Overview of WRF Physics Radiation Physics

This material is based upon work supported by the National Center for Armospheric Research, which is a major facility spore and by the National Science Foundation under Cooperative Agreement No. 1852977.

WRF Physics

- Radiation
 - Longwave (ra_lw_physics)
 - Shortwave (ra_sw_physics)
- Surface
 - Surface layer (sf_sfclay_physics)
 - Land/water surface (sf_surface_physics)
- PBL (bl_pbl_physics)
- Turbulence/Diffusion (diff_opt, km_opt)
- Cumulus parameterization (cu_physics)
- Microphysics (mp_physics)

Direct Interactions of Parameterizations

Radiation

Provides Atmospheric temperature tendency profile Surface radiative fluxes

Atmosphere Radiation Processes

WRF Longwave Radiation Schemes (ra_lw_physics)

- Compute clear-sky and cloud upward and downward radiation fluxes
 - Consider IR emission from layers
 - Surface emissivity based on land-type
 - Flux divergence leads to cooling in a layer
 - Downward flux at surface important in land energy budget
 - IR radiation generally leads to cooling in clear air (~2K/day), stronger cooling at cloud tops and warming at cloud base

schemes

ra_lw_physi cs	Scheme	Reference	Adde d
1	RRTM	Mlawer et al. (1997, JGR)	2000
3	САМ	Collins et al. (2004, NCAR Tech. Note)	2006
4	RRTMG	lacono et al. (2008, JGR)	2009
5	New Goddard	Chou and Suarez (2001, NASA Tech Memo)	2011
7	FLG (UCLA)	Gu et al. (2011, JGR), Fu and Liou (1992, JAS)	2012
14	RRTMG-K	Baek (2017, JAMES)	2018
31	Held-Suarez		2008
99	GFDL	Fels and Schwarzkopf (1981, JGR)	2004

Longwave kadiation

		<u>scher</u>	nes		
ra_lw_ physic s	Scheme	Cores+Chem	Microphysics Interaction	Cloud Fraction	GHG
1	RRTM	ARW NMM	Qc Qr Qi Qs Qg	1/0	constan t or yearly GHG
3	CAM	ARW	Qc Qi Qs	Max- rand overlap	yearly CO2 or GHG
4	RRTMG	ARW +Chem(τ)	Qc Qr Qi Qs	Max- rand overlap	constan t or yearly GHG
5	New Goddard	ARW	Qc Qr Qi Qs Qg	Max- rand	constan t
7	FLG (UCLA)	ARW	Qc Qr Qi Qs Qg	1/0	constan t
14	RRTMG-K	ARW	Qc Qr Qi Qs	Max- rand overlap	constan t

i \i\

Clear Sky: IR-active Gases

- H2O from model prognostic vapor
- CO2 well-mixed, specified constant in whole atmosphere
 - Since V4.2 CO2 is calculated from year in RRTMG
 - For CAM, RRTM and RRTMG, GHG input file can update CO2, N2O and CH4
- O3 schemes have own climatologies
 - CAM and RRTMG have monthly, zonal, pressure-level data
 - Others use single profiles (Goddard has 5 profiles to choose from)

Radiation Effects in Clear Sky

Spectral Bands

- Schemes divide IR spectrum into bands dominated by different absorption gases
- For example, RRTMG bands 1-16
- Computations use look-up tables for each band
 - Tables were generated from results of line-by-line calculations (LBLRTM models)

Longwave Radiative Transfer

Upward and downward IR fluxes, F_u and F_d in W/m²

Temperature tendency is given by vertical flux convergence $\rho c_p dT_n/dt = d(F_u + F_d)/dz$

Longwave Radiative Transfer

F =

B(T,v) is Planck function of frequency ϵ is layer emissivity

For Fd_n integrate upwards from each level n

Sum *B(T)*Δε from levels above Emissivity ε depends on gases, clouds, aerosols, pressure, T

For Fuintegrate downwards from level

n

Clouds

- All schemes interact with resolved model cloud fields allowing for ice and water clouds and precipitating species
 - Some microphysics options pass own particle sizes to RRTMG radiation (cloud droplets, ice and snow)
 - Other combinations only use mass info from microphysics and assume effective sizes in radiation scheme
 - Rain and graupel effects are smaller than cloud/snow and not often explicitly considered
- Clouds strongly affect IR at all wavelengths (considered "grey bodies") and are almost opaque to it

Cloud Fractions

- Cloud fraction for microphysics clouds
 - icloud=1: Xu and Randall method
 - Fraction only < 1 for small cloud amounts, 0 for no resolved cloud
 - icloud=2: simple 1/0 method with small resolved cloud threshold
 - Icloud=3: Thompson option since V3.7 (RH dependent)
 - 1 > Fraction > 0 for high RH and no resolved clouds
- Cloud fraction for unresolved convective clouds
 - cu_rad_feedback = .true.
 - Only works for GF, G3, GD and KF options
 - ZM separately provides cloud fraction to radiation

Cloud Fraction

- Overlap assumptions needed with multiple layers of varying fraction
 - Random overlap

in recent versions

- Maximum overlap (clouds stacked as much as possible)
- Maximum-random overlap (maximum for neighboring cloudy layers, random for layers separated by clear air)
- Different WRF schemes may use different cloud overlapping assumption. For example, RRTMG, CAM use max-random overlap
- RRTMG radiation has overlap choice switch (*cldovrlp*)
 - adds an exponential and exponential-random overlap optic

WRF Shortwave Radiation Options (ra_sw_physics)

- Compute clear-sky and cloudy solar fluxes
- Include annual and diurnal solar cycles
- Most schemes consider downward and upward (reflected) fluxes
 - Dudhia scheme only has downward flux
- Primarily a warming effect in clear sky
- Important component of surface energy balance

Shortwave Radiation schemes

ra_sw_physi cs	Scheme	Reference	Added
1	Dudhia	Dudhia (1989, JAS)	2000
2	Goddard	Chou and Suarez (1994, NASA Tech Memo)	2000
3	САМ	Collins et a. (2004, NCAR Tech Note)	2006
4	RRTMG	lacono et al. (2008, JGR)	2009
5	New Goddard	Chou and Suarez (1999, NASA TM)	2011
7	FLG (UCLA)	Gu et al. (2011, JGR), Fu and Liou (1992, JAS)	2012
14	RRTMG-K	Baek et al. (2017, JAMES)	2018
99	GFDL	Fels and Schwarzkopf (1981, JGR)	2004

Shortwave Radiation

ra_lw_ physic s	Scheme	Cores+Chem	Microphysics Interaction	Cloud Fraction	Ozone
1	Dudhia	ARW NMM + Chem(PM2.5)	Qc Qr Qi Qs Qg	1/0	none
2	GSFC	ARW +Chem(τ)	Qc Qi	1/0	5 profiles
3	САМ	ARW	Qc Qi Qs	Max-rand overlap	Lat/ month
4	RRTMG	ARW +Chem(τ), NMM	Qc Qr Qi Qs	Max-rand overlap	1 profile or lat/month
5	New Goddard	ARW	Qc Qr Qi Qs Qg	Max-rand	5 profiles
7	FLG (UCLA)	ARW	Qc Qr Qi Qs Qg	1/0	5 profiles
14	RRTMG-K	ARW	Qc Qr Qi Qs	Max-rand overlap	1 profile or lat/month
99	GFDL	ARW NMM	Qc Qr Qi Qs	Max-rand overlap	Lat/date

Clear Sky and Aerosols

- Main gas effect in troposphere is water vapor absorption (CO2 minor effect)
- Aerosols would be needed for additional scattering (WRF-Chem interacts with Goddard and RRTMG shortwave)
 - Dudhia scheme has tunable scattering
 - RRTMG has climatological aerosol input options
 - aer_opt=1 Tegen (EC) global monthly climatology
 - aer_opt=2 user-specified properties and/or AOD map
 - aer_opt=3 Thompson microphysics nuclei (V3.8)

Ozone

- Ozone heating maintains warm stratosphere
- Important for model tops above about 20 km (50 hPa)
- Usually specified from profiles as with longwave options
 - Dudhia scheme has no ozone effect
 - CAM, RRTMG have zonal climatology
- CAM, RRTMG, Goddard can also handle trace gases mainly N2O and CH4 (set constant)

Spectral Bands

- Many schemes use multiple spectral bands
 - As with longwave, bands are ranges of wavelengths usually dominated by different gases (RRTMG bands 16-29)
- Look-up tables
 - Also as with longwave

Radiative Transfer

- In contrast to longwave, shortwave has no emission from the atmosphere but does have reflection from internal layers (aerosols and clouds) and as well as the surface
- This requires a matrix solution rather than integrals
 - Dudhia scheme is the exception that just does downward integral and neglects further interactions of reflected beam

Clouds and Cloud Fraction

- Similar considerations to longwave
- Interacts with model resolved clouds and in some cases cumulus schemes
- Fraction and overlap assumptions
- Cloud albedo reflection
- Surface albedo reflection based on land-surface type and snow cover

Slope effects on shortwave

- Available for all shortwave options
- Represents effect of slope on surface solar flux accounting for
 - direct sunlight fraction and
 - slope aspect relative to solar position
- Two levels of detail (namelist options):
 - slope_rad: activates slope effects may be useful for complex topography and grid lengths < 2 km.
 - topo_shading: shading of neighboring grids by mountains may be useful for grid lengths < 1 km.

Radiation Time Step (radt)

Radiation time-step recommendation

- Radiation is too expensive to call every step
- Frequency should resolve cloud-cover changes with time
- radt=1 minute per km grid size is about right (e.g. radt=10 for dx=10 km)
- Each domain can have its own value but recommend using same value on all 2-way nests

Surface Shortwave Fluxes

- swint_opt=1
 - provides a smooth surface downward flux over time (interpolates between radiation steps using cosine zenith angle and clearness index)
 - This also allows smoother variation of ground variables and fluxes (eliminates steps seen in time series plots)
- Diffuse, direct, and direct normal shortwave components are output (swddir, swddif, swddni) – aerosols mostly affect diffuse/direct ratio not so much the sum

Direct Interactions of Parameterizations

