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Outline — Part 1

* What is the WRF Registry

* Keyword syntax

* The BIG Three
— state
— rconfig
— package



WRF Software Architecture
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Text based file for real and WRF
Active data dictionary

Used with cpp to auto generate source
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About 400k lines added to source
Easy — 3x the size since initial release
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Registry.EM_COMMON (else lose cha. ges)




Registry Keywords

* Currently implemented as a text file: Registry/Registry.EM_COMMON
* Types of entry:

— dimspec— Describes dimensions that are used to define arrays in the
model

— state— Describes state variables and arrays in the domain structure
— /7— Describes local variables and arrays in solve

— lypedef— Describes derived types that are subtypes of the domain
structure



Registry Keywords

* Currently implemented as a text file: Registry/Registry.EM_COMMON
* Types of entry:

— dimspec— Describes dimensions that are used to define arrays in the
model

— state— Describes state variables and arrays in the domain structure
— /7— Describes local variables and arrays in solve

— lypedef— Describes derived types that are subtypes of the domain
structure



Registry Keywords

* Types of entry:
— rconfig— Describes a configuration (e.g. namelist) variable or array
— package— Describes attributes of a package (e.g. physics)
— halo— Describes halo update interprocessor communications
— period— Describes communications for periodic boundary updates
— xpose— Describes communications for parallel matrix transposes
— Include— Similar to a CPP #include file



Registry Keywords

* Types of entry:
— rconfig— Describes a configuration (e.g. namelist) variable or array
— package— Describes attributes of a package (e.g. physics)
— halo— Describes halo update interprocessor communications
— period— Describes communications for periodic boundary updates
— xpose— Describes communications for parallel matrix transposes
— Include— Similar to a CPP #include file



Registry State Entry

# Type Sym Dims Use Tlev Stag IO Dname Descrip
state real tsk ij misc 1 — i0lrhusdf “TSK" ”SKIN TEMP"“
* Elements

— Entry. The keyword “state”

— [ype. The type of the state variable or array (real, double,
integer, logical, character, or derived)

— Sym. The symbolic name of the variable or array

— Dims. A string denoting the dimensionality of the array or a
hyphen (-)

— Use: A string denoting association with a solver or 4D scalar
array, or a hyphen

— MumlLev. An integer indicating the number of time levels (for
arrays) or hypen (for variables)



Registry State Entry

# Type Sym Dims Use Tlev Stag IO Dname Descrip
state real tsk ij misc 1 = i0lrhud “TSK" ”SKIN TEMP"“
* Elements

— Stagger. String indicating staggered dimensions of variable (X, Y,
Z, or hyphen)

— /0. String indicating whether and how the variable is subject to
various 1/0 and Nesting

— [DName. Metadata name for the variable
— Units. Metadata units of the variable
— Descrip. Metadata description of the variable



State Entry: Defining a variable-set for an I/O stream

* Fields are added to a variable-set on an I/0 stream in the Registry

# Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

* 10 1s a string that specifies if the variable 1s to be
available to 1nitial, restart, or history I/O. The string
may consist of 'h' (subject to history output), 'i' (1nitial
dataset I/O), 'r' (restart dataset 1/0O).

The 'h', 'r', and '’ specifiers may appear in any order or
combination.



State Entry: Defining a variable-set for an I/O stream

* Fields are added to a variable-set on an I/0 stream in the Registry

# Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

* The ‘h’ and ‘I’ specifiers may be followed by an
optional mteger string consisting of ‘0’, ‘1°, ..., ‘9’

* Zero denotes that the variable 1s part of the principal
input or history I/O stream.

* The characters ‘1’ through ‘9’ denote one of the
auxiliary mput or history I/O streams.

* Double digit streams require “{}”” braces: 101{19} {24} -



State Entry: Defining a variable-set for an /O stream

The nesting info for each variable is co-located with the |/0

# Type Sym Dims Use Tlev Stag IO Dname Descrip

state real tsk ij misc 1 - “TSK" “SKIN TEMP"

usdf refers to nesting options:
u=UP,d=DOWN, s =SMOOTH, f = FORCE

u — at end of each set of child time steps

d — at instantiation of child domain

f — at beginning of each set of child time steps
s — after each feedback



State Entry: Defining a variable-set for an /O stream

Only variables involved with 1/0,
communications, packages are required to
be state

Local variables inside of physics packages
are not controlled by the Registry




Rconfig Entry

# Type Sym How set Nentries Default

rconfig integer spec bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements

— Entry. the keyword “rconfig”

— Jype. the type of the namelist variable (integer, real, logical,
string )

— Sym. the name of the namelist variable or array

— How set. indicates how the variable is set: e.g. namelist or
derived, and if namelist, which block of the namelist it is set in




Rconfig Entry

# Type Sym How set Nentries Default
rconfig integer spec _bdy width namelist,bdy control 1 1

* This defines namelist entries

* Elements

— Nentries. specifies the dimensionality of the namelist variable or
array. If 1 (one) it is a variable and applies to all domains;
otherwise specify max_domains (which is an integer parameter
defined in module_driver_constants.F).

— Default the default value of the variable to be used if none is
specified in the namelist; hyphen (-) for no default




Package Entry

* Elements

— Entry. the keyword “package”,
— Package name. the name of the package: e.g. “kesslerscheme’

— Associated rconfig choice. the name of a rconfig variable and the
value of that variable that choses this package

# specification of microphysics options

package passiveqv mp physics== = moist:qv

package kesslerscheme mp physics==1 - moist:qv,qc,gr
package linscheme mp physics== -
moist:qv,qc,qr,qi,gs,qg

package ncepcloud3 mp physics== = moist:qv,qc,gr
package ncepcloud5b mp physics== = moist:qv,gc,qr,qi,gs

/| SN
o )

# namelist entry that controls microphysics option [/3m¢
rconfig integer mp physics namelist,physics max domains \\?gﬁ



Package Entry

* Elements

— Package state vars. unused at present; specify hyphen (-)

— Associated variables: the names of 4D scalar arrays (moist,
chem, scalar) and the fields within those arrays this package
uses, and the state variables (state:u_gc, ...)

# specification of microphysics options

package passiveqv mp physics== = moist:qv

package kesslerscheme mp physics==1 - moist:qv,qc,gr
package linscheme mp physics== -
moist:qv,qc,qr,qi,gs,qg

package ncepcloud3 mp physics== = moist:qv,qc,gr
package ncepcloud5b mp physics== = moist:qv,gc,qr,qi,gs

/| SN
o )

# namelist entry that controls microphysics option [/3ﬁ¢
rconfig integer mp physics namelist,physics max domains \\?gﬁ



Review

* What is the WRF Registry

* Keyword syntax

* The BIG Three
— state
— rconfig
— package
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Outline — Part 2

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Example 1: ADD output without recompiling

* Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt” (MAXDOM)
io form auxhist24 = 2 (choose an available stream)
auxhist24 interval = 10 (MAXDOM, every 10 minutes)

* Place the fields that you want in the named text file myoutfields. txt
+:h:24:RAINC,RAINNC

*  Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “24" is the stream number



Example 1: ZAP output without recompiling

* Edit the namelist.input file, the time_control namelist record
iofields filename = "myoutfields.txt” (MAXDOM)

* Place the fields to remove in the named text file myoutfields. txt
-:h:0:wW,PB,P

*  Where “~" means REMOVE this variable from the output stream, “h” is the history
stream, and “0” is the stream number (standard WRF history file)



Example 1: What streams can | use?

* Generally history streams 10 — 24 are OK
* Avoid 21, 22, 23

HINT: Think of a stream
as a separate file.

A history stream 1s a new
output file

* Need LOTS more streams?
— Edit WRF/arch/preamble

MAX_HISTORY = 25  <--- right now

— .[/clean —a, ./configure, ./compile, then re-run real and wrf |



Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Example 2: Add a variable to the namelist

* Use the examples for the rconfig section of the Registry

* Find a namelist variable similar to what you want

— Integer vsreal vslogical vscharacter
— Single value vsvalue per domain
— Select appropriate namelist record

* Insert your mods in all appropriate Registry files



Example 2: Add a variable to the namelist

 Remember that ALL Registry changes require that the WRF code be
cleaned and rebuilt
./clean -a
./configure
./compile em real



Example 2: Add a variable to the namelist

* Adding a variable to the namelist requires the inclusion of a new line
in the Registry file:

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option’
rconfig integer my_option_2 namelist,time_control max_domains O

* Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1, my_option_2

CALL nl_get_my_option_1( 1, my_option_1 ) -
CALL nl_set_my_option_2( grid%id, my_option_2 )




Example 2: Add a variable to the namelist

* You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo ( grid , ... )

USE module_domain
TYPE(domain) :: grid

print *,grid%my_option_1




Example 2: Add a variable to the namelist

* ... and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 ( config_flags , ... )

USE module_configure
TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%emy_option_2




Example 2: Add a variable to the namelist

* What your variable looks like in the namelist.input file

&time_control

run days = 0,

run hours = 0,

run minutes = 40,

run_ seconds = 0,

start year = 2006, 2006, 2006,
my option 1 = 17

my option 2 =1, 2, 3




Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Example 3: Add an Array

* Adding a state array to the solver, requires adding a single line in the
Registry

* Use the Registry keyword information for a state or |1 variable



Example 3: Add an Array

* Select a variable similar to one that you would like to add
— 1d, 2d, or 3d
— Staggered (X, Y, Z, or not “-", do not leave blank)
— Associated with a package
— Part of a 4d array
— Input (012), output, restart
— Nesting, lateral forcing, feedback



Example 3: Add an Array

* Copy the “similar” field’s line and make a few edits
* Remember, no Registry change takes effect until a “clean -a” and

rebuild
state real h diabatic 1ikj misc 1 - r
"h _diabatic” "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i0l12rhdu=(copy fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i0l12rhdus
"HGT" "Terrain Height"
state real ht input ij misc 1 - -
"HGT INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - - 7

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K" =




Example 3: Add an Array

* Usually modify Registry.core _name_COMMON or
Registry.core _name, where core_name might be EM

state real h diabatic 1ikj misc 1 - r
"h _diabatic” "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i0l12rhdu=(copy fcnm)
"MAPFAC M" "Map scale factor on mass grid"
state real ht ij misc 1 - i0l12rhdus
"HGT" "Terrain Height"
state real ht input ij misc 1 - -
"HGT INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 - - 7

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K" L




Example 3: Add an Array

* Add a new 3D array that is sum of all moisture species, called
all_moist, in the Registry.EM_COMMON

— Type: real
— Dimensions: 3D and ikj ordering, not staggered

— Supposed to be output only (history): h
— Name in netCDF file: ALL_MOIST

state real all moist ikj
misc 1 - h

“ALL MOIST"

"sum of all of moisture species"”
"kg kg-1"




Example 3: Add an Array

Registry state variables become part of the derived data structure
usually called grid inside of the WRF model.

WRF -> WRF model top => integrate => solve_interface > solve
Each step, the grid construct is carried along for the ride

No source changes for new output variables required until below the
solver routine when dereferenced by first_rk_step_part1 for the
physics drivers



Example 3: Add an Array
* Top of solve_em.F
* grid is passed in
* No need to declare any new variables, such as all_moist

!WRF :MEDIATION LAYER:SOLVER
SUBROUTINE solve em ( grid , &

config flags , &




Example 3: Add an Array

* Insolve_em, add the new array to the call for the microphysics driver
* Syntax for variable=local_variable is an association convenience
* All state arrays are contained within grid, and must be de-referenced

CALL microphysics driver( &
OV_CURR=moist (ims, kms,jms,P QV),
OC CURR=moist (ims,kms,jms,P QOC),
OR CURR=moist (ims, kms,jms,P OR),
OI CURR=moist(ims,kms,jms,P OT),
OS CURR=moist (ims,kms,jms,P 0OS),
OG CURR=moist (ims,kms,jms,P 0OG),
OH CURR=moist (ims, kms,jms,P OH),
all moist=grid%all moist -

2 @




Example 3: Add an Array
* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to
— Pass the variable through the argument list
— Declare our passed in 3D array

all moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme ), &
INTENT (OUT) :: all moist




Example 3: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— Zero out the array at each time step

Zero out moisture sum.

DO j = jts,MIN(jde-1,jte)

DO k = kts,fkte

DO 1 = its,MIN(ide-1,ite)
all moist(i,k,j) = 0.0

END DO

END DO

END DO




Example 3: Add an Array

* After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

— At the end of the routine, for each of the moist species that
exists, add that component to all_moist

DO j = jts,MIN(jde-1,jte)
DO k = kts,fkte
IF ( £ OV ) THEN
DO 1 = its,MIN(ide-1,ite)

all moist(i,k,j) = all moist(1i,k,j) + &
qv_curr(i,k,j)
END DO
END IF )




Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Example 4: Compute a Diagnostic

* Problem: Output global average and global maximum and lat/lon
location of maximum for 10 meter wind speed in WRF
* Steps:
— Modify solve to compute wind-speed and then compute the local
sum and maxima at the end of each time step

— Use reduction operations built-in to WRF software to compute the
global qualities

— Output these on one process (process zero, the “monitor”
process)



Example 4: Compute a Diagnostic

Compute local sum and local max and the local indices of the local maximum

--- File: dyn em/solve em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed

sum ws = 0.

max ws = 0.

DO j = Jjps, Jpe

DO i = ips, ipe
wind vel = sqrt( grid%ulO(i,j)**2+ gridsvl0(i,j)**2 )
IF ( wind vel .GT. max ws ) THEN
max ws = wind vel

idex = 1i
jdex = j
ENDIF
sum ws = sum ws + wind vel
ENDDO B

ENDDO



Example 4: Compute a Diagnostic

 Compute global sum, global max, and indices of the global max (WRF

intrinsics)

! Compute global sum
sum ws = Wwrf dm sum real ( sum ws )

! Compute global maximum and associated i,]j point
CALL wrf dm maxval real ( max ws, idex, jdex )



Example 4: Compute a Diagnostic

* On the process that contains the maximum value, obtain the latitude and

longitude of that point; on other processes set to an artificially low value.

* The use parallel reduction to store that result on every process

IF (

gl
gl
ELSE
gl
gl
ENDIF

ips
Jps
at
on

at =
on =

.LE. idex .AND. idex .LE. ipe .AND. &
.LE. jdex .AND. jdex .LE. jpe ) THEN

grid%xlat (idex, jdex)
grid%xlong (idex, jdex)

-99999.
-99999.

! Compute global maximum to find glat and glon
= wrf dm max real ( glat )

glat
glon

wrf dm max real ( glon ) C



Example 4: Compute a Diagnostic

* Qutput the value on process zero, the “monitor”

! Print out the result on the monitor process
IF ( wrf dm on monitor() ) THEN

WRITE (outstring, *) 'Avg. ',sum ws/((ide-ids+1l) * (jde-jds+1))
CALL wrf message ( TRIM(outstring) )
WRITE (outstring,*) 'Max. ',max ws,' Lat. ',6glat,k &

' Lon. ',glon

CALL wrf message ( TRIM(outstring) )
ENDIF



Example 4: Compute a Diagnostic

* Qutput from process zero of a multi-process run

-—-— Output file: rsl.out.0000 ---

Avg. 5.159380
Max. 15.09370 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:03:00 on domain  1: 8.96500 elapsed secs.
Avg. 5.166167
Max. 14.97418 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:06:00 on domain  1: 4.89460 elapsed secs.
Avg. 5.205693
Max. 14.92687 Lat. 37.25022 Lon. -67.44571

Timing for main: time 2000-01-24 12:09:00 on domain  1: 4.83500 elapsed secs.



Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Example 5: Input periodic SSTs

Add a new physics package with time varying input source to the
model

This is how we could supply a time varying value to the model for a
field that is traditionally fixed

Example is sea surface temperature



Example 5: Input periodic SSTs

Problem: adapt WRF to input a time-varying lower boundary
condition, e.g. SSTs, from an input file for a new surface scheme

Given: Input file in WRF 1/0 format containing 12-hourly SST's

Modify WRF model to read these into a new state array and make
available to WRF surface physics



Example 5: Input periodic SSTs

 Steps
— Add a new state variable and definition of a new surface layer
package (that will use the variable) to the Registry
— Add to variable stream for an unused Auxiliary Input stream
— Adapt physics interface to pass new state variable to physics
— Setup namelist to input the file at desired interval



Example 5: Input periodic SSTs

* Add a new state variable to Registry/Registry.EM_COMMON and put it
in the variable set for input on Auxiliary Input Stream #4

# type symbol dims use tl stag io dname description

units
state real nsst i]j misc 1 - idh

"NEW_SST" "Time Varying SST" "K“

* Also added to History and Restart

e Result;

— 2-D variable named grid%nsst defined and available in
solve_em

— Dimensions: ims:ime, jms:jme
— Input and output on the Auxinput #4 stream will include the
variable under the name NEW_SST _



Example 5: Input periodic SSTs

Pass new state variable to surface physics

--- File: dyn em/module first rk step partl.F ---

CALL surface_ driver (

! Optional

,QV_CURR=moist (ims,kms,jms,P QV), F QV=F QV
,QC_CURR=moist (ims, kms,jms,P QC), F QC=F QC
QR CURR=moist (ims,kms,jms,P QR), F QR=F QR
,QI CURR=moist (ims,kms,jms,P QI), F QI=F QI
,QS CURR=moist (ims,kms,jms,P QS), F QS=F QS
, QG _CURR=moist (ims,kms,jms,P QOG), F QG=F QG

,NSST=grid%nsst

R 2 Ry R

,CAPG=grid%capg, EMISS=grid%emiss, HOL=hol, MOL=grid%mol
,RAINBL=grid%rainbl, SR=grid%em sr
,RAINNCV=grid%rainncv, REGIME=regime, T2=grid%t2, THC=grid%thc

&
&
&
&
&
&
&
&
&
&

new



Example 5: Input periodic SSTs

* Add new variable nsst to Physics Driver in Mediation Layer

--- File: phys/module surface driver.F ---
SUBROUTINE surface driver ( &

! Other optionals (more or less em specific)

& ,nsst &

& ,capg,emiss, hol,mol &

& ,rainncv,rainbl, regime, t2, thc &

& ,dsg,qvg,qcg,soiltl, tsnav &

& ,smfr3d, keepfr3dflag &
))
REAL, DIMENSION( ims:ime, jms:jme ), |[OPTIONAL,| INTENT (INOUT):: nsst

* By making this an “Optional” argument, we preserve the driver’s
compatibility with other cores and with versions of WRF where this
variable hasn’t been added.



Example 5: Input periodic SSTs

Add call to Model-Layer subroutine for new physics package to Surface Driver

--- File: phys/module surface driver ---

1SOMP PARALLEL DO &
1SOMP PRIVATE ( ij, i, j, k)
DO ij = 1 , num tiles
sfclay select: SELECT CASE (sf sfclay physics)

CASE (SFCLAYSCHEME)

CASE (NEWSFCSCHEME) ! <- This is defined by the Registry “package” entry

IF (PRESENT (nsst)) THEN
CALL NEWSFCCHEME ( &

nsst, &
ids,ide, jds,jde, kds, kde, &
ims,ime, jms,jme, kms, kme, &
i start(ij),i_end(ij), J_start(ij),j_end(ij), kts, kte )

ELSE

CALL wrf error fatal('Missing argument for NEWSCHEME in surface driver')
ENDIF

END SELECT sfclay_ select
ENDDO
1SOMP END PARALLEL DO

L
Note the PRESENT test to make sure new optional variable nsst is available



Example 5: Input periodic SSTs

* Add definition for new physics package NEWSCHEME as setting 4 for
namelist variable sf_sfclay_physics

rconfig integer sf sfclay physics namelist,physics max_domains 0

package sfclayscheme sf sfclay physics==1
package myjsfcscheme sf sfclay physics==2
package gfssfcscheme sf sfclay physics==3
package newsfcscheme sf sfclay physics==4

* This creates a defined constant NEWSFCSCHEME and represents
selection of the new scheme when the namelist variable
sf_sfclay_physics is set to ‘4’ in the namelist.input file

 clean -a and recompile so code and Registry changes take ~* Fct



Example 5: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

--- File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory



Example 5: Input periodic SSTs

* Setup namelist to input SSTs from the file at desired interval

--- File: namelist.input ---
&time control

auxinput4 inname
auxinput4 interval h

"sst input"
12

/. ..

&physics
sf sfclay physics = 4, 4, 4

/

* Run code with sst_input file in run-directory



Outline

* Examples
— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer



Tracer Example

1. Modify Registry for new fields.
Use the “tracer” array with a new 3D component

Use existing NML option

RUSSIA
RYUSHU HOKKAIDO
T~ ke Tokara- Sapporog '%‘"
. . O Con shoto Park
2. Initialize data in real. o
) .. , shotd Sea of Japan .Aomon
Identify (i,j) location , gl
()kmawa-homb.?t;mwa
Spread in “PBL” Miyako-shotd Nigita ©Sendal
y E
Yacyama-shotd N:::.h':mo “(,O(~ ey
SOUTH JAPAN
KOREA Iatsue MtFnj‘l 9;3:“0 OCEAN
3. Set values in solver. Hiroshima o ffae® Nagoys &5
“Release” per time step kyisao B8 gukoku 2\
0 5 km
T I T
See Inset  Park | g




Tracer Example

Registry/Registry.EM add our new field “PLUME” as part of “TRACER” array.

# New tracer for example
state real plume ikjftb tracer \
1 - irhusdf=(bdy interp:dt) \
"PLUME" "Fukushima Tracer" " "
# 4D arrays need an associated package
package tracer test3 tracer opt== -\

tracer:plume



Tracer Example

Modify the real and WRF programs to initialize and continuously re-supply the
“PLUME” array

dyn_em/module_initialize_real.F (initial value from real.exe)

dyn_em/solve_em.F (continuous plume in wrf.exe)

! Add in the Fukushima initial venting.

IF ( ( its .LE. 50 ) .AND. ( ite .GE. 50 ) .AND. &
( jts .LE. 50 ) .AND. ( jte .GE. 50 ) ) THEN
tracer(50,1:5,50,P plume) = 1. o
END IF L)



Tracer Example

* Modify the test/em_real/namelist.input file

* Include the new settings for the tracer option required from the Registry file

&dynamics
tracer opt = 3, 3, 3,



23N

Fukushima 11-14 Mar 2011, 30-km, 100x1¢0 (-}

130°E 135°E 140°E 145°E
Fuleuahima 11-14 Mar 2011, 30-km, 100x100 {-)

150"E



Review

— 1) Add output without recompiling
— 2) Add a variable to the namelist
— 3) Add an array

— 4) Compute a diagnostic

— 5) Add a physics package

— 6) Tracer
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— 1) Add output without recompiling
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— 5) Add a physics package

— 6) Tracer



Questions?

WRF User Support Statement:

https://www2.mmm.ucar.edu/wrf/users/wrf_support_statement.html

Questions about the WRF modeling system should be directed to the

WRF Forum: forum.mmm.ucar.edu

Resources

Users may take advantage of the WRF homepage:

www2.mmm.ucar.edu/wrf/users

The WRF and WPS source codes are maintained with github at
github.com/wrf-model/WRF and github.com/wrf-model/WPS



