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1. Introduction

The aim of this note is to give details of the SKEBS implementation in WRF, which
was first released as part of WRFV3.3. After the introduction, the second section derives
the streamfunction and potential temperature perturbations. Details of version history and

recommended namelist parameter values are given for each model release in section 3.
2. The stochastic kinetic-energy backscatter scheme (SKEBS)

This section describes details of the SKEBS implementation.
a. Definition of energies

Define a perturbation kinetic energy as
1
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and a perturbation potential energy as
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where ¢ is the potential temperature, ¢, = 1004% the specific heat capacity and 6y = 300K a
reference potential temperature.

We assume that a fraction of the dissipated kinetic and potential energy is available as
forcing for the resolved flow leading to streamfunction tendency and temperature tendency
forcings. The backscattered fractions are assumed to be different for each energy component
(see Shutts (2005) for a discussion). In the following we will derive the perturbations for
streamfunction and potential temperature separately. Note that by perturbing streamfunction,
we assume that the backscattered kinetic energy only affects the rotational component of the
wind. This assumption is consistent with Shutts and Grey (1994), but depending on the

application, one might want to force divergent wind as well (e.g., Bowler et al.,2009).



b. Derivation for streamfunction tendency perturbations

Let ¢'(z,y,t) be a 2D streamfunction tendency forcing, ¢'(z,y,t) = %—f, and u'(x,y,t)

and v'(z,y,t) the corresponding zonal and meridional wind tendency forcings expressed in 2D
Fourier space:
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where k and [ denote the (K +1)(L+1) wavenumber components in the zonal z- and meridional
y-direction in physical space and t denotes time. The Fourier modes e?™+*/X+w/Y) form an
orthogonal set of basis functions on the rectangular domain 0 < z < X and 0 <y < Y. If
the 1, are non-vanishing for at least one |k| <5 or [I] <% and do not follow a white-noise
spectrum, the streamfunction perturbations will be spatially correlated in physical space. The
Fourier expansion implies doubly periodic boundaries.

Since the physical processes mimicked by this streamfunction tendency forcing have finite
correlation times, we introduce temporal correlations by evolving each spectral coefficient by

a first-order autoregressive (AR1) process:

Uit + At) = (1= a)y, () + gravoer(t) (6)

where 1 — « is the linear autoregressive parameter, gi; the wavenumber-dependent noise am-
plitude and €;; a complex-valued Gaussian white-noise process with mean (e ;(¢)) = 0 and
covariance <ek7l(s)efn7n(t)> = 020k m0inds.. The x denotes the complex conjugate. In addition,
we assume « € (0,1] i.e., we exclude the cases of a non-fluctuating or decaying forcing. The

variance and autocorrelation of the AR1 are well known quantities (e.g., Storch and Zwiers,



1999) and are given for the Markov process in (6) by:
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where the autoregressive parameter 1 — « is defined in terms of the (discrete) timestep At via
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Furthermore we assume that the noise amplitudes follow the power-law
g1 = oy, (9)
with amplitude
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The radial wavenumber is pg; is given by pr; = /k?/X2?+1?/Y? and By denotes the
backscatter rate as By = 2%ki= = E/. . And derived in Berner et al. (2009), this choice of b is

such that at each timestep the total kinetic energy of the full flow is changed by:
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We note that (16) implies (10) and that Ejy, is independent of At, + and 1 , if each is
small. Equation (13) is derived in appendix A (a copy of the appendix of Berner et al. (2009))
and states that the change of total kinetic energy is not strictly proportional to the variance of
the forcing, 2m%(At)? K/2 k)2 ZIL,/EL/Z P ([ ()]?), but is modified by the factor (2 —1).
Berner et al. (2009) show that this modification is noise-induced and reflects the correlations
between the total streamfunction ¢ (z,y,t) and the streamfunction forcing ¢'(z,y,t) at time
t due to their mutual dependence on the streamfunction forcing at the previous time ¢ — At.
If there are no such correlations (i.e., & = 1 in the evolution equation (6)), this factor equals
one and the change in total kinetic energy equals that of the variance of the forcing assuming
that the forcing increments are instantaneously injected at each time step.

Secondly, we remark that the perturbation kinetic energy spectrum follows

Ekm X pi,zgi,z (18)

< p (19)

which states that a streamfunction forcing with power-law Pf,l will result in a forcing kinetic-
energy forcing of power-law plf 2,

An example of the spectral amplitudes for the streamfunction forcing is given in Fig. 1.
The associated perturbation kinetic energy together with its power law behavior is displayed
in Fig.2. According to (13), the relation between the backscatter rate for streamfunction and

the area A under the perturbation kinetic energy spectrum curve, A = p7 , (|¢4 ,(t)|*) are given

by By = 2rAtE=2 A,

c. Derivation for potential temperature tendency perturbations

dé

Let 0'(z,y,t) be a 2D potential temperature tendency forcing, 6'(z,y,t) = %,
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Let the spectral coefficient describing the temperature tendency evolve as a first-order auto

regressive (AR1) process:

Ot + At) = (1 — a)by, (1) + P/ e (t) . (21)

with variance and auto correlation:
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Furthermore assume that the noise amplitudes for temperature perturbations follow the
power-law
hii = f iy (23)
with amplitude
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This choice of h is such that at each timestep At the potential energy of the flow is changed
by By = E,, = L2t
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In summary, a perturbation of the form (21) with noise amplitude (23) will generate tem-

perature perturbations with the spectrum:
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which states that a temperature forcing with power-law /)Z,l will result in a forcing potential-
energy spectrum with power-law p?l

The spectral amplitude of the temperature forcing, its spectrum and power law behavior
are displayed in Figs. 1,2. According to (27), the relation between the area A = (|6},(t)[*)
under the potential energy spectrum curve and the backscatter rate for temperature are given

— o A+ (2=)
by By = g2 At-=—=A.
3. Version history and recommended namelist parameters

In the following we document the version history of SKEBS and list recommended namelist
parameters for each WRF release. For versions WRFV3.3 and WRFV3.3.1, Tab. 1 lists selected
namelist parameters and (currently) hard-coded parameter values and connects them to the

derivations in section 2.
a. SKEBS in version WRF3.1.1 (Pre-release and Manuscript)

All results of Berner et al. 2011 were done in with a branch of WRFV3.1.1, i.e., before the
official release of SKEBS in WRFV3.3.

e For WRFV3.1.1 and WRFV3.3 the formulation for the stochastic tendency perturbations
follows that of the physics tendencies, which are coupled to mass p (in the model p =
MU+MUB). The value of the backscatter rates expresses the magnitude of mass-coupled

tendencies, e.g.

dustoch <M2B1Z))a %
34
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Description Symbol in Namelist Rec. (def.) value | Rec. (def.) value
derivation name in WRFV3.3 in WRFV3.3.1
Backscatter rate for 115200 1.0E-05
streamfunction By, TOT_BACKSCAT _PSI (115200) (1.7E-05)
Backscatter rate for 2.0 1.0E-06
temperature By TOT_BACKSCAT_T (2.0) (4.6E-05)
Decorrelation time T TAU ~0.5h ~0.5h
Power law for stream-
function perturbations 6] REXPONENT_PSI -1.83 -1.83
Power law for potential
temperature perturbations v REXPONENT_T -1.83 -1.83

TABLE 1. Description and recommended values of selected namelist or hard-coded parameters

where the mass p is of order 0(10°)Pa. In addition, the streamfunction tendency was

erroneously coded as increment (A) rather than tendency (%), so that the value of

TOT BACKSCAT_PSI really stands for 22

At?

tuned to a value of 2.0 as reported in Berner et al. 2011.

e Analogously, the temperature tendency is assumed to be mass-coupled

dfstoch

1

dt

o (_al?By) \?
21202 At ’

= > TOT_BACKSCAT PSI/At? and is

(35)

and the mass-coupling is again folded-in for the value of the backscattered dissipation

rate for temperature, resulting in a value of TOT_BACKSCAT_T =2.0E-06.

e Noise variance: ¢% = 1/12

e Model time step: At = 240

e Decorrelation time: 7 = 1667s = (0.46h




e This results in an autoregressive parameter of 1 —a =1 — £ = 0.875.

b. SKEBS in version WRF3.3 (Original Release)

e For the release version, the values of the backscatter rates still have the mass weighting
folded in, but the streamfunction increment is now correctly coded as tendency. The
results in backscatter rates of TOT BACKSCAT _PSI = 2.0At? = 2 x 240% = 115200
(bit-identical change) and TOT_BACKSCAT_T =2.0E-06.

e The power law exponents are set to f = v = —1.83, leading to a -5/3-spectrum in
perturbation kinetic energy and a v = —1.83%-spectrum for perturbation potential energy

as function of radial wavenumber p.

e All other parameters are the same as in WRFV3.1.1.

c. SKEBS in version WRF3.3.1

Due to user request the stochastic tendencies were decoupled from mass and the formulation
for the potential temperature perturbations was changed. In hindsight these changes and
in particular their combination was unfortunate, since they require a change of the default

namelist parameters.

e Since the mass coupling factor is of order o(10%)Pa, the decoupled stochastic ten-
dencies for u and v are on average smaller by a factor 10° over the coupled ten-

dencies. Since d“il%di x /By, the backscatter rate for streamfunction was adjusted

TOT_BACKSCAT_PSI = 1&33920 to get perturbations of the same order as before. For
simplicity (and to avoid suggesting that the rates were tuned to several decimal places)
the value was then rounded rounded to TOT_BACKSCAT_PSI = 1.0E-05. The default

value in the registry is erroneously set to 1.7E-05 which is too large for most applications.



e Rather than using the formulation (2) the temperature perturbations were set to

1
destoch BG « 2
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This expression was chosen since it results in the correct units. However, the scaling with
regard to At is incorrect and can result in too strong temperature forcings for timesteps

of < At = 100s or so'.

e For timesteps in the range of 180s - 240s, perturbations of the same order as in
WRFV3.3 are obtained, if the the value of the dissipation rate for temperature is set to
TOT_BACKSCAT _T= 1.0E-06. This value is again rounded to several decimal places.
The default value in the registry is erroneously set to 4.6E-05 and for most applications

chosen too high.

e Note that this change made the potential temperature perturbations proportional to
By, while the streamfunction perturbations remain proportional to /By. So doubling

TOT_BACKSCAT_T and TOT_BACKSCAT_PSI will lead to a relative increase of the

temperature perturbations to the streamfunction perturbations.

e “I ran my simulations with SKEBS in WRFV3.3.1. Do I need to redo my
simulations.” No, in my opinion not at all. This documentation just states
why the user may get slightly different results in the future and how to
interpret the results he has. None of the issues documented here invalidates

the results obtained in WRFV3.3.1.
d. SKEBS in version WRFV3./
No changes over WRFV3.3.1.
e. SKEBS in version WRFV3.5

No changes over WRFV3.3.1.

!Thanks to Glenn Creighton, Air Force Weather Agency, for bringing this issue to our attention.



f- Known bugs to be corrected in future releases and recommendations

Below is a list of known bugs which will be corrected in future versions. Due to
the modular nature of the SKEBS implementation, interested users can download and
test a version of the module with the latest changes dyn_em/module_stoch.F available at
http://www.cgd.ucar.edu/~berner/module_stoch.F. This module should work in any version
of WRF, but a recompilation of the source code is necessary.

In addition this section contains a discussion of some of the (currently) hard-coded param-
eter values, which the scheme is sensitive to. Users might want to adjust these parameters
depending on their application. To facilitate this, we intend to make these parameters namelist
parameters in future releases. We do not intend to change the default values in the registry,

since it would change the behavior of the scheme in regard to previous versions.
1) KNOWN BUGS

e Following (2) the temperature perturbations should be proportional to

destoch x ( QOQBG )2 (37)

dt ¢,0°TpAL

(see (24)). The formulation introduced in WRFV3.3.1. together with the recommended
backscatter rate for temperature might lead to too large forcings, if a timestep of less
than 100s is used (see Fig.3). The new formulation (37) should automatically adjust the

forcing for any timestep.

e The maximum longitudinal and meridional perturbation wavenumbers were erroneously
truncated to 40. This leads to a drop for larger wavenumbers (> 40) in the perturbation
kinetic energy spectra (see Fig.3). Generally speaking, the perturbations at the largest
scales will lead to the largest error growth, while perturbations at small scales tend to
be damped (e.g., Tribbia and Baumhefner, 2004). Hence we do not expect a noticeable

impact due to the erroneous truncation of wavenumbers > 40.
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II) DISCUSSION OF SELECTED (CURRENTLY) HARD-CODED PARAMETER VALUES

e If the slope of perturbation kinetic energy as function of radial wavenumber follows a
power law behavior of 72%%2 it will follow a power law of £?**2*1 in terms of longitudinal
wavenumber k (see appendix B). E.g., should the perturbation kinetic energy spectrum
have a power law behavior of k=3 in terms of longitudinal wavenumber k, the parameter

3 should be set to § = (=2 —3)/2 = —2.33 (19).

e The decorrelation time of 7 ~ 0.5h seems rather short. A recommended values is 7 =
3h = 10800s. However, since the choice of 7 will affect the injected energy (13,27) the

backscatter rates might need to be re-tuned.

e The autoregressive process should be spun up (in start_em.F) before the first update.
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APPENDIX A. Derivation of backscattered energy

This appendix is copied from Berner et al.(2009) and derives the global kinetic energy that
streamfunction perturbations of the form (6) inject into the resolved flow. Note that this
derivation was done for spherical harmonics. For definitions and details, we refer to Berner et
al.(2009).

The injected energy per unit mass, AF’, is the difference between the total kinetic energy
per unit mass at time ¢t + At and ¢:

= LSS D e o) )

n=0 m=—n

The change in total kinetic energy is expressed in terms of spherical harmonics and takes the
spherical symmetry into account (e.g., Koshyk and Hamilton, 2001). The streamfunction at

time t + At is given by

U (4 At) = i (t) + S () AL+ () (2)
where S)" is the spectral source term due to advection, diffusion and physical parameteriza-
tions. Using (2) we arrive at:
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While the first term describes the energy injection due to interactions between the resolved
flow and the forcing, the second is directly associated with the energy injected by the stream-
function perturbations. The third and forth term contain the spectral source term 5] and its
interaction with the resolved flow. Since the source term is not correlated with the stream-

function perturbations, we can set {|¢/™(t)S™(t)At|*) =

12



Let’s have a closer look at the interaction term (2| (¢)/"(¢)[). To calculate this term
we start from the propagation equation (2), multiply it by ¢/ (¢ + At) and take the ensemble

average:

(U (t + AP (+ At)) = (@ (9" (E + AD)+(S ()" (E + Ab)) At (0w, (E + At))

(6)
Using (6) to substitute /™ (¢ + At) and noting that (" (t)e(t)) = 0, (¥ (t)e(t)) = 0 and
(Jim(t)Sm(t)At)?) = 0, we arrive at:

(U (t+ Aty (¢ + At)) = (1 — ) [(y" ()" (1)) + (" O¢" ()] - (7)
Using the stationarity condition (¢ (t + At)Y"(t + At)) = (L™ (t)y"(t)) yields:
(W (Oyn" () = (= = 1) (" (09" (1)) - (8)

Note, that for a = 0, (/7™(t)y™(t)) =const and we cannot derive (8) from (7), which is why

we exclude this case. Inserting (8) into (5) the total injected kinetic energy is derived to:

AB = 3 3 -0t o g
bonS S D s At + sy Ad?) (10)

To make the problem tractable we neglect all terms with the source and sink term S} (¢). There
is no strict justification for making this assumption, but since the stochastic kinetic backscatter
algorithm makes many assumptions and simplifications, we are not overly concerned about
neglecting these terms. With this assumptions the injected kinetic energy is given by

LSS 2D (1)

n=nm-=——n
If the noise process had no temporal memory, o = 1, and forcing increments were injected

instantaneously at each time step, the injected energy would equal the kinetic energy of the

13



streamfunction perturbations. However, since the noise process has temporal correlations, the
streamfunction and streamfunction perturbations are correlated and these correlations lead to

an increase in the injected energy (5).

With (22) and noting that 3>  S°" (n+1) =" n(n+1)(2n+ 1), we arrive at

m=—-n n

the following analytic expression for the perturbation energy:

N
. 1
AFE = 4;@2 - Z n(n+1)(2n +1)g2 (12)
n=1

Assuming furthermore that the noise amplitudes g, follow the power-law g, = bn? and that
the globally-averaged kinetic energy increment AFE’ is given and fixed, we are solving (12) for

the amplitude function b,

2 3
- (47“11 aAE’) , (13)

0z

where I' = S n(n 4 1)(2n + 1)n*.
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a. Radial wavenumber

Here, we derive how a power law as function of radial wavenumber (as defined in SKEBS)
translates into a power law as function of longitudinal wavenumber. Latter formulation tends
to be more available from observations, e.g. Nastrom and Gage, 1985.

Let 2 and y be the zonal and meridional coordinates on a 2D Cartesian plane. The kinetic

energy is defined as:

X/2 Y/2
T = —— / 2+ u(z,y)? dady 14
2XY Joexp2 Y/2 (@) 14
X2 Y/2
= e(z,y) dxdy, (15)
XY / —X/2 /y “v/2

e(z,y) = 3u(z,y)? +ov(z,y)?, for 5F <z < Jand - <y < &

with ? (16)

e(x,y) = 0, for|z| > % or|y| > 5
Assuming homogeneity, turbulence theory defines the kinetic energy as integral of the spectrum

as function of the radial wavenumber r = (k% + [2)2:

T = /E(r)dr. (17)

In the following we solve for F(r), so that we get the relationship between the kinetic-energy
spectrum in Cartesian and polar coordinates.

Expressing (16) in polar coordinates, and comparing to (17) yields:

X/2 Y/2
T = / e(z,y)dxdy (18)
=—X/2 Jy=-Y/2
VX21Y?2/4
= / / e(r cos ¢, rsin @) rde dr (19)
r=0 =—7
E(r)

Solving for E(r) we get:

E(r) = /” e(r cos ¢, rsin ¢)rde (20)

=—m

X/2 /Y/2 l'dy ydl’

Y/2 r

(21)
=-X/2
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From (21) we see that if the spectrum of E(r) follows a power law of E(r) ~ r? as function
of radial wavenumber r then it follows a power law with slope E(k) ~ kP! as function of

longitudinal wavenumber k.

16
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F1G. 1. Spectral amplitudes of streamfunction (upper) and potential temperature (lower)
forcing for domain with extension 5436 km. Shown are amplitudes in 2D wavenumber space
(left) and as function of radial wavenumber (right). Black lines denote power laws of 727,

where r is the radial wavenumber.
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FiG. 2. Kinetic energy and temperature forcing spectra for two different domains of extension
(blue: 15132 km (at equator) and red: 5436 km) and horizontal resolutions (50km, 36km).

Black lines denote power laws of k(28+2+1 (left) and k**V (right), where k is the longitudinal

wavenumber (see Eqgs.(19,33) and appendix).
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Forcing Kinetic Energy Spectra Forcing Temperature Spectra
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F1c. 3. Same as Fig. 2 but for SKEBS release in version WRFV3.3.1 (and earlier). Wavenum-
ber of k > 40 were not forced leading to the steep drop-off at large wavenumbers, more so for

u and v since they are computed as streamfunction derivatives.
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