthly averages to the mid–month date and updates them every
12 hours via linear interpolation. The actual mixing ratios used in the standard version were
derived by Chervin [1986] from analysis of Dütsch [1986].

The sub-grid scale standard deviation of surface orography is specified in the following man-
ner. The variance is first evaluated from the global Navy 10′ topographic height data over an
intermediate grid (e.g. 2◦ × 2◦ grid for T42 and lower resolutions, 1.67◦ × 1.67◦ for T63, and
1.0◦×1.0◦ for T106 resolution) and is assumed to be isotropic. Once computed on the appropri-
ate grid, the standard deviations are binned to the CAM 3.0 grid (i.e., all values whose latitude
and longitude centers fall within each grid box are averaged together). Finally, the standard
deviation is smoothed twice with a 1–2–1 spatial filter. Values over ocean are set to zero.
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Appendix A

Physical Constants

Following the American Meteorological Society convention, the model uses the International
System of Units (SI) (see August 1974 Bulletin of the American Meteorological Society, Vol.
55, No. 8, pp. 926-930).

a = 6.37122× 106 m Radius of earth
g = 9.80616 m s−2 Acceleration due to gravity
π = 3.14159265358979323846 Pi
ts = 86164.0 s Earth′s sidereal day
Ω = 2 ∗ π/ts [s−1] Earth′s angular velocity
σB = 5.67× 10−8 W m−2 K−4 Stefan− Boltzmann constant
k = 1.38065× 10−23 JK−1 Boltzmann constant
N = 6.02214× 1026 Avogadro′s number
R∗ = k N [JK−1] Universal gas constant
mair = 28.966 kg Molecular weight of dry air
R = R∗/mair [J kg−1 K−1] Gas constant for dry air
mv = 18.016 kg Molecular weight of water vapor
Rv = R∗/mv [J kg−1 K−1] Gas constant for water vapor
cp = 1.00464× 103 J kg−1 K−1 Specific heat of dry air at constant pressure
κ = 2/5 Von Karman constant
zvir = Rv/R− 1 Ratio of gas constants for water vapor and dry air
Lv = 2.501× 106 J kg−1 Latent heat of vaporization
Li = 3.337× 105 J kg−1 Latent heat of fusion
ρH2O = 1.0× 103 kg m−3 Density of liquid water
cpv = 1.81× 103 J kg−1 K−1 Specific heat of water vapor at constant pressure
Tmelt = 273.16 ◦K Melting point of ice
pstd = 1.01325× 105 Pa Standard pressure
ρair = pstd/(RTmelt) [kgm−3] Density of dry air at standard pressure/temperature

The model code defines these constants to the stated accuracy. We do not mean to imply that
these constants are known to this accuracy nor that the low-order digits are significant to the
physical approximations employed.
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Appendix B

Acronyms

ABL Atmospheric Boundary Layer
AMIP Atmospheric Model Intercomparison Project
AMWG Atmospheric Model Working Group
BATS Biosphere-Atmosphere Transfer Scheme
CAM Community Atmosphere Model
CAPE Convectively Available Potential Energy
CCM Community Climate Model
CCN Cloud Condensation Nucleus
CCSM Community Climate System Model
CFC Chloro-Fluoro Carbon
CFL Courant-Friedrichs-Levy Condition
CGD NCAR Climate and Global Dynamics Division
CGS Centimeters/grams/seconds
CKD Clough-Kneizys-Davies
CLM Community Land Model
CMS (NCAR) Climate Modeling Section
CSIM Community Sea-Ice Model
CWP Condensed Water Path
DAO (NASA Goddard) Data Assimilation Office
DAS Data Assimilation System
DISORT DIScrete-Ordinate method Radiative Transfer
ECMWF European Centre for Medium Range Forecasts
EOF Empirical Orthogonal Function
FASCODE FASt atmosphere Signature Code
FFSL Flux-Form Semi-Lagrangian Transport
FFT Fast Fourier Transform
FV/fv Finite Volume
GCM General Circulation Model
GENLN General Line-by-line Atmospheric Transmittance and Radiance Model
GEOS Goddard Earth Observing System
GFDL Geophysical Fluid Dynamics Laboratory
GSFC Goddard Space Flight Center
GMT Greenwich Mean Time
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HadISST Hadley Centre for Climate Prediction and Research SST
HITRAN High-resolution Transmission Molecular Absorption Database
ICA Independent Column Approximation
IPCC International Panel on Climate Change
KNMI Royal Netherlands Meteorological Institute
LBL Line by line
LCL Lifting condensation level
LSM Land Surface Model
MATCH Model for Atmospheric Transport and Chemistry
M/R Maximum/Random overlap
NASA National Space Administration
NCAR National Center for Atmospheric Research
NCEP National Center for Environmental Prediction
NOAA National Oceanographic and Atmospheric Administration
NWP Numerical Weather Prediction
OI Optimal Interpolation
OPAC Optical Properties of Aerosols and Clouds
PBL Planetary Boundary Layer
PCMDI Program for Climate Model Diagnosis and Intercomparison
PPM Piece-wise Parabolic Method
RHS Right Hand Side
RMS Root-mean Square
SCMO Sufficient Condition for Monotonicity
SI International System of Units
SOM Slab Ocean Model
SST Sea-surface temperature
TOA Top Of Atmosphere
TOM Top Of Model
UCAR University Corporation for Atmospheric Research
WKB Wentzel-Kramer-Brillouin approximation
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Appendix C

Resolution and dycore-dependent
parameters

The following adjustable parameters differ between various dynamical cores and model resolu-
tions in CAM 3.0.

Table C.1: Resolution and dycore-dependent parameters
Parameter FV T85 T42 T31 Description
qic,warm 8.e-4 4.e-4 4.e-4 4.e-4 threshold for autoconversion of

warm ice
qic,cold 11.e-6 16.e-6 5.e-6 3.e-6 threshold for autoconversion of cold

ice
ke,strat 5.e-6 5.e-6 10.e-6 10.e-6 stratiform precipitation evapora-

tion efficiency parameter
RH low

min .91 .91 .90 .88 minimum RH threshold for low sta-
ble clouds

RHhigh
min .80 .70 .80 .80 minimum RH threshold for high

stable clouds
k1,shallow 0.04 0.07 0.07 0.07 parameter for shallow convection

cloud fraction
k1,deep 0.10 0.14 0.14 0.14 parameter for deep convection

cloud fraction
pmid 750.e2 250.e2 750.e2 750.e2 top of area defined to be mid-level

cloud
c0,shallow 1.0e-4 1.0e-4 2.0e-4 5.0e-4 shallow convection precip produc-

tion efficiency parameter
c0,deep 3.5E-3 4.0E-3 3.0E-3 2.0E-3 deep convection precipitation pro-

duction efficiency parameter
ke,conv 1.0E-6 1.0E-6 3.0E-6 3.0E-6 convective precipitation evapora-

tion efficiency parameter
dif4 N/A 1.0e15 1.0e16 2.0e16 horizontal diffusion coefficient
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