Chemical Characteristics and Ozone Production in the Northern Colorado Front Range
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We use the extensive set of aircraft and ground-based observations from the NSF/NCAR and State of Colorado Front Range Air Pollution and Photochemistry Experiment (FRAPPE) and the NASA DISCOVER-AQ
experiments in summer 2014 together with WRF-Chem simulations to study the ozone production and chemical regimes in the Northern Colorado Front Range (NFR). We apply the Integrated Reaction Rate
(IRR) capability that will be released with WRF-Chem version 4 and the chemical tendencies diagnostics and present preliminary results from an in-depth analysis of the ozone formation in various NFR
regions for a case study of 12 August 2014. We further apply these diagnostics along WRF online trajectories to assess the chemical evolution of air masses as they are transported from the NFR to the
mountains during upslope events. The results show efficient ozone production within the NFR driven by high NOx and high VOCs (specifically higher alkanes and aldehydes) and also continued ozone
production during the transport into the mountains.
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We conducted a sensitivity run without direct emissions of HCHO to estimate the
contribution of direct emissions vs chemical production. il
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Concentrations, tendencies, and IRR analysis along WRF
trajectories. Trajectory 196 (T196) is shown as example.
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Fig 9: T196 IRR derived total OH
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Fig 11: O; surface concentrations (ppb) and winds from
WRF-Chem and surface monitors.

Transport errors in the morning in the Eastern NFR bring too much

oil/gas emissions into the city resulting in incorrect representation

of emission transport and in spatial distribution of O5; concentrations.

(= ozone is too high in City and too low in OG)

Overall, however, WRF-Chem represents the chemical characteristics

(e.g. HCHO/NO, ratios)

Model slightly overpredicts surface O5; and better represents the

afternoon compared to the morning in line with aircraft data.

WRF-Chem represents well the strong upslope flows on this day.
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