Overview of WRF Physics Surface Physics

Jimy Dudhia NCAR/MMM

2021

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852077.

WRF Physics

- Radiation
 - Longwave (ra_lw_physics)
 - Shortwave (ra_sw_physics)
- Surface
 - Surface layer (sf_sfclay_physics)
 - Land/water surface (sf_surface_physics)
- PBL (bl_pbl_physics)
- Turbulence/Diffusion (diff_opt, km_opt)
- Cumulus parameterization (cu_physics)
- Microphysics (mp_physics)

Direct Interactions of Parameterizations

Surface schemes

Surface layer of atmosphere diagnostics (exchange/transfer coeffs) Land Surface: Soil temperature /moisture /snow prediction /sea-ice temperature

Surface Physics Components

WRF Surface Layer Options (sf_sfclay_physics)

- Use similarity theory to determine exchange coefficients and diagnostics of 2m T and q and 10 m winds
- Provide exchange coefficient to land-surface models
- Provide friction velocity to PBL scheme
- Provide surface fluxes over water points
- Schemes have variations in stability functions, roughness lengths

Surface Layer

- Constant flux layer is about 0.1 x PBL height (~100 m)
- Lowest model level is within this layer (typically 10-50 m)
- Therefore lowest level variables can be used to derive surface fluxes via **similarity theory**
- Example, heat flux
- In similarity theory u_* and θ_* are constant in surface

Roughness Lengths (z_o)

- Roughness lengths are a measure of the "initial" length scale of surface eddies, and generally differ for velocity and scalars
- Roughness length depends on land-use type
- Some schemes use smaller roughness length for heat than for momentum
- For water points roughness length is a function of surface wind speed

Surface Fluxes

Heat, moisture and momentum

 Ψ (z/L) is the stability function where z/L is related to surface Ri Subscript *r* is reference level (lowest model level, or 2 m or 10 m) Δ refers to difference between surface and reference level value z_0 are the roughness lengths *k* is the von Karman constant (0.4)

Stability Functions (ψ)

- ψ (z/L) modify the log profile
 - Zero for neutral conditions
 - Positive for unstable
 - Negative for stable
 - Look-up table function
- L is Monin-Obukhov length
- Note: z/L depends on ψ • via u_* and θ_* so formula is implicit
- z/L is obtained from Ri_b via iteration in revised

NCAR M5 surface layer

$$\frac{z}{L} = k \frac{g}{\theta_a} z \frac{\theta_*}{u_*^2}$$

$$\mathrm{Ri}_{b} = \frac{g}{\theta_{a}} z \frac{\theta_{\mathrm{va}} - \theta_{\mathrm{vg}}}{U^{2}},$$

$$\mathrm{Ri}_{b} = \frac{z}{L} \frac{\ln\left(\frac{z}{z_{0}}\right) - \psi_{h}\left(\frac{z}{L}\right)}{\left[\ln\left(\frac{z}{z_{0}}\right) - \psi_{m}\left(\frac{z}{L}\right)\right]^{2}},$$

Stability Functions

- Jimenez et al. 2012 (Revised MM5 similarity theory)
- $\Psi_{\rm m}$ shown, $\Psi_{\rm h}$ similar
- Thick grey solid and dashed lines
- Unstable conditions (left)
- Stable conditions (right)

FIG. 3. Integrated similarity functions for momentum resoluted with (a) unstable and (b) viable conditions. (c).(d) The shape of the corrections near-neutral conditions. Ψ_{WW} (black lines) is the integrated similarity function for momentum used in the old surface layer formulation, whereas ψ F9S is the one used in the new formulation (thin gray lines). The integrated similarity functions including the extra term (thick gray lines) are calculated for $\chi = 28$ m and $\chi_0 = 0.15$ m.

Exchange Coefficient

C_{hs} is the exchange coefficient for heat, defined such that

It is the ratio of surface θ flux (w' θ ')_s to θ difference (units of velocity) required by the land model and is related to the roughness length, stability function and u* by

Hurricane Options

- Ocean Mixed Layer Model (sf_ocean_physics=1)
 - 1-d slab ocean mixed layer (specified initial depth)
 - Includes wind-driven ocean mixing for SST cooling feedback
- 3d PWP ocean (Price et al.) (sf_ocean_physics=2)
 - 3-d multi-layer (~100) ocean, salinity effects
 - Fixed depth
- Alternative surface-layer options for high-wind ocean surface (isftcflx=1,2)
 - Use with sf_sfclay_physics=1
 - Modifies Charnock relation to give less surface friction at high winds (lower Cd)
 - Modifies surface enthalpy (Ck, heat/moisture) either with constant z0q (isftcflx=1), Garratt formulation (option 2)

Fractional Sea Ice

- fractional_seaice=1 with input sea-ice fraction data can partition land/water fluxes within a grid box
- Can be used with nearly all surface-layer schemes

WRF Land-Surface Model Options (sf_surface_physics)

- Simple 5-layer soil model
 - No vegetation or snow cover prediction, just thermal diffusion in soil layers
- Noah LSM, NoahMP, RUC LSM, PX LSM, CLM4, SSiB land-surface models
 - Sophisticated vegetation model and snow cover prediction

Land-Surface Model Processes

UCAR

Land-Surface Model

- Driven by surface energy and water fluxes
- Predicts soil temperature and soil moisture in layers (4 for Noah and NoahMP, 9 for RUC, 2 for PX and 3 for SSiB, 10 for CLM4)
- Predicts snow water equivalent on ground. May be in layers (NoahMP, RUC, SSiB,CLM4)
- May predict canopy moisture only (Noah, RUC) or temperature only (SSiB) or both (NoahMP, CLM4)

Land Surface Models

sf_surface_physics	Scheme	Reference
1	5-layer slab	Dudhia (1996)
2	Noah	Chen and Dudhia (MWR, 2001)
3	RUC	Benjamin et al. (MWR, 2004)
4	Noah-MP	Niu et al. (JGR, 2011), Yang et al. (JGR, 2011)
5	CLM4	Lawrence et al. (JAMES, 2011)
7	Pleim-Xiu	Pleim and Xiu (1995, 2003, JAM)
8	Simple SiB	Xue et al. (JClim, 1991)

Land Surface Models

sf_surface_physic s	Scheme	Soil Temperature Layers	Soil Moisture Layers	Snow Layers
1	5-layer slab	5	0	0
2	Noah	4	4	1
3	RUC	6	6	1/2
4	Noah-MP	4	4	3
5	CLM4	10	10	5
7	Pleim-Xiu	2	2	1
8	Simple SiB	2	3	4

Vegetation and Soil

- Processes include evapotranspiration, root zone and leaf effects
- Vegetation fraction varies seasonally
- Considers vegetation categories (e.g. cropland, forest types, etc.)
- Considers soil categories (e.g. sandy, clay, etc.) for drainage and thermal conductivity

Snow Cover

- LSMs include fractional snow cover and predict snow water equivalent development based on precipitation, sublimation, melting and run-off
 - Single-layer snow (Noah, PX)
 - Multi-layer snow (RUC, NoahMP, SSiB,CLM4)
 - 5-layer option has no snow prediction
- Frozen soil water also predicted (Noah, NoahMP, RUC,CLM4)

Urban Effects

- Urban category in LSM is usually adequate for largerscale studies
- Or can use an urban model (sf_urban_physics) with Noah and NoahMP LSMs
 - Urban Canopy Model
 - Building Environment Parameterization (multi-layer model)
 - Building Energy Model (adds heating/AC to BEP)
 - NUDAPT detailed map data for 40+ US cities

LSM Tables

- Properties can be changed in text files (tables)
- VEGPARM.TBL used by Noah and RUC for vegetation category properties
 - Albedo, roughness length, emissivity, vegetation properties
- MPTABLE.TBL used by NoahMP
 - SOILPARM.TBL used by Noah and RUC for soil properties
 - LANDUSE.TBL used by 5-layer model
 - URBPARM.TBL used by urban models

Initializing LSMs

All LSMs (except slab option) require additional fields for initialization

- Soil temperature
- Soil moisture
- Snow liquid equivalent
- These are in the Grib files, but are not from observations
- They come from "offline" models driven by observations (rainfall, radiation, surface temperature, humidity wind) – part of operational analysis or reanalysis system

Initializing LSMs

- There are consistent model-derived datasets for Noah and RUC LSMs that match the levels in WRF
 - Eta/GFS/AGRMET/NNRP for Noah (although some older datasets have limited soil levels available)
 - RUC for RUC (just North America, limited availability)
- ECMWF/ERA soil analyses can be used and real.exe interpolates to WRF soil levels
- But, resolution of mesoscale land-use means there will be inconsistency in elevation, soil type and vegetation
- The only adjustment for soil temperature (done in real.exe) is for elevation differences between the original elevation and model elevation (SOILHGT used)

Initializing LSMs

- Inconsistency leads to spin-up as adjustments occur in soil temperature and moisture at the beginning of the simulation
- This spin-up can only be avoided by running offline model on the same grid (e.g. HRLDAS for Noah) – may take months to spin up soil moisture
- Cycling land state between forecasts also helps, but may propagate errors (e.g in rainfall effect on soil moisture)

Sub-grid Mosaic

- Default behavior is one dominant vegetation and soil type per grid cell
- Noah (sf_surface_mosaic) and RUC (mosaic_lu and mosaic_soil) allow multiple categories within a grid cell
- PX averages properties of sub-grid categories

Sea-Surface Update (sst_update=1)

Reads lower boundary file periodically to update the sea-surface temperature (otherwise it is fixed with time)

- For long-period simulations (a week or more)
- wrflowinp_d0n created by real
- Sea-ice can be updated
- Vegetation fraction update is included
 - Allows seasonal change in albedo, emissivity, roughness length in Noah LSM
- usemonalb=.true. to use monthly albedo input

Regional Climate Options

- tmn_update=1 updates deep-soil temperature for multi-year future-climate runs
 - sst_skin=1 adds diurnal cycle to seasurface temperature
 - bucket_mm and bucket_J a more accurate way to accumulate water and energy for long-run budgets (see next)
 - output_diagnostics=1 ability to output max/min/mean/std of surface fields in a specified period (e.g. daily)

Accumulation Budgets

- Some outputs fields are accumulated from simulation start
- These include rainfall totals (mm or kg/m²) RAINC, RAINNC, and radiation totals (J/m²), ACLWUPT, ACSWDNB, etc.
- Averages over any period can use just the output at the end minus beginning and dividing by the interval
- But for regional climate simulations (months), 32-bit accuracy makes adding small time-step values to accumulated totals inaccurate since only about 7 significant figures are stored.
- We use bucket_mm and bucket_I to carry total in Integer and Remainder parts, e.g.
- Total rain = RAINC + I_RAINC*bucket_mm

NCAR UCAR

bucket_mm=100 mm and bucket_=10° joules

Lake Model

- 10-layer lake model from CLM (sf_lake_physics=1)
- We have global bathymetry data for most large lakes (added from geogrid)
- Also can predict lake ice
- Can be used with any LSM
- WPS preprocessing allows diurnal averaging methods to initialize lake temperatures where not resolved by SST analysis (TAVGSFC)

WRF-Hydro

- Coupling to hydrological model available
- Streamflow prediction, etc.
- Sub-grid tiling to ~100 m grid
- Requires special initialization for hydrological datasets

=

Direct Interactions of Parameterizations

Surface Physics Summary

- Surface Layer
 - Roughness lengths, surface fluxes, stability function, exchange coefficient, hurricane options, fractional sea ice,
- Land Surface Model
 - Vegetation, soil, snow cover, urban effects, LSM tables, initializing LSMs, sub-grid mosaic
- Regional Climate options
 - sst_update switch, accumulation budgets, lake model
- WRF-Hydro

Solver Calling Sequence

Call to solver advances one domain by one model time-step

- Physics tendencies
 - Radiation, surface, land-state update, PBL, cumulus, grid-fdda, obs-fdda
- Dynamics tendencies
 - Diffusion, advection, dynamics terms (for 3d momentum, theta, geopotential, surface pressure)
- Acoustic steps
 - Update 3d momentum, theta, surface pressure, height
- Scalar dynamics tendencies and update
 - Advection, diffusion of moist (qv,qc, etc.), scalar, tracer, tke, (and chemistry) variables
- Microphysics update

ARW Solver Sequence

tendency update adjust

		μ	φ	W	u	V	θ	q	Water ice	Scalar Chem	Soil T Soil Q
Time-step	Rad										
	Sfc										
	PBL										
	Cnv										
	Adv Diff										
	Dyn										
ŧ	Adv Diff										
	Mic									, ,	
NCAR UCAR											

ARW time-step schematic

&physics (namelist.input)

```
Seven major physics categories:
  mp_physics: 0,1,2,3,...
  ra_lw_physics: 0,1,3,...
  ra_sw_physics: 0,1,2,3,...
  sf_sfclay_physics: 0,1,2, ...
  sf_surface_physics: 0,1,2,3,... (set before running real
      or ideal, need to match with num_soil_layers variable)
      sf_urban_physics: 0, 1, 2, 3
  bl_pbl_physics: 0,1,2,...
  cu_physics: 0,1,2,3,...
```

