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1. Introduction

The aim of this note is to give details of the SKEBS implementation in WRF, which

was first released as part of WRFV3.3. After the introduction, the second section derives

the streamfunction and potential temperature perturbations. Details of version history and

recommended namelist parameter values are given for each model release in section 3.

2. The stochastic kinetic-energy backscatter scheme (SKEBS)

This section describes details of the SKEBS implementation.

a. Definition of energies

Define a perturbation kinetic energy as

Ekin =
1

2
(u2 + v2) (1)

and a perturbation potential energy as

Epot =
1

2

cp
θ0

θ2 (2)

where θ is the potential temperature, cp = 1004 J
K

the specific heat capacity and θ0 = 300K a

reference potential temperature.

We assume that a fraction of the dissipated kinetic and potential energy is available as

forcing for the resolved flow leading to streamfunction tendency and temperature tendency

forcings. The backscattered fractions are assumed to be different for each energy component

(see Shutts (2005) for a discussion). In the following we will derive the perturbations for

streamfunction and potential temperature separately. Note that by perturbing streamfunction,

we assume that the backscattered kinetic energy only affects the rotational component of the

wind. This assumption is consistent with Shutts and Grey (1994), but depending on the

application, one might want to force divergent wind as well (e.g., Bowler et al.,2009).
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b. Derivation for streamfunction tendency perturbations

Let ψ′(x, y, t) be a 2D streamfunction tendency forcing, ψ′(x, y, t) = ∂ψ
∂t

, and u′(x, y, t)

and v′(x, y, t) the corresponding zonal and meridional wind tendency forcings expressed in 2D

Fourier space:

ψ′(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

ψ′k,l(t)e
2πi(kx/X+ly/Y ) (3)

u′(x, y, t) = −∂ψ
′(x, y, t)

∂y
= −2πi

Y

K/2∑
k=−K/2

L/2∑
l=−L/2

lψ′k,l(t)e
2πi(kx/X+ly/Y ) (4)

v′(x, y, t) =
∂ψ′(x, y, t)

∂x
=

2πi

X

K/2∑
k=−K/2

L/2∑
l=−L/2

kψ′k,l(t)e
2πi(kx/X+ly/Y ) , (5)

where k and l denote the (K+1)(L+1) wavenumber components in the zonal x- and meridional

y-direction in physical space and t denotes time. The Fourier modes e2πi(kx/X+ly/Y ) form an

orthogonal set of basis functions on the rectangular domain 0 < x < X and 0 < y < Y . If

the ψ′k,l are non-vanishing for at least one |k|< K
2

or |l|< L
2

and do not follow a white-noise

spectrum, the streamfunction perturbations will be spatially correlated in physical space. The

Fourier expansion implies doubly periodic boundaries.

Since the physical processes mimicked by this streamfunction tendency forcing have finite

correlation times, we introduce temporal correlations by evolving each spectral coefficient by

a first-order autoregressive (AR1) process:

ψ′k,l(t+ ∆t) = (1− α)ψ′k,l(t) + gk,l
√
αεk,l(t) (6)

where 1− α is the linear autoregressive parameter, gk,l the wavenumber-dependent noise am-

plitude and εk,l a complex-valued Gaussian white-noise process with mean 〈εk,l(t)〉 = 0 and

covariance
〈
εk,l(s)ε

∗
m,n(t)

〉
= σ2δk,mδl,nδs,t. The ∗ denotes the complex conjugate. In addition,

we assume α ∈ ( 0, 1] i.e., we exclude the cases of a non-fluctuating or decaying forcing. The

variance and autocorrelation of the AR1 are well known quantities (e.g., Storch and Zwiers,
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1999) and are given for the Markov process in (6) by:〈
ψ′k,l(t)ψ

′∗
k,l(t)

〉
=

g2
k,lσ

2α

1− (1− α)2
=

g2
k,lσ

2α

α(2− α)
=

g2
k,lσ

2

(2− α)
(7)

where the autoregressive parameter 1−α is defined in terms of the (discrete) timestep ∆t via

α =
∆t

τ
. (8)

Furthermore we assume that the noise amplitudes follow the power-law

gk,l = b ρβk,l (9)

with amplitude

b =

(
Bψα

2π2σ2Γψ∆t

) 1
2

, where Γψ =

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2β+2
k,l . (10)

The radial wavenumber is ρk,l is given by ρk,l =
√
k2/X2 + l2/Y 2 and Bψ denotes the

backscatter rate as Bψ = ∆Ekin

∆t
= E ′kin. And derived in Berner et al. (2009), this choice of b is

such that at each timestep the total kinetic energy of the full flow is changed by:

E ′kin =
2π2

∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2
k,l

〈
|ψk,l(t+ ∆t)|2 − |ψk,l(t)|2

〉
(11)

=
2π2

∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2
k,l

〈
|∆ψk,l(t)|2

〉
(12)

= 2π2∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

(
2

α
− 1

)
ρ2
k,l

〈
|ψ′k,l(t)|2

〉
(13)

(7)
=

2π2σ2∆t

(2− α)

(2− α)

α

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2
k,lg

2
k,l (14)

(8)
= 2π2σ2τ

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2
k,lg

2
k,l (15)

= 2π2σ2τ

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2β+2
k,l b2 (16)

= Bψ . (17)
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We note that (16) implies (10) and that E ′kin is independent of ∆t, 1
K

and 1
L

, if each is

small. Equation (13) is derived in appendix A (a copy of the appendix of Berner et al. (2009))

and states that the change of total kinetic energy is not strictly proportional to the variance of

the forcing, 2π2(∆t)2
∑K/2

k=−K/2
∑L/2

l=−L/2 ρ
2
k,l

〈
|ψ′k,l(t)|2

〉
, but is modified by the factor ( 2

α
− 1).

Berner et al. (2009) show that this modification is noise-induced and reflects the correlations

between the total streamfunction ψ(x, y, t) and the streamfunction forcing ψ′(x, y, t) at time

t due to their mutual dependence on the streamfunction forcing at the previous time t−∆t.

If there are no such correlations (i.e., α = 1 in the evolution equation (6)), this factor equals

one and the change in total kinetic energy equals that of the variance of the forcing assuming

that the forcing increments are instantaneously injected at each time step.

Secondly, we remark that the perturbation kinetic energy spectrum follows

Ekin
k,l ∝ ρ2

k,lg
2
k,l (18)

∝ ρ2β+2
k,l , (19)

which states that a streamfunction forcing with power-law ρβk,l will result in a forcing kinetic-

energy forcing of power-law ρ2β+2
k,l .

An example of the spectral amplitudes for the streamfunction forcing is given in Fig. 1.

The associated perturbation kinetic energy together with its power law behavior is displayed

in Fig. 2. According to (13), the relation between the backscatter rate for streamfunction and

the area A under the perturbation kinetic energy spectrum curve, A = ρ2
k,l

〈
|ψ′k,l(t)|2

〉
are given

by Bψ = 2π∆t (2−α)
α

A.

c. Derivation for potential temperature tendency perturbations

Let θ′(x, y, t) be a 2D potential temperature tendency forcing, θ′(x, y, t) = dθ
dt

,

θ′(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

θ′k,l(t)e
2πi(kx/X+ly/Y ) (20)
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Let the spectral coefficient describing the temperature tendency evolve as a first-order auto

regressive (AR1) process:

θ′k,l(t+ ∆t) = (1− α)θ′k,l(t) + hk,l
√
αεk,l(t) . (21)

with variance and auto correlation:〈
θ′k,l(t)θ

′∗
k,l(t)

〉
=
h2
k,lσ

2

2− α
and

〈
θ′k,l(t+ ∆t)θ′∗k,l(t)

〉〈
θ′k,l(t)θ

′∗
k,l(t)

〉 = 1− α . (22)

Furthermore assume that the noise amplitudes for temperature perturbations follow the

power-law

hk,l = f ργk,l (23)

with amplitude

f =

(
θ0αBθ

cpσ2Γθ∆t

) 1
2

, where Γθ =

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2γ
k,l . (24)

This choice of h is such that at each timestep ∆t the potential energy of the flow is changed

by Bθ = E ′pot = dEpot

dt
.

E ′pot =
cp
θ0∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

〈
|θk,l(t+ ∆t)|2 − |θk,l(t)|2

〉
(25)

=
cp
θ0∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

〈
|∆θk,l(t)|2

〉
(26)

=
cp∆t

θ0

K/2∑
k=−K/2

L/2∑
l=−L/2

(
2

α
− 1

)〈
|θ′k,l(t)|2

〉
(27)

=
cpσ

2∆t

θ0

(2− α)

α(2− α)

K/2∑
k=−K/2

L/2∑
l=−L/2

h2
k,l (28)

=
cpσ

2∆t

θ0α

K/2∑
k=−K/2

L/2∑
l=−L/2

f 2ρ2γ
k,l (29)

=
cpσ

2∆t

θ0α

K/2∑
k=−K/2

L/2∑
l=−L/2

θ0αBθ

cpσ2Γθ∆t
ρ2γ
k,l (30)

= Bθ . (31)
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In summary, a perturbation of the form (21) with noise amplitude (23) will generate tem-

perature perturbations with the spectrum:

Ek,l
pot ∝ h2

k,l (32)

∝ f 2ρ2γ
k,l , (33)

which states that a temperature forcing with power-law ργk,l will result in a forcing potential-

energy spectrum with power-law ρ2γ
k,l.

The spectral amplitude of the temperature forcing, its spectrum and power law behavior

are displayed in Figs. 1,2. According to (27), the relation between the area A =
〈
|θ′k,l(t)|2

〉
under the potential energy spectrum curve and the backscatter rate for temperature are given

by Bψ = cp
θ0

∆t (2−α)
α

A.

3. Version history and recommended namelist parameters

In the following we document the version history of SKEBS and list recommended namelist

parameters for each WRF release. For versions WRFV3.3 and WRFV3.3.1, Tab. 1 lists selected

namelist parameters and (currently) hard-coded parameter values and connects them to the

derivations in section 2.

a. SKEBS in version WRF3.1.1 (Pre-release and Manuscript)

All results of Berner et al. 2011 were done in with a branch of WRFV3.1.1, i.e., before the

official release of SKEBS in WRFV3.3.

• For WRFV3.1.1 and WRFV3.3 the formulation for the stochastic tendency perturbations

follows that of the physics tendencies, which are coupled to mass µ (in the model µ =

MU+MUB). The value of the backscatter rates expresses the magnitude of mass-coupled

tendencies, e.g.

µ
dustoch

dt
∝
(

(µ2Bψ)α

2π2σ2Γψ∆t

) 1
2

, (34)
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Description Symbol in Namelist Rec. (def.) value Rec. (def.) value

derivation name in WRFV3.3 in WRFV3.3.1

Backscatter rate for 115200 1.0E-05

streamfunction Bψ TOT BACKSCAT PSI (115200) (1.7E-05)

Backscatter rate for 2.0 1.0E-06

temperature Bθ TOT BACKSCAT T (2.0) (4.6E-05)

Decorrelation time τ TAU ∼0.5h ∼0.5h

Power law for stream-

function perturbations β REXPONENT PSI -1.83 -1.83

Power law for potential

temperature perturbations γ REXPONENT T -1.83 -1.83

Table 1. Description and recommended values of selected namelist or hard-coded parameters

where the mass µ is of order o(105)Pa. In addition, the streamfunction tendency was

erroneously coded as increment (∆ψ) rather than tendency (dψ
dt

), so that the value of

TOT BACKSCAT PSI really stands for
µ2Bψ
∆t2

= µ2 TOT BACKSCAT PSI/∆t2 and is

tuned to a value of 2.0 as reported in Berner et al. 2011.

• Analogously, the temperature tendency is assumed to be mass-coupled

µ
dθstoch

dt
∝
(

α(µ2Bθ)

2π2σ2Γθ∆t

) 1
2

, (35)

and the mass-coupling is again folded-in for the value of the backscattered dissipation

rate for temperature, resulting in a value of TOT BACKSCAT T =2.0E-06.

• Noise variance: σ2 = 1/12

• Model time step: ∆t = 240

• Decorrelation time: τ = 1667s = 0.46h
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• This results in an autoregressive parameter of 1− α = 1− τ
∆t

= 0.875.

b. SKEBS in version WRF3.3 (Original Release)

• For the release version, the values of the backscatter rates still have the mass weighting

folded in, but the streamfunction increment is now correctly coded as tendency. The

results in backscatter rates of TOT BACKSCAT PSI = 2.0∆t2 = 2 × 2402 = 115200

(bit-identical change) and TOT BACKSCAT T =2.0E-06.

• The power law exponents are set to β = γ = −1.83, leading to a -5/3-spectrum in

perturbation kinetic energy and a γ = −1.832-spectrum for perturbation potential energy

as function of radial wavenumber ρ.

• All other parameters are the same as in WRFV3.1.1.

c. SKEBS in version WRF3.3.1

Due to user request the stochastic tendencies were decoupled from mass and the formulation

for the potential temperature perturbations was changed. In hindsight these changes and

in particular their combination was unfortunate, since they require a change of the default

namelist parameters.

• Since the mass coupling factor is of order o(105)Pa, the decoupled stochastic ten-

dencies for u and v are on average smaller by a factor 105 over the coupled ten-

dencies. Since dustoch
dt

∝
√
Bψ, the backscatter rate for streamfunction was adjusted

TOT BACKSCAT PSI = 115200
(105)2

to get perturbations of the same order as before. For

simplicity (and to avoid suggesting that the rates were tuned to several decimal places)

the value was then rounded rounded to TOT BACKSCAT PSI = 1.0E-05. The default

value in the registry is erroneously set to 1.7E-05 which is too large for most applications.
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• Rather than using the formulation (2) the temperature perturbations were set to

dθstoch

dt
∝ Bθ

cp

(
α

4π2σ2Γθ

) 1
2

. (36)

This expression was chosen since it results in the correct units. However, the scaling with

regard to ∆t is incorrect and can result in too strong temperature forcings for timesteps

of < ∆t = 100s or so1.

• For timesteps in the range of 180s - 240s, perturbations of the same order as in

WRFV3.3 are obtained, if the the value of the dissipation rate for temperature is set to

TOT BACKSCAT T= 1.0E-06. This value is again rounded to several decimal places.

The default value in the registry is erroneously set to 4.6E-05 and for most applications

chosen too high.

• Note that this change made the potential temperature perturbations proportional to

Bθ, while the streamfunction perturbations remain proportional to
√
Bψ. So doubling

TOT BACKSCAT T and TOT BACKSCAT PSI will lead to a relative increase of the

temperature perturbations to the streamfunction perturbations.

• “I ran my simulations with SKEBS in WRFV3.3.1. Do I need to redo my

simulations.” No, in my opinion not at all. This documentation just states

why the user may get slightly different results in the future and how to

interpret the results he has. None of the issues documented here invalidates

the results obtained in WRFV3.3.1.

d. SKEBS in version WRFV3.4

No changes over WRFV3.3.1.

e. SKEBS in version WRFV3.5

No changes over WRFV3.3.1.

1Thanks to Glenn Creighton, Air Force Weather Agency, for bringing this issue to our attention.
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f. Known bugs to be corrected in future releases and recommendations

Below is a list of known bugs which will be corrected in future versions. Due to

the modular nature of the SKEBS implementation, interested users can download and

test a version of the module with the latest changes dyn em/module stoch.F available at

http://www.cgd.ucar.edu/∼berner/module stoch.F. This module should work in any version

of WRF, but a recompilation of the source code is necessary.

In addition this section contains a discussion of some of the (currently) hard-coded param-

eter values, which the scheme is sensitive to. Users might want to adjust these parameters

depending on their application. To facilitate this, we intend to make these parameters namelist

parameters in future releases. We do not intend to change the default values in the registry,

since it would change the behavior of the scheme in regard to previous versions.

i) Known bugs

• Following (2) the temperature perturbations should be proportional to

dθstoch

dt
∝
(

θ0αBθ

cpσ2Γθ∆t

) 1
2

(37)

(see (24)). The formulation introduced in WRFV3.3.1. together with the recommended

backscatter rate for temperature might lead to too large forcings, if a timestep of less

than 100s is used (see Fig.3). The new formulation (37) should automatically adjust the

forcing for any timestep.

• The maximum longitudinal and meridional perturbation wavenumbers were erroneously

truncated to 40. This leads to a drop for larger wavenumbers (> 40) in the perturbation

kinetic energy spectra (see Fig. 3). Generally speaking, the perturbations at the largest

scales will lead to the largest error growth, while perturbations at small scales tend to

be damped (e.g., Tribbia and Baumhefner, 2004). Hence we do not expect a noticeable

impact due to the erroneous truncation of wavenumbers > 40.
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ii) Discussion of selected (currently) hard-coded parameter values

• If the slope of perturbation kinetic energy as function of radial wavenumber follows a

power law behavior of r2β+2, it will follow a power law of k2β+2+1 in terms of longitudinal

wavenumber k (see appendix B). E.g., should the perturbation kinetic energy spectrum

have a power law behavior of k−
5
3 in terms of longitudinal wavenumber k, the parameter

β should be set to β = (−5
3
− 3)/2 = −2.33 (19).

• The decorrelation time of τ ∼ 0.5h seems rather short. A recommended values is τ =

3h = 10800s. However, since the choice of τ will affect the injected energy (13,27) the

backscatter rates might need to be re-tuned.

• The autoregressive process should be spun up (in start em.F) before the first update.
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APPENDIX A. Derivation of backscattered energy

This appendix is copied from Berner et al.(2009) and derives the global kinetic energy that

streamfunction perturbations of the form (6) inject into the resolved flow. Note that this

derivation was done for spherical harmonics. For definitions and details, we refer to Berner et

al.(2009).

The injected energy per unit mass, ∆E ′, is the difference between the total kinetic energy

per unit mass at time t+ ∆t and t:

∆E ′ =
1

4π

N∑
n=0

n∑
m=−n

n(n+ 1)

a2

〈
|ψmn (t+ ∆t)|2 − |ψmn (t)|2

〉
. (1)

The change in total kinetic energy is expressed in terms of spherical harmonics and takes the

spherical symmetry into account (e.g., Koshyk and Hamilton, 2001). The streamfunction at

time t+ ∆t is given by

ψmn (t+ ∆t) = ψmn (t) + Smn (t)∆t+ ψ′mn (t) , (2)

where Smn is the spectral source term due to advection, diffusion and physical parameteriza-

tions. Using (2) we arrive at:

∆E ′ = =
1

4π

N∑
n=0

n∑
m=−n

n(n+ 1)

a2

〈
|ψmn (t) + Smn (t)∆t+ ψ′mn (t)|2 − |ψmn (t)|2

〉
(3)

=
1

4π

N∑
n=0

n∑
m=−n

n(n+ 1)

a2

〈
2|ψmn (t)ψ′mn (t)|+ |ψ′mn (t)|2

〉
(4)

+
1

4π

N∑
n=0

n∑
m=−n

n(n+ 1)

a2

〈
2|(ψmn (t) + ψ′mn (t))Smn (t)∆t|2 + |Smn (t)∆t|2

〉
(5)

While the first term describes the energy injection due to interactions between the resolved

flow and the forcing, the second is directly associated with the energy injected by the stream-

function perturbations. The third and forth term contain the spectral source term Smn and its

interaction with the resolved flow. Since the source term is not correlated with the stream-

function perturbations, we can set 〈|ψ′mn (t)Smn (t)∆t|2〉 = 0.
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Let’s have a closer look at the interaction term 〈2|ψmn (t)ψ′mn (t)|〉. To calculate this term

we start from the propagation equation (2), multiply it by ψ′mn (t+ ∆t) and take the ensemble

average:

〈ψmn (t+ ∆t)ψ′mn (t+ ∆t)〉 = 〈ψmn (t)ψ′mn (t+ ∆t)〉+〈Smn (t)ψ′mn (t+ ∆t)〉∆t+〈ψ′mn (t)ψ′mn (t+ ∆t)〉 .

(6)

Using (6) to substitute ψ′mn (t + ∆t) and noting that 〈ψmn (t)ε(t)〉 = 0, 〈ψ′mn (t)ε(t)〉 = 0 and

〈|ψ′mn (t)Smn (t)∆t|2〉 = 0, we arrive at:

〈ψmn (t+ ∆t)ψ′mn (t+ ∆t)〉 = (1− α) [〈ψmn (t)ψ′mn (t)〉+ 〈ψ′mn (t)ψ′mn (t)〉] . (7)

Using the stationarity condition 〈ψmn (t+ ∆t)ψ′mn (t+ ∆t)〉 = 〈ψ′mn (t)ψ′mn (t)〉 yields:

〈ψmn (t)ψ′mn (t)〉 = (
1

α
− 1) 〈ψ′mn (t)ψ′mn (t)〉 . (8)

Note, that for α = 0, 〈ψ′mn (t)ψ′mn (t)〉 =const and we cannot derive (8) from (7), which is why

we exclude this case. Inserting (8) into (5) the total injected kinetic energy is derived to:

∆E ′ =
1

4π

N∑
n=0

n∑
m=−n

(
2

α
− 1)

n(n+ 1)

a2

〈
|ψ′mn (t)|2

〉
(9)

+
1

4π

N∑
n=0

n∑
m=−n

n(n+ 1)

a2

〈
2|ψmn (t)Smn (t)∆t|2 + |Smn ∆t|2

〉
. (10)

To make the problem tractable we neglect all terms with the source and sink term Smn (t). There

is no strict justification for making this assumption, but since the stochastic kinetic backscatter

algorithm makes many assumptions and simplifications, we are not overly concerned about

neglecting these terms. With this assumptions the injected kinetic energy is given by

∆E ′ =
1

4π

N∑
n=n

n∑
m=−n

(
2

α
− 1)

n(n+ 1)

a2

〈
|ψ′mn (t)|2

〉
. (11)

If the noise process had no temporal memory, α = 1, and forcing increments were injected

instantaneously at each time step, the injected energy would equal the kinetic energy of the
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streamfunction perturbations. However, since the noise process has temporal correlations, the

streamfunction and streamfunction perturbations are correlated and these correlations lead to

an increase in the injected energy (5).

With (22) and noting that
∑N

n=1

∑n
m=−n n(n + 1) =

∑N
n=1 n(n + 1)(2n + 1), we arrive at

the following analytic expression for the perturbation energy:

∆E ′ =
σz

4πa2

1

α

N∑
n=1

n(n+ 1)(2n+ 1)g2
n (12)

Assuming furthermore that the noise amplitudes gn follow the power-law gn = bnp and that

the globally-averaged kinetic energy increment ∆E ′ is given and fixed, we are solving (12) for

the amplitude function b,

b =

(
4πa2

σzΓ
α∆E ′

) 1
2

, (13)

where Γ =
∑N

n=1 n(n+ 1)(2n+ 1)n2p.
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a. Radial wavenumber

Here, we derive how a power law as function of radial wavenumber (as defined in SKEBS)

translates into a power law as function of longitudinal wavenumber. Latter formulation tends

to be more available from observations, e.g. Nastrom and Gage, 1985.

Let x and y be the zonal and meridional coordinates on a 2D Cartesian plane. The kinetic

energy is defined as:

T =
1

2X Y

∫ X/2

x=−X/2

∫ Y/2

y=−Y/2

[
u(x, y)2 + v(x, y)2

]
dxdy (14)

=
1

X Y

∫ X/2

x=−X/2

∫ Y/2

y=−Y/2
e(x, y) dxdy , (15)

with

 e(x, y) = 1
2

[u(x, y)2 + v(x, y)2] , for −X
2
< x < X

2
and −Y

2
< y < Y

2

e(x, y) = 0, for |x| > X
2

or |y| > Y
2

(16)

Assuming homogeneity, turbulence theory defines the kinetic energy as integral of the spectrum

as function of the radial wavenumber r = (k2 + l2)
1
2 :

T =

∫
r

E(r)dr . (17)

In the following we solve for E(r), so that we get the relationship between the kinetic-energy

spectrum in Cartesian and polar coordinates.

Expressing (16) in polar coordinates, and comparing to (17) yields:

T =

∫ X/2

x=−X/2

∫ Y/2

y=−Y/2
e(x, y)dxdy (18)

=

∫ √X2+Y 2/4

r=0

∫ π

φ=−π
e(r cosφ, r sinφ)rdφ︸ ︷︷ ︸

E(r)

dr (19)

Solving for E(r) we get:

E(r) =

∫ π

φ=−π
e(r cosφ, r sinφ)rdφ (20)

=

∫ X/2

x=−X/2

∫ Y/2

y=−Y/2
e(x, y)

xdy − ydx
r

. (21)
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From (21) we see that if the spectrum of E(r) follows a power law of E(r) ∼ rp as function

of radial wavenumber r then it follows a power law with slope E(k) ∼ kp−1 as function of

longitudinal wavenumber k.

16



Fig. 1. Spectral amplitudes of streamfunction (upper) and potential temperature (lower)

forcing for domain with extension 5436 km. Shown are amplitudes in 2D wavenumber space

(left) and as function of radial wavenumber (right). Black lines denote power laws of r2β,

where r is the radial wavenumber.
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Fig. 2. Kinetic energy and temperature forcing spectra for two different domains of extension

(blue: 15132 km (at equator) and red: 5436 km) and horizontal resolutions (50km, 36km).

Black lines denote power laws of k(2β+2)+1 (left) and k(2γ+1) (right), where k is the longitudinal

wavenumber (see Eqs.(19,33) and appendix).
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Fig. 3. Same as Fig. 2 but for SKEBS release in version WRFV3.3.1 (and earlier). Wavenum-

ber of k > 40 were not forced leading to the steep drop-off at large wavenumbers, more so for

u and v since they are computed as streamfunction derivatives.
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