
WRF Computation
Dave Gill

Parallelism in WRF
Why is it required
What is “scaling”

OpenMP and MPI
Halos
Domain Decomposition

Reasonable, max, min, bad
Dimensions and decomposition
Coarse grid vs nest grid

Where is all of this information
Using rsl files

WRF v4, 1500x1500x50, 3 km, CONUS Suite

• 50 vertical levels
• No cumulus
• Hybrid vertical activated
• Moist theta
• 18 s dt
• 10 hour spin-up, then restart
• 6 minute simulation
• No I/O included in timing
• Single radiation time step
• 18 non-radiation time steps

Parallelism:
Execution of
processes are
carried out
simultaneously

Without
parallelism, all
of the work is
handled by a
single
processor

• When we decompose the WRF domain into smaller pieces, we
distribute work to additional processors
• Since less work is performed by each individual processor, the elapsed

time to complete the computational task for each processor is
reduced
• The aggregated parallel job completes in less elapsed time

Why is Parallelism Required

• The ability of the WRF model to handle these additional processors is
a measure of how well the WRF model scales
• On a supercomputer, the most efficient usage of additional

processors tends to be by using full or nearly full nodes
• With perfect scaling
• Twice as many nodes = 2x faster = 1/2 of the original time
• 3x as many nodes = 3x faster = 1/3 of the original time
• nx as many nodes = nx faster = 1/n of the original time

• Raw scaling plots look like hyperbolas

What is “scaling”

What is “scaling”

Number of Processors

El
ap

se
d

Ti
m

e
pe

r M
od

el
 S

te
p

(s
)

• While the information is
accurate, this presentation
of the timing data is not
easy to interpret

• Scaling plots are typically
recast with an easy
comparison against a known
value (100% efficient) or a
fixed quantity (such as Days
of Simulation per Elapsed
Day of Computation)

For timing,
smaller is
better

WRF v4, 1500x1500x50, 3 km, CONUS Suite
Base scaling
using 72
processors

2 full nodes
on cheyenne

For efficiency,
bigger is better

WRF v4, 1500x1500x50, 3 km, CONUS Suite
MPI Ranks I-Dim J-Dim Radiation (s) Non Rad (s) Days / Day Scaling Rad Scaling NonRad

72 188 167 55.30796 8.63828 1.35284964 1 1
108 167 125 37.42179 5.93252 1.98206299 0.98530758 0.970726324
144 125 125 30.35208 6.99176 1.92971713 0.91110659 0.617747177
288 94 84 14.4129 2.56148 4.80432774 0.95934822 0.843094617
432 84 63 9.47383 1.53414 7.73159676 0.97299543 0.938449772
576 63 63 7.45682 1.33647 9.23785158 0.92713717 0.807938076
864 56 47 4.9866 0.886827 13.8802748 0.92427639 0.81172164
1152 47 42 3.75109 0.686984 18.1196878 0.92153147 0.785888027
1440 42 38 2.98979 0.53509 23.0603669 0.92494724 0.807180101
1728 42 32 2.5313 0.442302 27.6412012 0.91040111 0.813761487
2016 36 32 2.15486 0.398824 31.3355417 0.91666479 0.773549235
2304 32 32 1.87563 0.352528 35.6549881 0.92148971 0.765744139
2592 32 28 1.65853 0.307171 40.6957251 0.92632164 0.781168216
2880 32 25 1.46797 0.269931 46.1852403 0.9419123 0.800045197
3600 25 25 1.20596 0.225149 55.687883 0.91724369 0.767338962
5400 21 20 0.79517 0.150944 83.5784193 0.9273985 0.763045014
7200 19 17 0.59816 0.119898 107.319039 0.92463488 0.720469065
9000 17 15 0.47138 0.0891089 141.358285 0.93865603 0.775525677
10800 15 14 0.41968 0.0825039 154.876666 0.87857352 0.698009831
14400 13 13 0.29857 0.06929 195.189659 0.92621429 0.623342474

• We have a fixed-sized problem that we want to solve: WRF model
with a particular set of parameters
• Look at the measure of the effectiveness of increasing the number of

processors on this fixed-size problem
• Referred to as strong scaling
• Basically, if I use more processors, does this model finish in less time

What is “scaling”

• Modern supercomputers have large processor counts

• Cheyenne:
• 145,152 processor cores
• 4,032 nodes
• 36 cores/node

• Two types of parallelism
• Between nodes (MPI) – distributed memory
• Within nodes (OpenMP) – shared memory

OpenMP (Shared) and MPI (Distributed)

With shared
memory
processing,
the domain is
split among
the run-time
available
OpenMP
threads

For WRF, for
small
processor
counts, this is
effective

With larger
WRF jobs, the
number of
OpenMP
threads is not
sufficient to
run the
model

Distributed
memory
processing is
required for
larger jobs

• The WRF model supports OpenMP threading
• Following is a 150x150 benchmark case (same geophysical size as

1500x1500, just using 30-km resolution instead of 3-km resolution)
• Has CU activated
• Running on a single node of Cheyenne, from 1 – 36 cores
• Two tile strategies: XY and Y

Using OpenMP Threading in WRF – Single Node

Using OpenMP Threading in WRF – Single Node

For MPI
distributed
memory jobs,
we no longer
can assume
that
neighboring
processors
can access
the same
memory

Each processor
works
independently,
on its own
patch.

Later the
information is
sent to other
patches.

Processor 2
rsl.out.0002
rsl.error.0002

Processor 0
rsl.out.0000
rsl.error.0000

Processor 1
rsl.out.0001
rsl.error.0001

Processor 3
rsl.out.0003
rsl.error.0003

Using MPI vs OpenMP in WRF – Single Node

• For a sufficiently large WRF domain, MPI scales to about 70%
efficiency over a processor range of about 150x nodes
• Smallest node count is determined by memory requirements of WRF
• Efficiency tends to drop before reaching a maximum allowable node count

• NOTE: within node scaling is not effective and is not typically used on
a supercomputer
• OpenMP is ALWAYS within a single share-memory node
• May have a clue as to why OpenMP parallelism is about 50% less than

single-node MPI performance – first touch
• With MPI patches need to sometimes send and receive information

from each other, referred to as messages and message passing
• WRF uses HALO regions to assist with message passing

OpenMP and MPI in WRF

HALO

p_edge(i,k,j) = (po(i,k,j) + po(i-1,k,j)) * 0.5

(i,j)

j i
nc

re
as

in
g

(i-1,j)

i increasing

• Solve a simple 2-point stencil, used for
averaging a mass-point pressure to a
momentum cell face location
• The assumption is that for each (i,j), the

(i-1,j) location is a neighboring point

HALO

p_edge(i,k,j) = (po(i,k,j) + po(i-1,k,j)) * 0.5

j i
nc

re
as

in
g

(i,j)

i increasing

• For this stencil, if our grid cell lies on a
western boundary, there is no
neighboring point
• To get the information, we could

communicate with the next patch and
request the data
• However, communication is much slower

than local memory access

HALO

p_edge(i,k,j) = (po(i,k,j) + po(i-1,k,j)) * 0.5

j i
nc

re
as

in
g

(i,j)

i increasing

• Instead of communicating with a
distributed memory processor for each
computation, a surrounding group of
cells along the boundary holds read-only
information
• This halo region is kept updated

periodically from the neighboring
distributed memory processor

(i-1,j

Halos to the
left and
below

Halos to the
right and
above

Halos to the
left and
above

Halos to the
right and
below

4 point stencil
requires no halo
access

4 point stencil
uses the halo
region

• When we decompose the WRF domain into smaller pieces, we
distribute work to additional processors

 > mpirun -np ??? wrf.exe
QUESTIONS:
• How do we determine how many processors to use for a simulation?
• What is the shape of the resultant decomposed grids?
• What are performance consequences of these decisions?

Domain Decomposition

How many processors to use?

• The minimum number of processors is based on the amount of
memory that is available
• In the 1500x1500 benchmark case, a minimum of 4 nodes were

required (4x36 processor cores) for the regular nodes, but only 2
nodes were required when using the large-memory nodes
• The WRF model would not run with a single node, it required too

much memory

Domain Decomposition

How many processors to use?

• The maximum number of processors is based on the underlying
stencil communications inside of the WRF model
• The model gracefully halts if you try to make a resultant distributed

memory patch with < 10 grid cells on either side
• For the 1500x1500 benchmark case, we could have 150 units of

patches that are 10 grid cells across (in the i- and j- directions)
• Therefore a maximum of 150x150 = 22,500 MPI processor cores

Domain Decomposition

How many processors to use?

• The recommended number of processors is based on the timing
performance that the WRF model is able to provide weighed against
the timeliness of the required solution
• Usually, a fewer number of processors tends to more efficiently utilize

the machine
• As long as there are enough processors (for memory) and not too

many (for stencil sizes), the WRF model solution is correct

Domain Decomposition

How are the processor decompositions chosen?

• By default, the decomposition of MPI tasks is computed as the
two closest multiplicative factors
• For example: 32 MPI tasks = 4x8 decomposition, NOT 2x16
• For example: 144 MPI tasks = 12x12 decomposition, NOT 4x36

• The larger of the two factors decomposes the j-direction
• What to avoid: primes or large prime factors

Domain Decomposition

• 70 tasks
• 10 (j) x 7 (i)

• 70 tasks
• 10 (j) x 7 (i)

• 71 tasks
• 71 (j) x 1 (i)

• Domain decomposition choices are important with nesting
• All domains within the WRF model use the exact same number of

processors, with the same processor decomposition
• Choosing coarse grid domains and fine grid domains that have a large

grid cell difference negatively impacts timing performance
• A small coarse grid (compared to the nest) restricts the number of

processors that are able to be utilized by the fine grid domain (the
expensive domain)
• The fine grid is the expensive domain

Domain Decomposition

&geogrid

parent_id = 1, 1,

parent_grid_ratio = 1, 3,

i_parent_start = 1, 31,

j_parent_start = 1, 17,

e_we = 74, 112,

e_sn = 61, 97,

/

Domain Decomposition

• Default max cores on CG: 36
• Default max cores on FG: 81
• With namelist options: 42 vs 99
• Do not make CG smaller than FG

• When running the WRF model with MPI, two text files are generated
by default for each MPI task
• rsl.out.nnnn
• rsl.error.nnnn
• Where nnnn is the processor number of the WRF job, 0000 through n-1 for

the ”mpirun –np n wrf.exe” job submission

• For a successfully completed job, important information is inside the
rsl.out.0000 file

Where is all of this information

• How many MPI tasks are used
 Ntasks in X 9 , ntasks in Y 12

Where is all of this information

• What is the decomposed domain size
Parent domain

ids,ide,jds,jde 1 1500 1 1500

ims,ime,jms,jme -4 174 -4 132

ips,ipe,jps,jpe 1 167 1 125

• How much memory is allocated on the heap
alloc_space_field: domain 1 , 792646428 bytes allocated

• How much time to write out data
Timing for Writing wrfout_d01_2019-05-05_22:00:00 for domain 1: 139.06874 elapsed seconds

Where is all of this information

• How much time to do a time step (first includes I/O time)
Timing for main: time 2019-05-05_22:00:18 on domain 1: 171.42862 elapsed seconds

Timing for main: time 2019-05-05_22:00:36 on domain 1: 6.98657 elapsed seconds

Timing for main: time 2019-05-05_22:00:54 on domain 1: 6.99922 elapsed seconds

Timing for main: time 2019-05-05_22:01:12 on domain 1: 6.99057 elapsed seconds

• Parallelism in WRF
• Why is it required
• What is “scaling”

• OpenMP and MPI
• Halos
• Domain Decomposition
• Reasonable, max, min, bad
• Dimensions and decomposition
• Coarse grid vs nest grid

• Where is all of this information
• Using rsl files

