How to Use the WRF Registry

Dave Gill

Introduction to WRF

WRF Best Practices

WRF Physics (Part 1)

WPS: Fundamental
Capabilities

|dealized Cases

WRF Physics (Part 2)

Real — Description of
General Functions

WRF-ARW Dynamics Solver

WRF 4DDA

Running the WPS

Nesting in WRF

Compiling WRF and WPS

WRF — Set-up and Run

NCL Post-processing Tool

Advanced Usage of the
WPS

Fundamentals in
Atmospheric Modeling

How to Use the WRF
Registry

Verification of WRF
Simulations

Overview of Physical
Parameterizations

Additional WRF Run-time
Options

WRF Computation

WREF Online Tutorial Suggestion:

New WREF users should initially view the presentations that are highlighted in
yellow. The remainder of the presentations may be viewed in any order.
Associated presentations are highlighted similarly, and may be viewed together

as a whole.

WRF Data, Utilities, & Post-
Processing

Outline — Part 1

* What is the WRF Registry

* Keyword syntax

* The BIG Three
— state
— rconfig
— package

WRF Software Architecture

Driver
Regist
Config Solve DM comm 10 APT SR
Inquiry OMP
: o | & o Data formats,| -
Config WRF Tile-callable 3 g | parallel 10 |-
Module Subroutines —E ﬁ E '

Text based file for real and WRF
Active data dictionary

Used with cpp to auto generate source

Controls/defines

Variables (I/0, comms, nest, time, stag)

Communications
namelist options

About 400k lines added to source
Easy — 3x the size since initial release
Compile-time option

Jclean

./configure

./compile

Registry.EM_COMMON (else lose cha. ges)

Registry Keywords

* Currently implemented as a text file: Registry/Registry.EM_COMMON
* Types of entry:

— dimspec— Describes dimensions that are used to define arrays in the
model

— state— Describes state variables and arrays in the domain structure
— /7— Describes local variables and arrays in solve

— lypedef— Describes derived types that are subtypes of the domain
structure

Registry Keywords

* Currently implemented as a text file: Registry/Registry.EM_COMMON
* Types of entry:

— dimspec— Describes dimensions that are used to define arrays in the
model

— state— Describes state variables and arrays in the domain structure
— /7— Describes local variables and arrays in solve

— lypedef— Describes derived types that are subtypes of the domain
structure

Registry Keywords

* Types of entry:
— rconfig— Describes a configuration (e.g. namelist) variable or array
— package— Describes attributes of a package (e.g. physics)
— halo— Describes halo update interprocessor communications
— period— Describes communications for periodic boundary updates
— xpose— Describes communications for parallel matrix transposes
— Include— Similar to a CPP #include file

Registry Keywords

* Types of entry:
— rconfig— Describes a configuration (e.g. namelist) variable or array
— package— Describes attributes of a package (e.g. physics)
— halo— Describes halo update interprocessor communications
— period— Describes communications for periodic boundary updates
— xpose— Describes communications for parallel matrix transposes
— Include— Similar to a CPP #include file

Registry State Entry

Type Sym Dims Use Tlev Stag IO Dname Descrip
state real tsk ij misc 1 — i0lrhusdf “TSK" ”SKIN TEMP"“
* Elements

— Entry. The keyword “state”

— [ype. The type of the state variable or array (real, double,
integer, logical, character, or derived)

— Sym. The symbolic name of the variable or array

— Dims. A string denoting the dimensionality of the array or a
hyphen (-)

— Use: A string denoting association with a solver or 4D scalar
array, or a hyphen

— MumlLev. An integer indicating the number of time levels (for
arrays) or hypen (for variables)

Registry State Entry

Type Sym Dims Use Tlev Stag IO Dname Descrip
state real tsk ij misc 1 = i0lrhud “TSK" ”SKIN TEMP"“
* Elements

— Stagger. String indicating staggered dimensions of variable (X, Y,
Z, or hyphen)

— /0. String indicating whether and how the variable is subject to
various 1/0 and Nesting

— [DName. Metadata name for the variable
— Units. Metadata units of the variable
— Descrip. Metadata description of the variable

State Entry: Defining a variable-set for an I/O stream

* Fields are added to a variable-set on an I/0 stream in the Registry

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

* 10 1s a string that specifies if the variable 1s to be
available to 1nitial, restart, or history I/O. The string
may consist of 'h' (subject to history output), 'i' (1nitial
dataset I/O), 'r' (restart dataset 1/0O).

The 'h', 'r', and '’ specifiers may appear in any order or
combination.

State Entry: Defining a variable-set for an I/O stream

* Fields are added to a variable-set on an I/0 stream in the Registry

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

* The ‘h’ and ‘I’ specifiers may be followed by an
optional mteger string consisting of ‘0’, ‘1°, ..., ‘9’

* Zero denotes that the variable 1s part of the principal
input or history I/O stream.

* The characters ‘1’ through ‘9’ denote one of the
auxiliary mput or history I/O streams.

* Double digit streams require “{}”” braces: 101{19} {24} -

State Entry: Defining a variable-set for an /O stream

The nesting info for each variable is co-located with the |/0

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

usdf refers to nesting options:
u=UP,d=DOWN, s =SMOOTH, f = FORCE

u — at end of each set of child time steps

d — at instantiation of child domain

f — at beginning of each set of child time steps
s — after each feedback

State Entry: Defining a variable-set for an /O stream

Only variables involved with 1/0,
communications, packages are required to
be state

Local variables inside of physics packages
are not controlled by the Registry

Rconfig Entry

Type Sym How set Nentries Default

rconfig integer spec bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements

— Entry. the keyword “rconfig”

— Jype. the type of the namelist variable (integer, real, logical,
string)

— Sym. the name of the namelist variable or array

— How set. indicates how the variable is set: e.g. namelist or
derived, and if namelist, which block of the namelist it is set in

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec _bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements

— Nentries. specifies the dimensionality of the namelist variable or
array. If 1 (one) it is a variable and applies to all domains;
otherwise specify max_domains (which is an integer parameter
defined in module_driver_constants.F).

— Default the default value of the variable to be used if none is
specified in the namelist; hyphen (-) for no default

Package Entry

* Elements

— Entry. the keyword “package”,
— Package name. the name of the package: e.g. “kesslerscheme’

— Associated rconfig choice. the name of a rconfig variable and the
value of that variable that choses this package

specification of microphysics options

package passiveqv mp physics== = moist:qv

package kesslerscheme mp physics==1 - moist:qv,qc,gr
package linscheme mp physics== -
moist:qv,qc,qr,qi,gs,qg

package ncepcloud3 mp physics== = moist:qv,qc,gr
package ncepcloud5b mp physics== = moist:qv,gc,qr,qi,gs

/| SN
o)

namelist entry that controls microphysics option [/3m¢
rconfig integer mp physics namelist,physics max domains \\?gﬁ

Package Entry

* Elements

— Package state vars. unused at present; specify hyphen (-)

— Associated variables: the names of 4D scalar arrays (moist,
chem, scalar) and the fields within those arrays this package
uses, and the state variables (state:u_gc, ...)

specification of microphysics options

package passiveqv mp physics== = moist:qv

package kesslerscheme mp physics==1 - moist:qv,qc,gr
package linscheme mp physics== -
moist:qv,qc,qr,qi,gs,qg

package ncepcloud3 mp physics== = moist:qv,qc,gr
package ncepcloud5b mp physics== = moist:qv,gc,qr,qi,gs

/| SN
o)

namelist entry that controls microphysics option [/3ﬁ¢
rconfig integer mp physics namelist,physics max domains \\?gﬁ

Review

* What is the WRF Registry

* Keyword syntax

* The BIG Three
— state
— rconfig
— package

Driver
Config Salks DM comm |1 app
Inquiry OMP '
. 3 & op Data formats,| -
Config WRF Tile-callable S 125 papld o
Meodule Subroutmes -E 2" pfu

Registry

Outline — Part 2

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Example 1: ADD output without recompiling

* Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt” (MAXDOM)
io form auxhist24 = 2 (choose an available stream)
auxhist24 interval = 10 (MAXDOM, every 10 minutes)

* Place the fields that you want in the named text file myoutfields. txt
+:h:24:RAINC,RAINNC

* Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “24" is the stream number

Example 1: ZAP output without recompiling

* Edit the namelist.input file, the time_control namelist record
iofields filename = "myoutfields.txt” (MAXDOM)

* Place the fields to remove in the named text file myoutfields. txt
-:h:0:wW,PB,P

* Where “~" means REMOVE this variable from the output stream, “h” is the history
stream, and “0” is the stream number (standard WRF history file)

Example 1: What streams can | use?

* Generally history streams 10 — 24 are OK
* Avoid 21, 22, 23

HINT: Think of a stream
as a separate file.

A history stream 1s a new
output file

* Need LOTS more streams?
— Edit WRF/arch/preamble

MAX_HISTORY = 25 <--- right now

— .[/clean —a, ./configure, ./compile, then re-run real and wrf |

Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Example 2: Add a variable to the namelist

* Use the examples for the rconfig section of the Registry

* Find a namelist variable similar to what you want

— Integer vsreal vslogical vscharacter
— Single value vsvalue per domain
— Select appropriate namelist record

* Insert your mods in all appropriate Registry files

Example 2: Add a variable to the namelist

 Remember that ALL Registry changes require that the WRF code be
cleaned and rebuilt
./clean -a
./configure
./compile em real

Example 2: Add a variable to the namelist

* Adding a variable to the namelist requires the inclusion of a new line
in the Registry file:

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option’
rconfig integer my_option_2 namelist,time_control max_domains O

* Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1, my_option_2

CALL nl_get_my_option_1(1, my_option_1) -
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 2: Add a variable to the namelist

* You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo (grid , ...)

USE module_domain
TYPE(domain) :: grid

print *,grid%my_option_1

Example 2: Add a variable to the namelist

* ... and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

USE module_configure
TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%emy_option_2

Example 2: Add a variable to the namelist

* What your variable looks like in the namelist.input file

&time_control

run days = 0,

run hours = 0,

run minutes = 40,

run_ seconds = 0,

start year = 2006, 2006, 2006,
my option 1 = 17

my option 2 =1, 2, 3

Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Example 3: Add an Array

* Adding a state array to the solver, requires adding a single line in the
Registry

* Use the Registry keyword information for a state or |1 variable

Example 3: Add an Array

* Select a variable similar to one that you would like to add
— 1d, 2d, or 3d
— Staggered (X, Y, Z, or not “-", do not leave blank)
— Associated with a package
— Part of a 4d array
— Input (012), output, restart
— Nesting, lateral forcing, feedback

Example 3: Add an Array

* Copy the “similar” field’s line and make a few edits
* Remember, no Registry change takes effect until a “clean -a” and

rebuild
state real h diabatic 1ikj misc 1 - r
"h _diabatic” "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i0l12rhdu=(copy fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i0l12rhdus
"HGT" "Terrain Height"
state real ht input ij misc 1 - -
"HGT INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - - 7

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K" =

Example 3: Add an Array

* Usually modify Registry.core _name_COMMON or
Registry.core _name, where core_name might be EM

state real h diabatic 1ikj misc 1 - r
"h _diabatic” "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i0l12rhdu=(copy fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i0l12rhdus
"HGT" "Terrain Height"
state real ht input ij misc 1 - -
"HGT INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - - 7

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K" L

Example 3: Add an Array

* Add a new 3D array that is sum of all moisture species, called
all_moist, in the Registry.EM_COMMON

— Type: real
— Dimensions: 3D and ikj ordering, not staggered

— Supposed to be output only (history): h
— Name in netCDF file: ALL_MOIST

state real all moist ikj
misc 1 - h

“ALL MOIST"

"sum of all of moisture species"”
"kg kg-1"

Example 3: Add an Array

Registry state variables become part of the derived data structure
usually called grid inside of the WRF model.

WRF -> WRF model top => integrate => solve_interface > solve
Each step, the grid construct is carried along for the ride

No source changes for new output variables required until below the
solver routine when dereferenced by first_rk_step_part1 for the
physics drivers

Example 3: Add an Array
* Top of solve_em.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
SUBROUTINE solve em (grid , &

config flags , &

Example 3: Add an Array

* Insolve_em, add the new array to the call for the microphysics driver
* Syntax for variable=local_variable is an association convenience
* All state arrays are contained within grid, and must be de-referenced

CALL microphysics driver(&
OV_CURR=moist (ims, kms,jms,P QV),
OC CURR=moist (ims,kms,jms,P QOC),
OR CURR=moist (ims, kms,jms,P OR),
OI CURR=moist(ims,kms,jms,P OT),
OS CURR=moist (ims,kms,jms,P 0OS),
OG CURR=moist (ims,kms,jms,P 0OG),
OH CURR=moist (ims, kms,jms,P OH),
all moist=grid%all moist -

2 @

Example 3: Add an Array
* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to
— Pass the variable through the argument list
— Declare our passed in 3D array

all moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), &
INTENT (OUT) :: all moist

Example 3: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Zero out the array at each time step

Zero out moisture sum.

DO j = jts,MIN(jde-1,jte)

DO k = kts,fkte

DO 1 = its,MIN(ide-1,ite)
all moist(i,k,j) = 0.0

END DO

END DO

END DO

Example 3: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— At the end of the routine, for each of the moist species that
exists, add that component to all_moist

DO j = jts,MIN(jde-1,jte)
DO k = kts,fkte
IF (£ OV) THEN
DO 1 = its,MIN(ide-1,ite)

all moist(i,k,j) = all moist(1i,k,j) + &
qv_curr(i,k,j)
END DO
END IF)

Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Example 4: Compute a Diagnostic

* Problem: Output global average and global maximum and lat/lon
location of maximum for 10 meter wind speed in WRF
* Steps:
— Modify solve to compute wind-speed and then compute the local
sum and maxima at the end of each time step

— Use reduction operations built-in to WRF software to compute the
global qualities

— Output these on one process (process zero, the “monitor”
process)

Example 4: Compute a Diagnostic

Compute local sum and local max and the local indices of the local maximum

--- File: dyn em/solve em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed

sum ws = 0.

max ws = 0.

DO j = Jjps, Jpe

DO i = ips, ipe
wind vel = sqrt(grid%ulO(i,j)**2+ gridsvl0(i,j)**2)
IF (wind vel .GT. max ws) THEN
max ws = wind vel

idex = 1i
jdex = j
ENDIF
sum ws = sum ws + wind vel
ENDDO B

ENDDO

Example 4: Compute a Diagnostic

 Compute global sum, global max, and indices of the global max (WRF

intrinsics)

! Compute global sum
sum ws = Wwrf dm sum real (sum ws)

! Compute global maximum and associated i,]j point
CALL wrf dm maxval real (max ws, idex, jdex)

Example 4: Compute a Diagnostic

* On the process that contains the maximum value, obtain the latitude and

longitude of that point; on other processes set to an artificially low value.

* The use parallel reduction to store that result on every process

IF (

gl
gl
ELSE
gl
gl
ENDIF

ips
Jps
at
on

at =
on =

.LE. idex .AND. idex .LE. ipe .AND. &
.LE. jdex .AND. jdex .LE. jpe) THEN

grid%xlat (idex, jdex)
grid%xlong (idex, jdex)

-99999.
-99999.

! Compute global maximum to find glat and glon
= wrf dm max real (glat)

glat
glon

wrf dm max real (glon) C

Example 4: Compute a Diagnostic

* Qutput the value on process zero, the “monitor”

! Print out the result on the monitor process
IF (wrf dm on monitor()) THEN

WRITE (outstring, *) 'Avg. ',sum ws/((ide-ids+1l) * (jde-jds+1))
CALL wrf message (TRIM(outstring))
WRITE (outstring,*) 'Max. ',max ws,' Lat. ',6glat,k &

' Lon. ',glon

CALL wrf message (TRIM(outstring))
ENDIF

Example 4: Compute a Diagnostic

* Qutput from process zero of a multi-process run

-—-— Output file: rsl.out.0000 ---

Avg. 5.159380
Max. 15.09370 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:03:00 on domain 1: 8.96500 elapsed secs.
Avg. 5.166167
Max. 14.97418 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:06:00 on domain 1: 4.89460 elapsed secs.
Avg. 5.205693
Max. 14.92687 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:09:00 on domain 1: 4.83500 elapsed secs.

Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Example 5: Input periodic SSTs

Add a new physics package with time varying input source to the
model

This is how we could supply a time varying value to the model for a
field that is traditionally fixed

Example is sea surface temperature

Example 5: Input periodic SSTs

Problem: adapt WRF to input a time-varying lower boundary
condition, e.g. SSTs, from an input file for a new surface scheme

Given: Input file in WRF 1/0 format containing 12-hourly SST's

Modify WRF model to read these into a new state array and make
available to WRF surface physics

Example 5: Input periodic SSTs

 Steps
— Add a new state variable and definition of a new surface layer
package (that will use the variable) to the Registry
— Add to variable stream for an unused Auxiliary Input stream
— Adapt physics interface to pass new state variable to physics
— Setup namelist to input the file at desired interval

Example 5: Input periodic SSTs

* Add a new state variable to Registry/Registry.EM_COMMON and put it
in the variable set for input on Auxiliary Input Stream #4

type symbol dims use tl stag io dname description

units
state real nsst i]j misc 1 - idh

"NEW_SST" "Time Varying SST" "K“

* Also added to History and Restart

e Result;

— 2-D variable named grid%nsst defined and available in
solve_em

— Dimensions: ims:ime, jms:jme
— Input and output on the Auxinput #4 stream will include the
variable under the name NEW_SST _

Example 5: Input periodic SSTs

Pass new state variable to surface physics

--- File: dyn em/module first rk step partl.F ---

CALL surface_ driver (

! Optional

,QV_CURR=moist (ims,kms,jms,P QV), F QV=F QV
,QC_CURR=moist (ims, kms,jms,P QC), F QC=F QC
QR CURR=moist (ims,kms,jms,P QR), F QR=F QR
,QI CURR=moist (ims,kms,jms,P QI), F QI=F QI
,QS CURR=moist (ims,kms,jms,P QS), F QS=F QS
, QG _CURR=moist (ims,kms,jms,P QOG), F QG=F QG

,NSST=grid%nsst

R 2 Ry R

,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol, MOL=grid%mol
,RAINBL=grid%rainbl, SR=grid%em sr
,RAINNCV=grid%rainncv, REGIME=regime, T2=grid%t2, THC=grid%thc

&
&
&
&
&
&
&
&
&
&

new

Example 5: Input periodic SSTs

* Add new variable nsst to Physics Driver in Mediation Layer

--- File: phys/module surface driver.F ---
SUBROUTINE surface driver (&

! Other optionals (more or less em specific)

& ,nsst &

& ,capg,emiss, hol,mol &

& ,rainncv,rainbl, regime, t2, thc &

& ,dsg,qvg,qcg,soiltl, tsnav &

& ,smfr3d, keepfr3dflag &
))
REAL, DIMENSION(ims:ime, jms:jme), |[OPTIONAL,| INTENT (INOUT):: nsst

* By making this an “Optional” argument, we preserve the driver’s
compatibility with other cores and with versions of WRF where this
variable hasn’t been added.

Example 5: Input periodic SSTs

Add call to Model-Layer subroutine for new physics package to Surface Driver

--- File: phys/module surface driver ---

1SOMP PARALLEL DO &
1SOMP PRIVATE (ij, i, j, k)
DO ij = 1 , num tiles
sfclay select: SELECT CASE (sf sfclay physics)

CASE (SFCLAYSCHEME)

CASE (NEWSFCSCHEME) ! <- This is defined by the Registry “package” entry

IF (PRESENT (nsst)) THEN
CALL NEWSFCCHEME (&

nsst, &
ids,ide, jds,jde, kds, kde, &
ims,ime, jms,jme, kms, kme, &
i start(ij),i_end(ij), J_start(ij),j_end(ij), kts, kte)

ELSE

CALL wrf error fatal('Missing argument for NEWSCHEME in surface driver')
ENDIF

END SELECT sfclay_ select
ENDDO
1SOMP END PARALLEL DO

L
Note the PRESENT test to make sure new optional variable nsst is available

Example 5: Input periodic SSTs

* Add definition for new physics package NEWSCHEME as setting 4 for
namelist variable sf_sfclay_physics

rconfig integer sf sfclay physics namelist,physics max_domains 0

package sfclayscheme sf sfclay physics==1
package myjsfcscheme sf sfclay physics==2
package gfssfcscheme sf sfclay physics==3
package newsfcscheme sf sfclay physics==4

* This creates a defined constant NEWSFCSCHEME and represents
selection of the new scheme when the namelist variable
sf_sfclay_physics is set to ‘4’ in the namelist.input file

 clean -a and recompile so code and Registry changes take ~* Fct

Example 5: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

--- File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory

Example 5: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

--- File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory

Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Tracer Example

1. Modify Registry for new fields.
Use the “tracer” array with a new 3D component

Use existing NML option

RUSSIA
RYUSHU HOKKAIDO
T~ ke Tokara- Sapporog '%‘"
. . O Con shoto Park
2. Initialize data in real. o
) .. , shotd Sea of Japan .Aomon
Identify (i,j) location , gl
()kmawa-homb.?t;mwa
Spread in “PBL” Miyako-shotd Nigita ©Sendal
y E
Yacyama-shotd N:::.h':mo “(,O(~ ey
SOUTH JAPAN
KOREA Iatsue MtFnj‘l 9;3:“0 OCEAN
3. Set values in solver. Hiroshima o ffae® Nagoys &5
“Release” per time step kyisao B8 gukoku 2\
0 5 km
T I T
See Inset Park | g

Tracer Example

Registry/Registry.EM add our new field “PLUME” as part of “TRACER” array.

New tracer for example
state real plume ikjftb tracer \
1 - irhusdf=(bdy interp:dt) \
"PLUME" "Fukushima Tracer" " "
4D arrays need an associated package
package tracer test3 tracer opt== -\

tracer:plume

Tracer Example

Modify the real and WRF programs to initialize and continuously re-supply the
“PLUME” array

dyn_em/module_initialize_real.F (initial value from real.exe)

dyn_em/solve_em.F (continuous plume in wrf.exe)

! Add in the Fukushima initial venting.

IF ((its .LE. 50) .AND. (ite .GE. 50) .AND. &
(jts .LE. 50) .AND. (jte .GE. 50)) THEN
tracer(50,1:5,50,P plume) = 1. o
END IF L)

Tracer Example

* Modify the test/em_real/namelist.input file

* Include the new settings for the tracer option required from the Registry file

&dynamics
tracer opt = 3, 3, 3,

23N

Fukushima 11-14 Mar 2011, 30-km, 100x1¢0 (-}

130°E 135°E 140°E 145°E
Fuleuahima 11-14 Mar 2011, 30-km, 100x100 {-)

150"E

Review

— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Review

— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer

Questions?

WRF User Support Statement:

https://www2.mmm.ucar.edu/wrf/users/wrf_support_statement.html

Questions about the WRF modeling system should be directed to the

WRF Forum: forum.mmm.ucar.edu

Resources

Users may take advantage of the WRF homepage:

www2.mmm.ucar.edu/wrf/users

The WRF and WPS source codes are maintained with github at
github.com/wrf-model/WRF and github.com/wrf-model/WPS

