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1. INTRODUCTION 

 
Weather Research and Forecasting (WRF) modeling 

system has been used in realtime nowcast/forecasting, 
broadly across various applications, including 
mesoscale weather prediction (Deng et al. 2012a, 
Gaudet et al. 2012), aviation planning and optimization 
(Langelaan et al. 2013), as well as atmospheric 
transport and dispersion (Deng et al. 2012b, Lauvaux et 
al. 2012, Barkley et al. 2017) with WRF’s chemistry 
module (WRF-Chem) enabled.  WRF is also becoming 
a useful tool for renewable energy industry to forecast 
energy generation and demand, as well as operational 
planning.  Utopus Insights, an independent new digital 
software company spun out of IBM Smart Energy 
Research, has recently developed a globally relocatable 
high-resolution WRF-based forecasting system code-
named “Nostradamus” to support its time-sensitive, 
high-resolution atmospheric modeling applications 
including wind and solar energy forecasting for its clients 
worldwide.  This paper describes Nostradamus and 
some of its use cases over various locations across the 
globe, with focus on the instance running for a utility 
company in Vermont (VT), USA.  Overall performance of 
Nostradamus and the downstream energy forecasting 
models is presented. Issues related to the surface 
temperature cold bias are discussed.  We also present 
how Nostradamus is optimized on the HPCC.  
 
2. DESCRIPTION OF NOSTRADAMUS 

 
Nostradamus is one of the Utopus Insights’ products 

that includes Xplore for realtime asset monitoring, Pulse 
for predicting failure of assets, Weather Insights that 
provides interactive weather visualization for utility 
company, and HyperCast for predicting future energy 
generation, each of which has components for both 
wind and solar energy.  The core of Nostradamus is the 
WRF modeling system that predicts meteorological 
variables including wind, wind gust and solar irradiance, 
etc.  These meteorological variables, along with the 
observed energy production values, are used to drive 
the downstream energy analytical models, Wind 
HyperCast, Solar HyperCast, and Demand Forecasting 
that in turn feed the Peak Load Forecasting application.  
All the downstream applications use deep learning 
(neural networks) and/or machine learning techniques at 
their core to incorporate high-dimensional weather 
forecasting data for improved energy forecasting 
accuracy.   
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Wind HyperCast uses the Nostradamus-predicted 
meteorological variables including surface and hub-
height winds as well as wind gusts, plus the recent 
measurement of wind power and wind speed at the 
turbine site. Further improvement of the wind energy 
forecasting has been achieved based on the multi-layer 
feed-forward perceptron, a class of deep learning 
algorithms.  Nostradamus configuration does not yet 
consider the turbine drag effect on mesoscale wind 
solution. 

 
Solar HyperCast uses the Nostradamus-predicted 

meteorological variables including direct and normal 
radiation components, as well as the diffused 
component that is an important contributor to solar 
power production on days of thin clouds.  It also uses 
Nostradamus-predicted snow cover and snow fall 
amount that, recently added to Solar HyperCast, to 
improve the forecasting accuracy on the days after a 
snowfall, when the irradiance might be high, but the 
snow cover on solar panels drives lower power 
production.   
 

The physics suite selection for the WRF model used 
in Nostradamus is similar to those used in RAP and 
HRRR except for the Noah land surface model.  
Nostradamus is currently initialized from GFS and runs 
up to 4 times per day depending on the application, 
assimilating available meteorological observations 
within a time window prior to the initialization time, using 
the multi-scale FDDA technique (Deng et al. 2012a).  
Nostradamus also has an automated on-the-fly 
validation system to provide the client with confidence 
on the forecast accuracy of relevant meteorological 
features such as wind speed, direction, temperature, 
etc.  Built with high scalability across various computing 
platforms, Nostradamus can readily be deployed on 
local HPC clusters, stand-alone machines as well as in 
the cloud.  Utopus Insights has been using 
Nostradamus successfully around the globe for its 
clients for various renewable energy applications.   

 
Figure 1 shows a few examples of Nostradamus 

WRF configuration that varies among applications 
depending on the objective of each application.  These 
applications include Project Hamburg for Wind and 
Solar HyperCast in Germany, Project Nolan for 
convection effect on wind energy production, Project 
ENEL for Wind HyperCast over northwestern India and 
Project BHARAT for Wind and Solar HyperCast over the 
entire India. For example, for Project Nolan, the goal 
was to address the client’s typical concern in which 
insufficient wind power production was observed while 
the predicted power production based on the weather 
forecasts by the weather service.  It was noted by the 
client that this typical discrepancy was caused by 
unsuccessful prediction of convective activity by the 
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weather service models.  Our study indicated that 
running a WRF model at high resolution (e.g., 1-km) 
was helpful in reproducing convection for all the test 
case provided by the client.  Case 1-2 April 2017 was a 
typical case where high wind conditions were predicted 
for both days based on the weather surface models, 
while in reality the wind speed was low on the second 
day as a result of widespread convection that 
suppressed the wind production.  Nostradamus was 
able to reproduce the observed convection activities.  
Figure 2 shows Nostradamus-predicted surface wind 
speed and gust at Nolan, TX, for 1-2 Apr 2017, showing 
strong wind gusts (>20m/s) on the early morning of 1st 
but much weaker on the 2nd due to widespread 
convection.  

 

 
Figure 1. Nostradamus WRF grid configurations for 
several sample applications across the globe, upper left) 
Project Hamburg for Wind and Solar HyperCast 
applications over Germany, upper right) Project Nolan 
for Wind HyperCast applications in Texas, USA, lower 
left) Project ENEL for Wind HyperCast over 
northwestern India, and lower right) Project BHARAT for 
Wind and Solar HyperCast applications over the entire 
India. 
 

  
Figure 2. Nostradamus-predicted surface wind speed 
and gust at Nolan, TX, for 1-2 Apr 2017, showing strong 
wind gusts (>20m/s) on the early morning of 1st but 

much weaker on the 2nd due to widespread convection 
(incorrectly predicted by weather services based on 
client). 
 
 
3. NOSTRADAMUS PERFORMANCE FOR VERMONT 
 

3.1  Nostradamus Weather 
 

The Vermont Nostradamus instance consists of three 
nested grids with 9-, 3-, and 1-km grid spacings, with 
identical number of grid points (i.e., 300x300x50) for 
each grid (Fig. 3).  The 9-km grid covers a large portion 
of northeastern U.S, including IN, KY, TN, part of AL and 
GA, and southeastern Canada.  It also covers a large 
area of Atlantic Ocean so that realistic land-sea thermal 
gradient is represented in the model.  The 3-km grid 
covers the entire New England states, NY, eastern half 
of PA, and northern NJ, as well as s portion of Atlantic 
Ocean.   

 
The 1-km grid covers the entire VT, NH and portion 

of NY, with the land surface features of Hudson River 
valley that extends south-north to connect Lake 
Champlain, the Green Mountain Range that runs 
primarily south to north and extends approximately 250 
miles from the border with Massachusetts to the border 
with Quebec, Canada.  Between the Presidential Range 
that peaks at Mt. Washington with elevation of about 2 
km and the Green Mountain Range, there is Connecticut 
River valley that runs approximately north-south along 
the VT and NH border.  The 1-km grid also covers 
portion of Adirondack Mountains in NY with its peak 
elevation about 1.6 km.  These landuse and topographic 
feature defines the unique climatological features of VT.  
For example, the south-north-run valleys provide ideal 
conditions for channeling effect when the dominant 
background wind is from south or north (Fig. 4).  A high 
wind threat scenario with southerly or northerly flows 
can deteriorate due to the channeling effect.  

 

 
Figure 3. Vermont Nostradamus grid configuration, with 
300x300x50 grid points for each of grid.  Landuse for 
the 3- and 1-km grids are also shown. 
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Figure 4. Typical surface southerly flow patterns 
represented by streamlines produced by WRF on the 
Vermont 1-km grid.  The higher the wind speed, the 
tighter the streamlines become.  Each full wind barb 
represents 5 m/s wind speed.  The color bar denotes the 
ground elevation. 
 

Utility companies such as those in Vermont are very 
interested in accurate prediction of special weather 
events such as damaging wind gust, lightning and icing, 
in addition to the traditional weather features such as 
wind speed, wind direction, temperature, and 
precipitation and etc. that are regularly needed to drive 
the energy forecasting models.  Lightning and icing 
requires further study and have not been implemented 
into Nostradamus.  For wind gust, a simple algorithm 
was implemented based on the strength of turbulence 
(e.g., atmospheric boundary layer depth) and wind 
shear.  Preliminary validation showed that the original 
implementation intended to overestimate the surface 
wind gust, thus a scaling factor was introduced which 
was later tuned to produce reasonable wind gust 
forecast based on observations. 

 
The case of Oct 29, 2017, was one of many cases 

with high surface wind weather conditions resulting in 
power outages.  The extremely high wind gust 
conditions developed ahead of a cold front associated 
with rapidly intensifying cyclone caused numerous 
amount of power outage, with many homes having no 
power for weeks.   Figure 5 and 6 shows the 
Nostradamus-predicted vs observed wind conditions for 
Rutland and Burlington.  For Rutland the model-
predicted surface wind gust of 51 mph at 2:00AM EDT, 
30 October agreed very well with the observed value of 
49 mph at 1:56AM EDT.  The model-predicted gust 
value of 60 mph at Burlington at 3:10 AM EDT 30 
October also agreed well with the observed value of 59 
mph at 3:54 AM although the model peak is 44 minutes 
too earlier.  The model-predicted daily precipitation 
amounts and patterns (Fig. 7) also agree well with the 
observed.  These results indicate that Nostradamus has 

good skill in predicting wind gust and precipitation for 
use for utilities. 

 
 

 
Figure 5. Nostradamus-predicted (upper) and observed 
(lower) conditions for Rutland, VT.  In the upper panel, 
blue, red and green curves represent hub-height wind 
speed, surface gust and surface wind speed, 
respectively.  In the lower panel, red, blue and green 
represent the observed surface wind gust, wind speed 
and direction. 

 
Figure 6. Nostradamus-predicted (upper) and observed 
(lower) conditions for Burlington, VT.  In the upper panel, 
blue, red and green curves represent hub-height wind 
speed, surface gust and surface wind speed, 
respectively.  In the lower panel, red, blue and green 
represent the observed surface wind gust, wind speed 
and direction. 
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Figure 7. Nostradamus-predicted (left) vs observed 
(right) 24-h precipitation ending at 8 AM EDT 30 Oct. 
2017 on the 1-km grid. 
 

As indicated earilier, Nostradamus outputs such wind 
speed, wind direction, and temperature, etc. are used as 
inputs to the downstream energy forecasting models 
involving machine learninf techniques.  It is important for 
Nostradamus to have good skill in predicting the 
relavant weather variables.  Figure 8 and 9 show typical 
error scores during a given 3-day Nostrdamus forecast 
window for the 1-km grid, extracted from the 
Nostrdamus validation on-the-fly sytem.  The validation 
is currently done using only the 30+ standard METAR 
surface weather stations located within the 1-km grid. It 
is shown that mean error (ME), mean absolute error 
(MAE), and root mean square error (RMSE) for both 
wind speed and and wind direction (Fig. 8 and 9) are in 
a reasonable range (e.g., speed MAE ~1 m/s and 
direction MAE < 30 degrees) given the relatively 
complex terrain conditions over the region. 
 

 
Figure 8. Time series of Nostradamus-predicted surface 
wind speed errors on the 1-km grid, showing MAE, ME 
and RMSE, validated against standard METAR 
observations. 

 
Figure 9. Time series of Nostradamus-predicted surface 
wind direction errors on the 1-km grid, showing MAE, 
ME and RMSE, validated against standard METAR 
observations. 

 
 
For temperature, Figure 10 show a typical model 

error for the diagnosed 2-m temperature (T2), and Fig. 
11 shows the same but for the temperature predicted at 
the first model layer (T1) that is located at ~10 m above 
the ground (AGL) in this case.  Notice that there is a 
systematic cold bias (1-2 K) in both temperatures, with 
smaller error in T1 than in T2.   We noticed that the cold 
bias is more severe (i.e., 2-3 K) during nighttime into 
early morning when the atmospheric boundary is stable.  
We also noticed that T2 occasionally shows 
unreasonably extreme values on the 1-km grid (not 
shown) associated with the bad ground temperature 
values calculated in the Noah land surface scheme 
(LSM), indicating potential issues with handling the 
ground temperature in the LSM at high resolutions.   
Because of this issue and the fact that T1 is in more 
agreement with the surface temperature observation 
than T2, we decided to use T1 in place of T2 for the 
downstream applications as a temporary solution.  
Perhaps an even better approach is to use the potential 
temperature and surface pressure to calculate the 
temperature valid at the surface and use this value in 
the downstream models.  We have implemented this 
approach into Weather Insights, one of the Utopus 
Insights’ products.  An ultimate solution is to improve the 
Noah LSM for the stable regime and for high-resolution 
applications.   
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Figure 10. Time series of Nostradamus-predicted 2-m 
temperature errors on the 1-km grid, showing MAE, ME 
and RMSE, validated against standard METAR 
observations. 

 

 
Figure 11. Time series of Nostradamus-predicted first 
model layer temperature errors on the 1-km grid, 
showing MAE, ME and RMSE, validated against 
standard METAR observations. 

 
 
3.2 Renewable Energy 

 
Wind HyperCast forecast wind power for each wind 

turbine separately or the entire wind farm depending on 
the data source and availability, for up to 10 days into 
the future, at up to 5-minute time resolution.  The inputs 
to Wind HyperCast include meteorological variables 
predicted by Nostradamus, recent power measurement 
and recent wind speed measurement at the turbine site 
at the hub-height level.  The output is the power 
forecast.  As shown in Figure 12, the core of Wind 
HyperCast is a software layer that contains models 
involving deep learning (neural networks) techniques.  
Figure 13 shows Wind HyperCast performance for a 
Vermont wind farm with capacity of 40 MW.  It is shown 
that errors of Wind HyperCast is as low as 5-7% when 
Nostradamus weather forecasts are used. 

 

 
Figure 12. A schematic diagram for Wind HyperCast. 

 
 

 
Figure 13. Normalized MAE of Wind HyperCast. 
 

Solar HyperCast is like Wind HyperCast.  Its inputs 
to Solar HyperCast include meteorological variables 
predicted by Nostradamus and recent solar power 
measurement, and the output is the solar power 
forecast.  The core of Solar HyperCast is a software 
layer that contains models involving machine learning.  
A recent upgrade to Solar HyperCast was to include the 
snow forecast.  Figure 14 shows the Solar HyperCast-
forecasted power vs measurement for one of the solar 
farms in VT.  The prediction was from the version of 
Solar HyperCast that did not consider snow covering the 
solar panels, thus overestimated the power production 
for the period of 6-8 January 2018 after a snow storm. 

 
By training the models to include snowfall rate and 

accumulative snow amount, HyperCast-predicted solar 
power is much closer to the measurement.  Figure 15 
shows the comparison among HyperCast with snow, 
without snow and measurement for the entire month of 
January 2018.  It is shown that improvement due to 
including snow features are evident after 10 January 
2018 when the snow features were implemented.  The 
overall average error in forecasted power production 
has reduced by ~ 0.5%-1% (~15% for snow days) for 
most of the farms.  Although the forecasts on the day of 
snow have shown significant improvements, there was a 
degradation (under prediction) for clear-sky days, 
indicating a need for further study, perhaps by refining 
the classification during model training. 
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Figure 14. Predicted vs. observed power curves from 
Solar HyperCast for one of the solar farms in VT, 
between 28 December 2017 and 9 January 2018. 
Green curve is the measurement and read is the model-
predicted. 
 

 
Figure 15. Predicted vs. observed power curves from 
Solar HyperCast for one of the solar farms in VT, 
between 1 2017 and 26 January 2018.  Blue curve: 
measurement, yellow: HyperCast without snow, grey: 
HyperCast with snow  
 

 
4. NOSTRADAMUS OPTIMIZATION 
 

Given the Nostradamus configuration for Vermont 
(i.e. 300x300x50 grid points for each of the three grids), 
a series of timing tests were conducted on the HPCC 
that has a large number of computing cores and 
100GB/s InfiniBand to find the ‘sweet spot’ or number of 
CPU cores where optimal run speed is achieved so that 
our utility client receives the forecast products at the 
earliest possible time.  Figure 16 demonstrates the 
relationship between the time taken to run the Vermont 
WRF configuration for 24 hours and the number of CPU 
cores assigned to the task, for tests without using I/O 
quilt technique (blue curve) and those with using optimal 
I/O quilt (orange curve).  It is shown that the ‘sweet spot’ 
is found at 17-18 nodes (or 476-504 CPU cores).  It is 
also shown that near the ‘sweet spot’, with using I/O 
quilt the run time can be further reduced by ~20% (i.e., 
56 min. without I/O quilt vs 45 min. with I/O quit).  The 
11 min./day reduction can be translated to ~2 hour/10-
day which is quite significant for the client that needs a 
10-day forecast.    

 

 

 
Figure 16. Nostradamus WRF timing as a function of the 
number of assigned CPU cores. 
 
 
5. SUMMARY AND CONCLUSIONS 
 

Utopus Insights has developed a globally relocatable 
high-resolution WRF-based numerical weather 
prediction system – Nostradamus, for its realtime 
renewable engery hypercast applications worldwide.  
Based on our systematic validation for meteorology for a 
period of more than 8 months, the current Nostradamus 
configuration predicts wind speed and direction with 
reasonable overall model mean absolute errors 
(typically < 1 m s-1 for wind speed and <30 degrees for 
wind direction).  However, the surface air temperature 
prediction shows an overall cold bias (~1-2 K).  In 
addition, compared with the temperature at the first 
model level, the diagnostic 2-m temperature field tends 
to have larger error (~2-3 K). Validation based on 
renewable energy production indicated improved Solar 
HyperCast forecasting with the added snow feature 
(e.g., 15% error reduction on snowy days for a group of 
solar farms in the North-Eastern US). Similarly, errors of 
Wind HyperCasts decreased from 14-16% to as low as 
5-7% by also exploiting Nostradamus forecasts of 
temperature, air density and wind gusts in addition to 
those of wind speed.   

 
On a HPCC with a large number of computing cores 

and 100GB/s InfiniBand, Nostradamus timing scales 
approximately linearly with number of compute nodes 
up to 18 nodes (or 504 cores), ‘sweet spot’ used for the 
operational Nostradamus.  We also found that near the 
‘sweet spot’, with using I/O quilt the run time can be 
further reduced by ~20%. 

 
Future work includes 1) improving Solar HyperCast 

for clear sky days, 2) exploring turbine drag effect on 
mesoscale wind prediction, 3) assimilating METMASS 
from wind farms into Nostradamus, 4) exploring the 
readiness of MPAS for use in hypercast applications. 
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