Overview of WRF Physics Cumulus Parameterization

Jimy Dudhia NCAR/MMM

2021

This material is based upon work supported by the National Center for Atmospheric Research, which is a major fadility spore cred by the National Science Foundation under Cooperative Agreement No.

WRF Physics

- Radiation
 - Longwave (ra_lw_physics)
 - Shortwave (ra_sw_physics)
- Surface
 - Surface layer (sf_sfclay_physics)
 - Land/water surface (sf_surface_physics)
- PBL (bl_pbl_physics)
- Turbulence/Diffusion (diff_opt, km_opt)
- Cumulus parameterization (cu_physics)
- Microphysics (mp_physics)

Direct Interactions of Parameterizations

Cumulus Parameterization

Provides

Atmospheric heat and moisture/cloud and possibly momentum tendency profiles Surface (sub-grid) convective rainfall

Cumulus Parameterization and Cloud-Resolving

Cumulus Schemes

- Use for grid columns that completely contain convective clouds (typically dx > 10 km)
- Re-distribute air in column to account for vertical convective fluxes
 - Updrafts take boundary layer air upwards
 - Downdrafts take mid-level air downwards
- Schemes have to determine
 - When to trigger a convective column
 - How fast to make the convection act

Deep Convection

- Schemes work in individual columns that are considered convectively unstable
- Mass-flux schemes transport surface air to top of cloud and include environmental subsidence around clouds
 - Note: schemes have no net mass flux subsidence compensates cloud mass fluxes exactly
 - Environmental subsidence around cloud warms and dries troposphere removing instability over time
 - Dynamics may produce mean vertical motion in grid cell in response to scheme's heating profile
- Additionally downdrafts may cool PBL

Mass Flux Schemes

- Updraft mass changes with z
 - $d Mu / dz = Mu (\epsilon \delta)$
- Compensating subsidence balances

- Updraft transport of conserved moist static energy, h_u (J/kg)
 - $h_u = c_p T_u + L_v q_u + g z$
 - $\rho w_u h_u \sigma = M u h_u$
 - h_u(z) dilutes due to entrainment

Subsidence

• $d/dt(\rho \ \theta) = - d/dz(Ms$

Mass Flux Schemes

Updrafts

- Driven by buoyancy
- Moist air to upper troposphere
- Condensation to convective rainfall

Downdrafts

- Driven by convective rain evaporation
- Evaporatively cooled air to boundary layer

Subsidence

- Warms and dries troposphere
- Main warming effect in column

WRF Cumulus Parameterization Options

- Cumulus schemes fall into two main classes
 - Adjustment type (Betts-Miller-Janjic)
 - Relaxes towards a post-convective (mixed) sounding
 - Mass-flux type (all others in WRF)
 - Determines updraft (and often downdraft) mass flux and other fluxes (sometimes including momentum transport)

Cumulus schemes

cu_physics	Scheme	Reference	Added
1	Kain-Fritsch	Kain (2004, JAM)	2000
2	Betts-Miller-Janjic	Janjic (1994, MWR; 2000, JAS)	2002
3	Grell-Freitas	Grell and Freitas (2013, to be published)	2013
4	Old Simplified Arakawa- Schubert	Pan and Wu (1995, NCEP Office Note)	2002/ 2011
5	Grell-3	Grell and Devenyi (2002, GRL)	2008
6,16	Tiedtke	Tiedtke (1989, MWR), Zhang, Wang and Hamilton (2011, MWR)	2011, 2015
7	Zhang-McFarlane	Zhang and McFarlane (1995, AO)	2011
10	KF CuP	Berg and Stull (2004, 2005, JAS)	2016
11	Multi-Scale KF	Alapaty and Herwehe	2015
14	KSAS	Kwon and Hong (2017, MWR)	2017
84	New SAS (HWRF)	Han and Pan (2010,)	2012
93	Grell-Devenyi	Grell and Devenyi (2002, GRL)	2002
99	Old Kain-Fritsch	Kain and Fritsch (1990, JAS; 1993 Meteo. Monogr.)	2000
NCAR			

Triggers

- Clouds only activate in columns that meet certain criteria
 - Presence of some convective available potential energy (CAPE) in sounding
 - Not too much convective inhibition (CIN) in sounding (cap strength)
 - Minimum cloud depth from parcel ascent

Cloud Model

- The base of these schemes is a 1d cloud model that calculates vertical variation of updraft properties based on
 - Initial properties at base
 - Entrainment dilution from environment
 - Condensation to cloud particles
 - Conversion of cloud to rain that falls out of the updraft
 - Buoyancy that determines cloud top and detrainment level

Closures

- Closure determines cloud strength (massflux) based on various methods
 - Clouds remove CAPE over time
 - Specified CAPE-removal time scale (KF, ZM, Tiedtke, BMJ)
 - E.g. H/w_u cloud height over updraft speed
 - Quasi-equilibrium (Arakawa-Schubert) with large-scale destabilization d(CAPE)/dt (SAS, NSAS)
 - Moisture convergence
 - Low-level large-scale ascent (mass convergence)
- Scale-awareness is introduced by reducing deep convection mass flux based on criteria such as grid size (GF scheme, MSKF)

Ensemble methods

- GF, G3 and GD use ensemble of triggers and closures possibly with varying parameters (up to 144 members)
- Take mean of ensemble to feed back to model
- In principle, can be tuned to emphasize various members under different conditions

Shallow Convection

- Non-precipitating shallow mixing dries PBL, moistens and cools above
- This can be done by an enhanced mixing approach (SAS, GRIMS) or mass-flux approach (KF, NSAS, Tiedtke, G3, GF, Deng)
- May be useful at grid sizes that do not resolve shallow cumulus clouds (> 1 km)

Shallow Convection

- Cumulus schemes may include shallow convection (KF, SAS schemes, G3, GF, BMJ, Tiedtke)
- Standalone shallow schemes
 - UW Park-Bretherton (shcu_physics=2)
 - GRIMS shallow scheme (shcu_physics=3)
 - NSAS shallow convection (shcu_physics=4) to use with KSAS deep scheme
 - Deng shallow scheme (shcu_physics=5) new in V4.1
- Part of PBL schemes with mass-flux method
 - TEMF PBL option (bl_bl_physics=10)
 - GBM PBL option (bl_bl_physics=12)
 - QNSE-EDMF PBL (bl_bl_physics=4)
 - MYNN (EDMF option) (bl_pbl_physics =5)

Momentum Transport

- Some cumulus parameterizations also have momentum transport (SAS, NSAS, Tiedtke, ZM, GF)
- Most schemes transport momentum as a passive scalar but ZM and NSAS include a convective pressure gradient term

Cloud Detrainment

- Most schemes detrain cloud and ice at cloud top (except BMJ)
- KF schemes also detrain snow and rain
- These are then used by the microphysics

Radiation Interaction

- The Grell schemes, KF and MSKF interact using cu_rad_feedback=1 which allows them to provide a cloud fraction and amount in active grid columns
- Zhang-McFarlane is part of the CESM suite that also provides a part of the cloud fraction (used with CESM (or MG) microphysics and UW shallow scheme)
- If using the GFDL radiation scheme there is a Slingo method of cloud fraction from many schemes using precip rate, top and bottom, to compute a cloud fraction

Call Frequency (cudt)

- Time between cumulus scheme calls
- Typical value is 5 minutes
 - Note: for KF scheme this is also used for averaging time for vertical velocity trigger
 - Not used by G3 or GD schemes

Cumulus schemes

cu_physic s	Scheme	Cores	Moisture Tendencies	Momentu m Tendencie s	Shallow Convectio n	Radiatio n Interact n
1	Kain-Fritsch Eta	ARW NMM	Qc Qr Qi Qs	no	yes	yes
2	Betts-Miller- Janjic	ARW NMM	-	no	yes	GFDL
3	Grell-Freitas	ARW	Qc Qi	no	yes	yes
4	Old Simplified Arakawa- Schubert	ARW NMM	Qc Qi	yes (NMM)	yes (ARW)	GFDL
5	Grell-3	ARW	Qc Qi	no	yes	yes
6,16	Tiedtke	ARW	Qc Qi	yes	yes	no
7	Zhang- McFarlane	ARW	Qc Qi	yes	no	RRTMG
10	KF CuP	ARW	Qc Qi	no	yes	yes
14,96	KSAS, NSAS	ARW	Qc Qi	yes	no/yes	GFDL
84	New SAS (HWRF)	ARW NMM	Qc Qi	yes (NMM)	yes	GFDL
93	Grell-Devenyi	ARW	Qc Qi	no	no	
⁹⁹ NCAR UCAR	Old Kain-Fritsch	ARW	Qc Qr Qi Qs	-110	rio yes=RRTM	

Cumulus scheme: Recommendations

- dx ≥ 10 km:
 - Probably need cumulus scheme
 - These release instability gradually (prevent grid-point storms)
- dx \leq 3 km:
 - Probably do not need scheme (resolved/permitted by dynamics)
 - However, there are cases where the earlier triggering of convection by cumulus schemes help
- dx=3-10 km:
 - Scale separation is a question
 - Few schemes are specifically designed with this range of scales in mind
 - G3 has an option to spread subsidence in neighboring columns
 - GF, MSKF, KSAS automatically phase out doop convection at fine grid size

Issues with 2-way nesting when physics differs across nest boundaries (seen in precip field on parent domain)

 Best to use same physics in both domains or 1-way nesting or make nested domain large enough to keep parent effects away from interior

Direct Interactions of Parameterizations

Convection Summary

- Cumulus Parameterization and Cloud Resolving
- Cumulus Schemes
 - Deep convection, mass flux schemes, triggers, 1d cloud model, closures, ensemble methods, shallow convection, momentum transport, cloud detrainment, radiation interaction
- Recommendations
 - Grid size

