
	

1 

Running WRF Operationally at AWS Using OBSGRID 
	

Richard L. Carpenter, Jr. 
Weather Decision Technologies, Inc., Norman, Oklahoma, USA 

 
ABSTRACT	

We describe our experience running WRF operationally in a commercial environment. We 
run WRF at a traditional data center and at AWS. The AWS implementation is built with 
CfnCluster and uses the Slurm job scheduling system. We examine performance and cost 
saving options, including I/O quilting and compressing the WRF netCDF input and history 
files. Our preprocessing system ingests MADIS observations and uses OBSGRID for both 
quality control of the observations for FDDA and for gridded initial conditions. Our workflow 
management system, WRFControl, handles all aspects of forecast execution, including data 
ingest, job scheduling and submission, post-processing, plotting, dissemination, monitoring, 
and alerting. 

	
1. Introduction 

Since	 its	 inception	 in	 2000,	 Weather	 Decision	
Technologies,	 Inc.	 (WDT)	has	run	NWP	systems	
operationally.	In	2004,	WDT	began	using	WRF	as	
its	operational	mesoscale	model.	The	delivery	of	
a	 WRF-based	 system	 to	 the	 government	 of	
Paraguay	 marked	 the	 first	 commercial	 interna-
tional	application	of	WRF	(Carpenter	et	al.,	2004).	
WDT	 subsequently	 installed	 WRF	 systems	 at	
Dubai	International	Airport,	the	Philippines,	and	
Thailand	(Shaw	et	al.,	2008).	

WDT	also	performs	hundreds	of	WRF	runs	daily	
in	 support	 of	 applications	 including	 aviation,	
marine	 exploration	 and	 shipping,	 renewable	
energy,	 and	 winter	 weather	 forecasting.	 These	
runs	are	a	mix	of	hourly	“rapid-refresh”	runs	and	
longer-range	forecasts.	Grid	spacings	range	from	
12	km	down	to	1	km	nests	for	some	domains.	

The	 composition	 of	 the	 forecast	 system	 has	
changed	over	the	years,	but	in	general	has	always	
included:	

• various	 data	 assimilation	 techniques,	
including	3DVAR,	LAPS,	and	FDDA;	

• high-performance	 computing	 (HPC)	 on	
Linux	clusters	of	various	sizes;	

• a	 robust	 workflow	 management	 system	
known	as	WRFControl.	

Here	we	describe	our	current	operational	system	
and	 discuss	 lessons	 learned	 over	 the	 years.	 In	
particular,	we	describe	experience	running	WRF	
at	 Amazon	 Web	 Services	 (AWS),	 and	 with	
coupling	 our	 FDDA	 processes	 with	 WRF’s	
OBSGRID	utility.	

	
2. Initialization Using OBSGRID and FDDA 

We	use	WRF	Version	3.9.1	with	¼°	GFS	data	as	a	
background.	We	 download	and	 run	UNGRIB	 on	
the	first	30	hours	of	each	GFS	run.	For	later	GFS	
forecast	 hours	 we	 process	 every	 third	 hour,	
interpolating	 to	 hourly,	 in	 order	 to	 conserve	
bandwidth	 and	 processing	 time.	 For	 selected	
runs,	we	use	⅛°	ECMWF	forecasts	instead	of	GFS.	
We	 also	 use	 NCEP’s	 1/12°	 sea	 surface	
temperature	analysis.	

Previously	we	 used	 a	 combination	 of	 LAPS	 and	
observation	 nudging	 (FDDA)	 for	 data	 assimila-
tion.	A	custom	data	ingest	format	allowed	the	use	
of	 non-governmental	 observations.	 We	 decided	
to	 stop	using	LAPS	owing	 to	 its	 complexity	 and	
lack	 of	 ongoing	 support.	 Instead,	 we	 are	 using	
OBSGRID,	 WRF’s	 objective	 analysis	 utility,	 for	
data	ingest	and	quality	control.	

Data	ingest	begins	by	obtaining	the	latest	obser-
vations	from	MADIS.	We	ingest	the	following	data	
types:	 METAR,	 MARINE,	 RAOB,	 ACARS,	 MAP	
(profiler),	 and	 SATWND	 (Figure	1).	 (We	do	 not	

Joint WRF and MPAS Users’ Workshop 
NCAR, June 2018, Boulder	



	

2 

use	mesonet	data,	which	we	have	found	can	cause	
WRF	 to	 crash	 during	 FDDA.)	 We	 use	
MADIS2LITTLER	 to	 convert	 the	observations	 to	
Little-R	format	for	processing	by	OBSGRID.	

OBSGRID	is	run	for	each	hour	that	FDDA	is	to	be	
applied.	The	records	are	then	sorted	by	time	and	
placed	 into	 a	 single	 master	 FDDA	 file	
(OBS_DOMAIN101).	OBSGRID’s	 gridded	analyses	
are	also	used	instead	of	METGRID’s	(overwriting	
the	met_em_*	files	with	the	metoa_em_*	files).	For	
nested	grid	runs,	we	currently	apply	FDDA	only	
on	the	parent	grid.	

Our	OBSGRID	and	FDDA	settings	generally	follow	
the	 recommendations	of	Reen	 (2016).	Typically	
we	apply	FDDA	for	two	hours	before	the	nominal	
start	time.		

The	typical	workflow	of	a	WRF	job	is	as	follows:	

• Run	METGRID	for	the	duration	of	the	run,	
using	 every	 third	 hour	 of	 UNGRIB	 as	
input.	

• Run	METGRID	on	every	hour	of	the	FDDA	
period	 (e.g.,	 3	 times	 for	 a	 2-hour	 FDDA	
period).	

• Run	OBSGRID	on	every	hour	of	the	FDDA	
period.	

• Replace	 the	METGRID	analyses	with	 the	
OBSGRID	analyses.	

• Concatenate	 and	 time-sort	 the	 OBSGRID	
output	into	a	single	OBS_DOMAIN101	file.	

• Run	REAL.	
• Run	WRF.	

 
3. Running WRF at a Traditional Data Center 

and at AWS 

WDT	 in	 late	 2017	 retired	 its	 HPC	 cluster	 and	
began	 leasing	dedicated	nodes	at	 the	University	
of	 Oklahoma’s	 OU	 Center	 for	 Supercomputing	
Education	 and	 Research	 (OSCER).	 The	 facility	
uses	20-core	nodes	with	Haswell	processors	and	
InfiniBand	 interconnects,	along	with	high-speed	
Lustre	storage.		

During	 periods	 of	 scheduled	 maintenance	 at	
OSCER,	 we	 shift	 operations	 to	 AWS.	 We	 are	
currently	using	18-core	Haswell	c4.8xlarge	nodes	
at	AWS.	(We	have	found	performance	per-core	to	
be	similar	at	OSCER	and	AWS	when	running	WRF	
across	several	nodes.	We	have	not	yet	had	much	

experience	 with	 the	 newest	 c5	 Skylake	 nodes,	
which	 have	 custom,	 more	 advanced,	 intercon-
nects.)	We	use	CfnCluster	to	build	the	clusters	at	
AWS.		

Also	at	AWS,	we	use	the	Intel	Fortran	compiler	to	
compile	 WRF	 for	 distributed	 memory.	 For	
maximum	optimization,	we	select	the	“SNB	with	
AVX	mods”	configuration	option	and	set	DM_FC=-
xHOST	in	configure.wrf.	

We	 use	 I/O	 quilting,	 in	 which	 one	 or	 more	
processors	are	reserved	 for	writing	history	 files	
(nio_tasks_per_group=2).	We	 find	 this	 to	 be	 less	
cumbersome	than	a	splitfiles/joinfiles	approach.	
Rather	than	dedicate	an	entire	node	to	I/O,	we	are	
conservative	in	the	number	of	nodes	we	use.	For	
instance,	on	18-core	nodes,	we	run	WRF	calcula-
tions	on	16	cores	and	use	the	remaining	2	cores	
for	 I/O.	 Compared	 with	 using	 entire	 nodes	 for	
WRF	 calculations	 and	 none	 for	 I/O	 tasks,	 this	
approach	improves	the	performance	of	a	run	by	a	
few	percent,	more	so	in	cases	of	high-frequency	
output.	

The	 amount	 of	 disk	 space	 consumed	 during	 a	
WRF	 run	 can	 be	 quite	 large.	 The	 history	 files	
alone	from	a	run	on	a	501	´	401	´	36	grid	with	
hourly	output	 to	84	hours	 can	occupy	48	GB	of	
space.	 We	 therefore	 explored	 the	 option	 of	
outputting	 compressed	 WRF	 history	 and	 REAL	
input	netCDF	files	by	compiling	with	NETCDF4=1.	
This	 compression	 reduces	 the	 file	 sizes	 by	 60-
70%,	although	run-time	performance	can	suffer	
by	as	much	as	10-20%.	Some	users	may	consider	
the	significant	savings	in	disk	space	to	be	worth	
the	decrease	in	run-time	performance.		

We	use	 the	 Slurm	 job	 scheduler	 at	 both	OSCER	
and	AWS.	At	AWS,	we	modify	the	configuration	to	
use	both	core	and	memory	(CR_Core_Memory)	as	
consumable	resources.	This	allows	multiple	post-
processing	jobs	to	run	on	a	single	node.		

	
4. Modifications to WRF 

We	make	a	few	minor	modifications	to	the	WRF	
code.	 The	 first	 involves	 the	 use	 of	 “ready”	 files	
with	 I/O	 quilting.	 We	 modify	 the	 WRF	 code	 to	
allow	the	“ready”	files	to	be	written	when	quilting	
is	 on.	The	 approach	 is	not	perfect,	 and	we	wait	
some	number	of	seconds	after	the	“ready”	file	is	
written	before	safely	accessing	the	history	file.	



	

3 

Other	 minor	 modifications	 to	 the	 WRF	 code	
include:	

• Adding	 downward	 solar	 radiation	
(ts_swdown)	 to	 the	 tslist	 (time	 series)	
output.	 This	 involves	 a	 change	 to	 the	
Registry.	

• Using	 a	 value	 of	 6371.2	 km	 rather	 than	
6370	 km	 for	 the	 radius	 of	 the	 earth	 in	
WPS	 and	WRF.	 This	 improves	 compati-
bility	with	GRIB	files	from	NCEP.	

	
5. WRFControl 

Our	 workflow	management	 software,	WRFCon-
trol,	 handles	 all	 aspects	 of	 forecast	 execution,	
including	data	ingest,	job	scheduling	and	submis-
sion,	 post-processing,	 plotting,	 dissemination,	
monitoring,	 and	 alerting.	 WRFControl	 is	 the	
direct	 successor	 to	 the	 Perl-based	 system	 that	
was	 previously	 used	 to	 orchestrate	 ARPS	 and	
WRF	 runs.	 It	 consists	 of	 about	 35,000	 lines	 of	
Python	 script	 plus	 various	 configuration	 files	
written	in	YAML.		

We	have	also	built	a	custom	WRF	post-processor,	
written	in	Fortran.	Key	products	include	aviation	

variables	 such	 as	 turbulence,	 icing,	 and	 flight	
conditions;	and	lightning	flash	density.	

We	 generally	 use	 NCAR	 Graphics	 for	 plotting	
gridded	data,	and	Matplotlib	(Python)	for	plotting	
meteograms.	 Data	 and	 plots	 are	 transferred	 to	
AWS	 S3	 object	 storage	 for	 web	 display	 and	
retrieval	 by	 clients.	 A	 continually	 updating	 job	
status	page	(Fig.	2)	and	basic	WRF	plots	(Fig.	3)	
are	hosted	in	S3.	

 
REFERENCES 

Carpenter,	 R.,	 G.	 Bassett,	 K.	 Brewster,	 D.	 Weber,	 Y.	
Wang,	J.	Brotzge,	K.	Thomas,	F.	Kong,	and	D.	Jahn,	
2004:	A	Globally	Relocatable	Numerical	Weather	
Prediction	 System	 Based	 on	 WRF	 and	 ADAS.	
Extended	 Abstracts,	 20th	 Conf.	 on	 Weather	
Analysis	 and	 Forecasting	 and	 16th	 Conf.	 on	
Numerical	Weather	Prediction,	AMS,	Seattle.		

Reen,	B.,	2016:	A	Brief	Guide	to	Observation	Nudging	
in	 WRF,	 NCAR.	 http://www2.mmm.ucar.edu-
/wrf/users/docs/ObsNudgingGuide.pdf.	

Shaw,	 B.,	 P.	 Spencer,	 R.	 Carpenter,	 and	 C.	 Barrere,	
2008:	Implementation	of	the	WRF	model	for	the	
Dubai	 International	 Airport	 Aviation	 Weather	
Decision	 Support	 System	 (AWDSS).	 Extended	
Abstracts,	 13th	 Conf.	 on	 Aviation,	 Range,	 and	
Aerospace	Meteorology,	New	Orleans,	AMS.	

	



	

4 

 
	

Figure	1.	Observation	locations	and	counts	processed	by	OBSGRID	for	a	sample	initialization	of	WRF	
over	CONUS.	Numbers	in	parentheses	are	the	counts	of	unique	locations	and	total	observations	for	each	
data	type.	

	



	

5 

	
Figure	2.	Example	showing	the	status	of	WRF	runs	over	a	24-hour	period.	Indicators	shown	include:	S	=	
scheduled;	Q	=	queued;	m	=	running	METGRID;	percentage	=	 fraction	of	GRIB	 files	available;	A	=	all	
products	available.	Other	indicators	not	shown	include	running	REAL,	running	WRF,	job	finishing,	job	
delayed,	and	job	failed.	

	



	

6 

	
Figure	3.	Example	of	the	WRF	plot	viewer,	showing	a	forecast	on	a	4-km	grid	of	winds	over	the	Gulf	of	
Mexico.	This	domain	is	run	hourly	out	to	84	hours	in	support	of	marine	exploration	and	transportation	
operations.	

	


