

Sub-kilometer mobile emissions grid and dispersion model for Medellín,

Juan J. Henao^{*1,2}, John F. Mejia¹, Angela M. Rendón² and Juan F. Salazar² 1. Department of Atmospheric Sciences, Desert Research Institute, Reno, Nevada.

2. GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia. * jjose.henao@udea.edu.co

- The dispersion of traffic emissions in a highly urbanized and narrow inter-Andean valley is examined using two dispersion model types (Lagrangian and Eulerian) with a passive tracer emulating CO.
- We followed a simple top-down approach to distribute total annual emissions in space (300m) and time (hourly for each weekday) based on road network and category and vehicle counts.
- High horizontal resolution (300m) is important to represent intra-valley circulations. However, the error metrics for temperature, precipitation and wind speed are similar for the domain 5 (300 m) and domain 4 (900 m).
- The 3 PBL schemes evaluated using surface stations and a profiler show fairly similar results.
- Results show the regions of the valley where "mobile emissions" tend to accumulate.

Emission Inventory

Site description

Colombia

Medellin and Metropolitan area:

- Second largest city in Colombia
- 4 million inhabitants in 1150 km²

Top-down approach:

- Road network

Results

- Steep and narrow valley
- Cases of severe air pollution exceedances (especially in march)
- 343 vehicles per 1000 inhabitants

Models Configuration

WRF-CHEM v. 3.9.1.1 (WRF)		Lagrangian model (Lag)
 Period: March 6-20 2016 Topo: SRTM (D5) & USGS LULC: MODIS ICBC: CFSR Domains: 5 (one way) Resolution: 24km – 300m 	 Land Surface: Noah-MP Surface: Jimenez revised PBL: MYJ, MYNN, ShinHong MP: Thompson Cu: Kain-Fritsch (D1-2) Chem: Passive tracer 	 Langevin equation: advection by mean wind and sub-grid turbulent fluctuations Mean wind component (15 min WRF output) Turbulence diffusion is a function of WRF-TKE and a random Normal stochastic component with mean zero and standard deviation Δt = 30sec

- nd
- - 10° particles per day

WRF Model Performance

Both Lag and WRF models agree on:

- **AM**: Tracer is trapped within the valley and accumulated near sources.
- **PM**: Ventilation associated to the evolution of the local circulation (valley flows) and PBL mixing reduce the concentration of the tracer near surface.
- Asymmetries in the distribution of tracer across-valley (one slope more polluted).
- With the growth of the PBL, pollutants reaching the valley top are transported with the predominant easterly flow. Models differ:
- Vertical distribution of the tracer, with higher dispersion in the Lag model
- Hence, significant transport occurs at higher levels in the Lag model

	Eastern-facing slope		Western-facing slope
4 00	Lat: 6.17 Lon: -75.65	\rightarrow 2 [ms ⁻¹]	Lat: 6.17 Lon: -75.56 \rightarrow 2 [ms ⁻¹]
4.00 T	* * * * * * * * * * * * * * * * * * * *	,	, , , , , , , , , , , , , , , , , , ,

- Evaluated PBL schemes produced similar error statistics using surface met stations. MYNN resulted in larger nocturnal PBL heights.
- Both Lagrangian and WRF show similar dispersion of pollutants, asymmetries in the across-valley distribution, associated to the along-valley circulation and the interaction between the local and regional flow.
- Lagrangian model exhibits dispersion to higher layers, apparently associated to the stochastic turbulent diffusion.
- Reduced computational cost of the lagrangian model, in addition to particle tagging, provides potential for

- Model precipitation in D4-5 has less rainfall compared to surface stations.

• Model overestimates wind speed compared to surface stations. - Similar error metrics for D5 vs D4 and the three PBL's. There is added value in the resolved local circulation and better representation of valley topography in D5.

scenarios and sensitivity tests.

Authors thanks the Universidad de Antioquia, Colciencias, and the Desert Research Institute for funding this research; SIATA (<u>https://siata.gov.co/</u>) for providing the observations for model evaluation.