

Toward 1-km ensemble forecasts over large domains

Craig Schwartz, Glen Romine, Kate Fossell, Ryan Sobash, and Morris Weisman

contact: schwartz@ucar.edu

NCAR is sponsored by the National Science Foundation

Motivation

- Several studies have examined high-resolution model sensitivity to horizontal grid spacing
 - Always in deterministic frameworks
 - What about probabilistic forecast sensitivity to grid spacing?

 Little work comparing a coarse-resolution (but still convection-allowing) ensemble to an even higherresolution deterministic forecast

A 27-member 3-km ensemble costs similarly as a single
1-km deterministic forecast

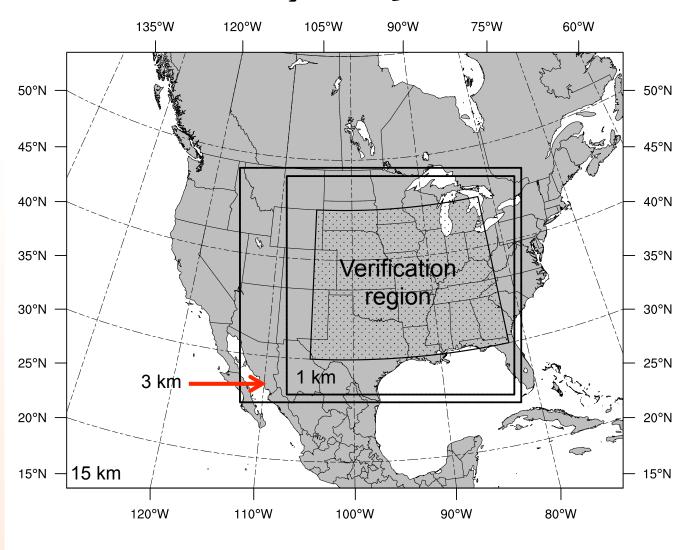
Experimental design

- Three forecast sets:
 - 30-member 3-km ensemble forecasts (3KM_ENS30)
 - 10-member 3-km ensemble
 - Just a subset of the 30-member 3-km ensemble (3KM_ENS10)
 - 10-member 1-km ensemble (1KM_ENS10)
- Verified individual ensemble members and probabilistic forecasts
- Examined 32 forecasts initialized at oooo UTC
 - Ensemble Kalman filter (EnKF) data assimilation initialization
 - Between 15 May and 15 June 2013
 - 48-hr forecast length

Computational domains

EnKF data assimilation only on 15-km domain

• 1- and 3-km forecasts have identical 15-km initial conditions



WRF settings and physics

- WRF-ARW (version 3.3.1)
- 40 vertical levels, 50-hPa top
- Physics ("CONUS suite" introduced in WRF v3.9)
 - Thompson microphysics
 - RRTMG longwave and shortwave radiation with aerosol and ozone climatologies
 - MYJ PBL
 - Tiedtke cumulus parameterization on 15-km domain
 - NOAH land surface model
- Same physics for all ensemble members and forecasts

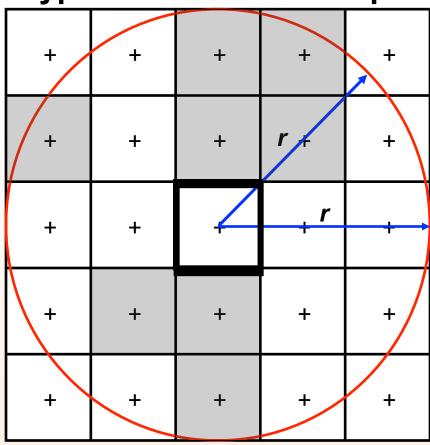
Precipitation verification

- NCEP Stage IV observations as "truth"
 - 4.7-km horizontal grid spacing
- Model forecasts interpolated to Stage IV grid
 - This did not introduce meaningful errors
- Precipitation forecasts bias-corrected to focus on displacement errors
- All statistics aggregated over 32 forecasts

How to create probabilities from deterministic guidance?

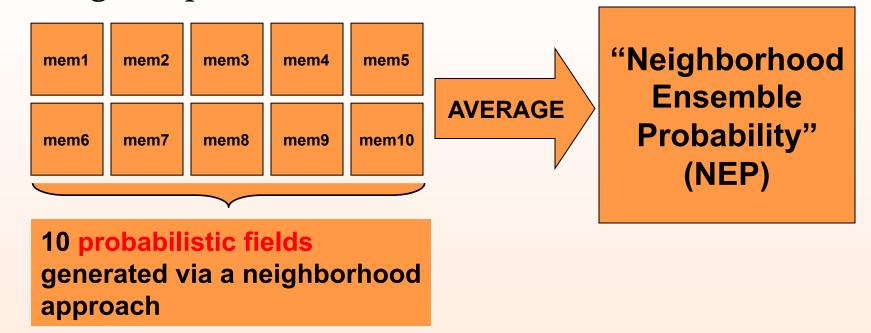
- Use a "neighborhood approach"
- r = 2.5 times the grid spacing
- The event has occurred in the shaded boxes
- This method was used to verify individual ensemble members

Hypothetical model output

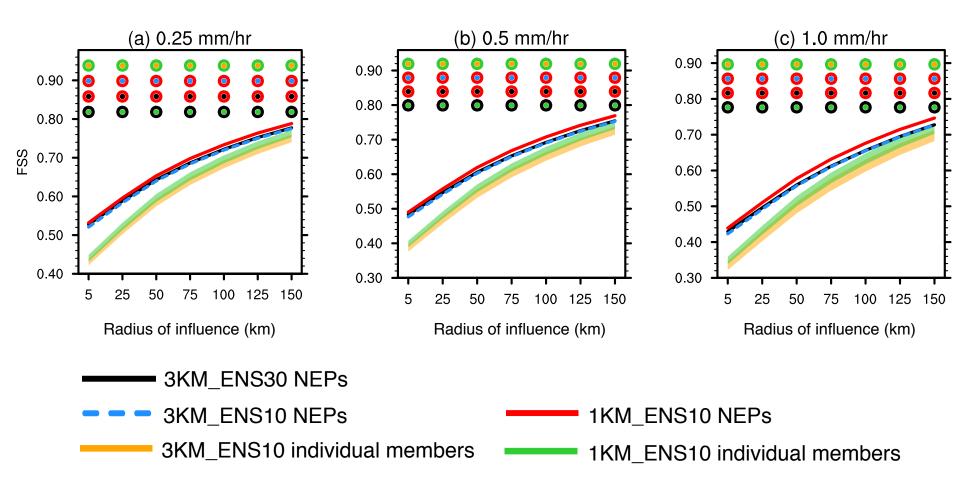


Neighborhood approach applied to probabilistic forecasts

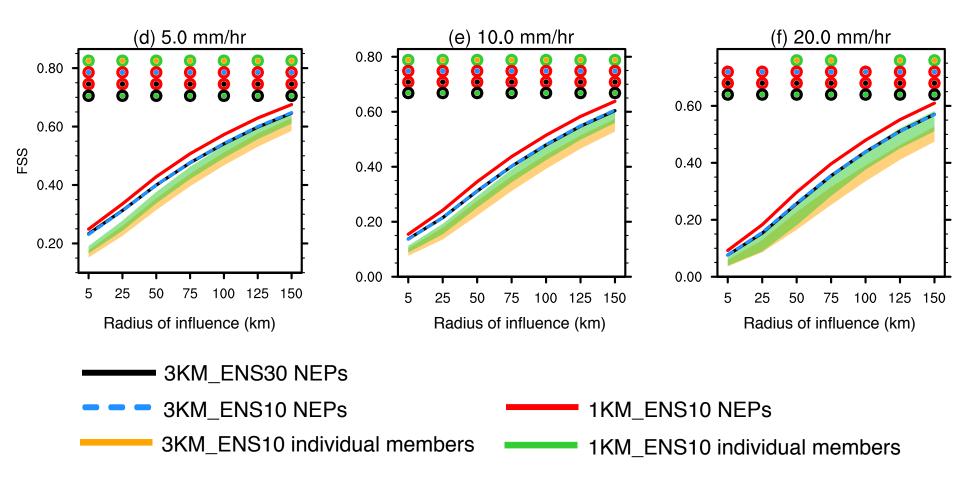
- Apply neighborhood approach as described on previous slide to each ensemble member separately
 - For each member, get a value between o and 1
 - Average all probabilistic fields



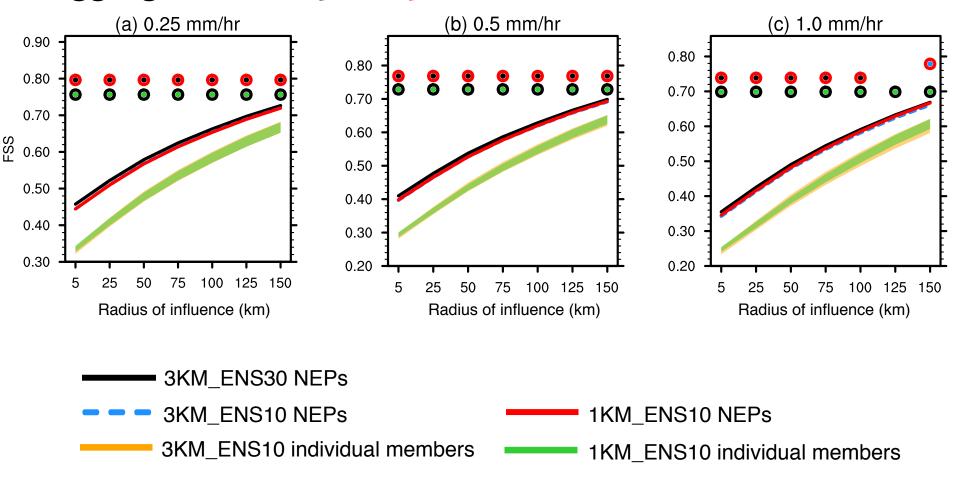
Aggregated over 32 1-12-hr forecasts



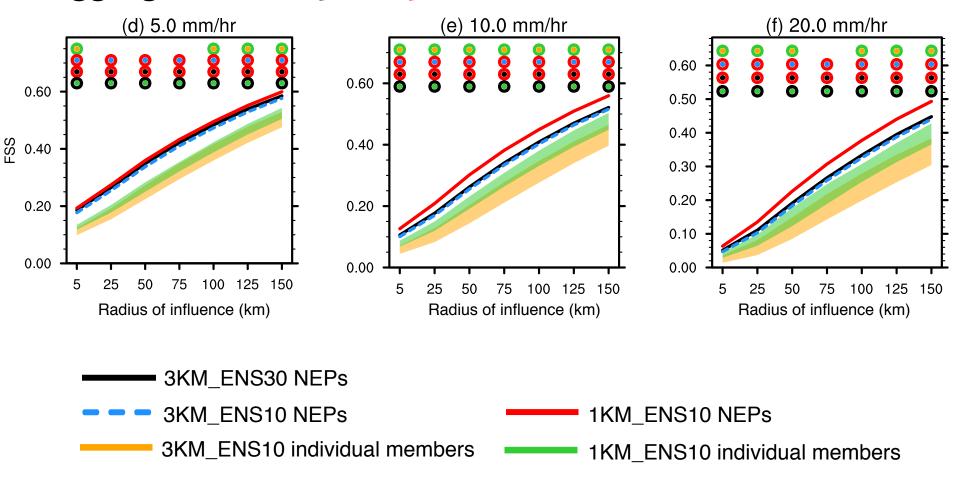
Aggregated over 32 1-12-hr forecasts



Aggregated over 32 18-36-hr forecasts



Aggregated over 32 18-36-hr forecasts



Questions

- Why were 1-km forecasts better at higher rainfall rates?
- Subjectively, it appeared that 1-km MCSs moved more quickly than 3-km MCSs
- We performed object-based verification to try to quantify MCS propagation speed and cold pool strength
- Used MODE from the MET software

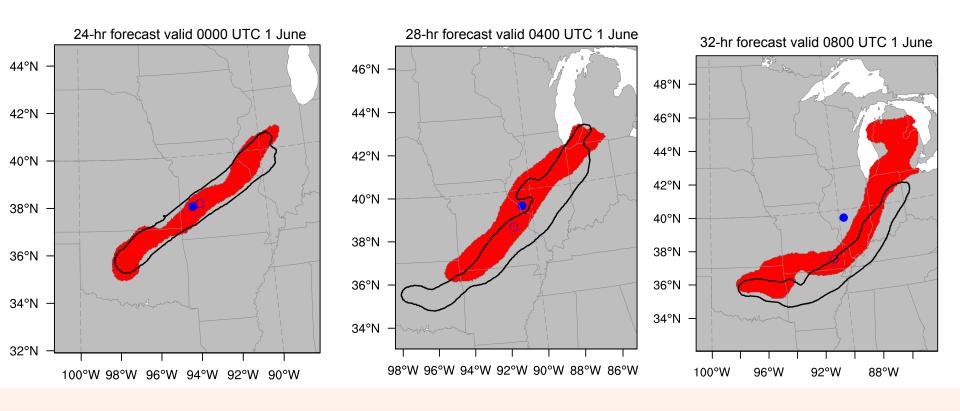
MODE methods

- Defined probabilistic objects from 10-member 3- and 1km ensembles
 - Object: contiguous region where smoothed probabilities of 1hr precip > 5.0 mm/hr exceeded 10% (50-km smoother)
 - Imposed minimum area thresholds (α) to focus on large MCSs
- Also defined objects for individual members and Stage IV observations

- Matched 1- and 3-km objects using centroid distance
 - Statistics only produced for matched 1- and 3-km objects

Case study: 31 May 2013

• 3-km (shaded) and 1-km objects (contours)

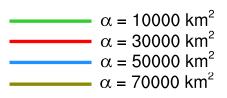


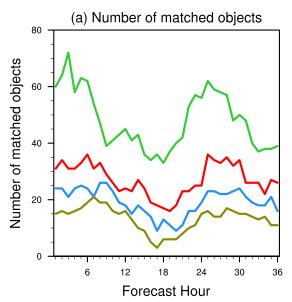
• Object: contiguous region where smoothed probabilities of 1hr precip > 5.0 mm/hr exceeded 10% (50-km smoother)

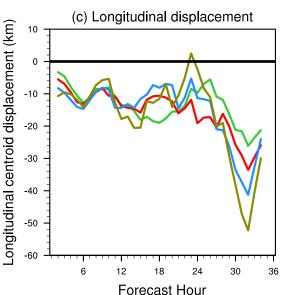
Differences between 3- and 1-km objects

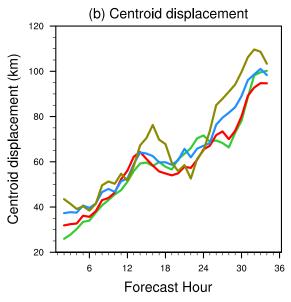
 Bulk statistics over all 32 days

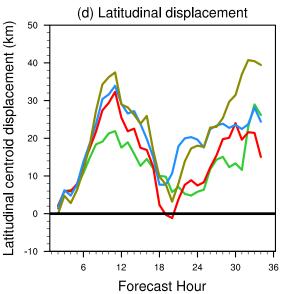
Convention for differences: 3-km minus 1-km





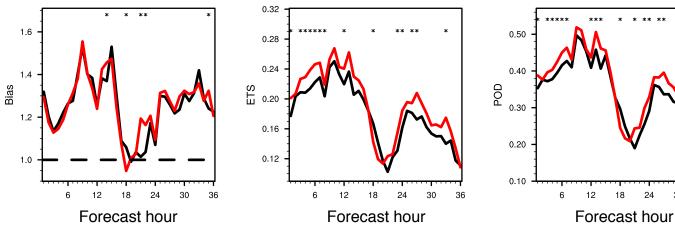


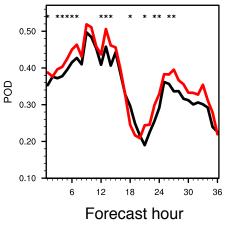


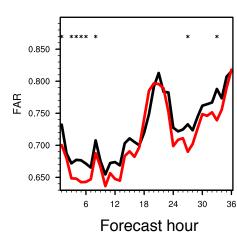


Comparison with Stage IV objects

- Verification metrics comparing 1- and 3-km objects with probabilistic Stage IV objects
 - Minimum object areas: 30000 km²





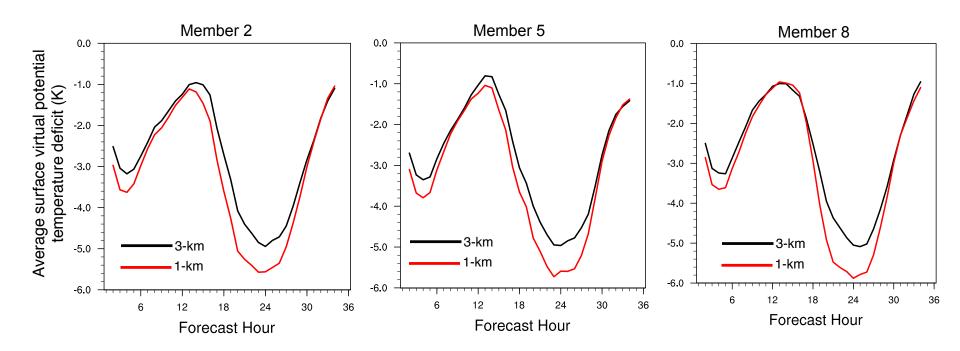


3KM_ENS10 NEPs

1KM_ENS10 NEPs

Cold pool strengths

Mean cold pool strengths as a function of forecast hour



 Also a shift in the 1-km distributions toward stronger (colder) cold pools

Summary

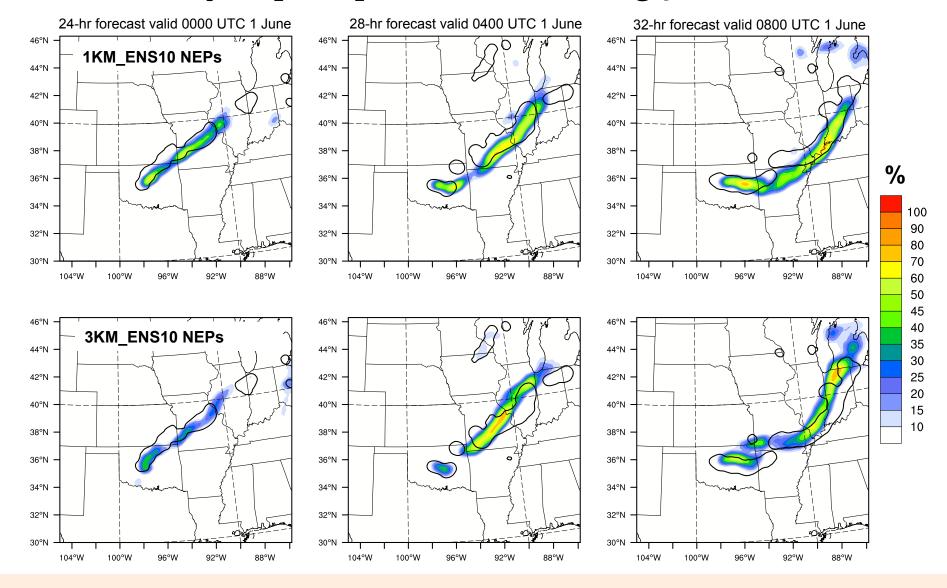
- For precipitation, 3-km ensembles appear better than 1-km deterministic forecasts, on average
- 1-km ensembles appear best, especially at heavier rainfall rates

• Improved 1-km forecasts associated with stronger 1-km cold pools and better MCS placement

- All the gory details here:
 - Schwartz et al. (2017); MWR; doi:10.1175/MWR-D-16-0410.1

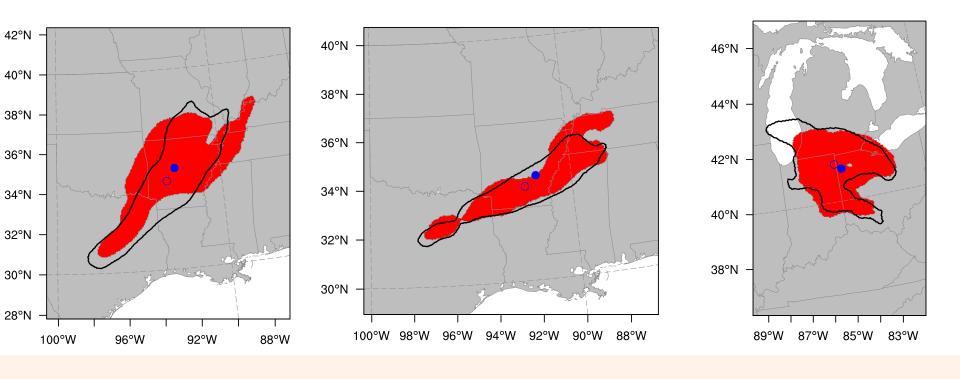
Case study: 31 May 2013

Probability of precipitation exceeding 5.0 mm/hr



Forecast objects

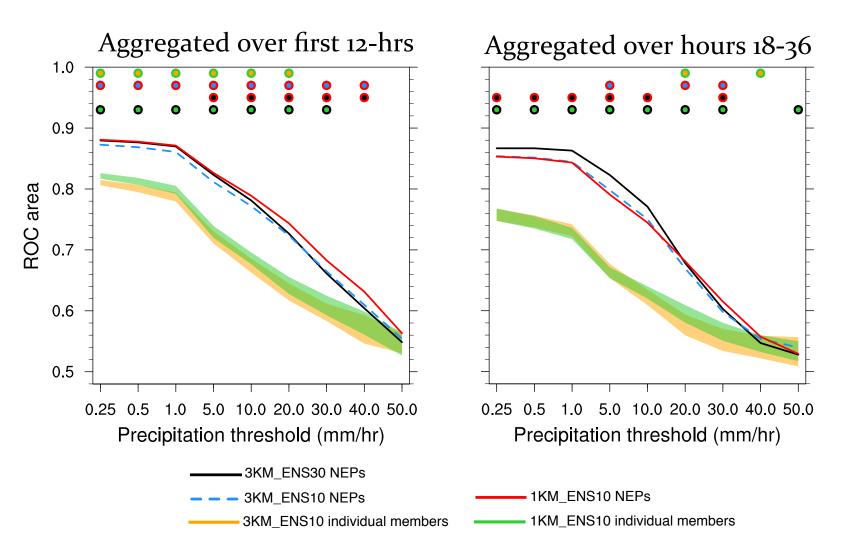
- Snapshots of forecast objects
 - 3-km (shaded) and 1-km objects (contours)



• Object: contiguous region where smoothed probabilities of 1hr precip > 5.0 mm/hr exceeded 10% (50-km smoother)

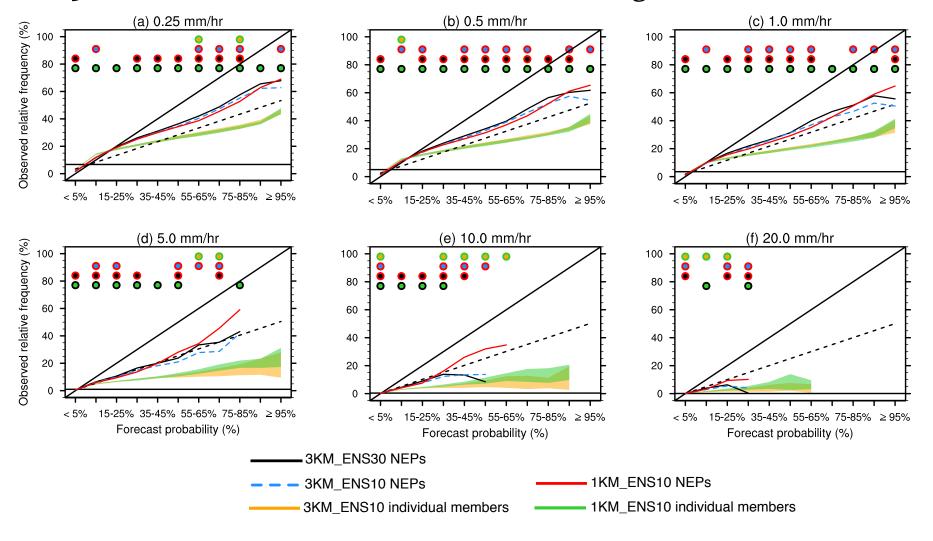
ROC areas

- Aggregated over 32 forecasts
 - 50-km radius of influence (similar findings with other radii)

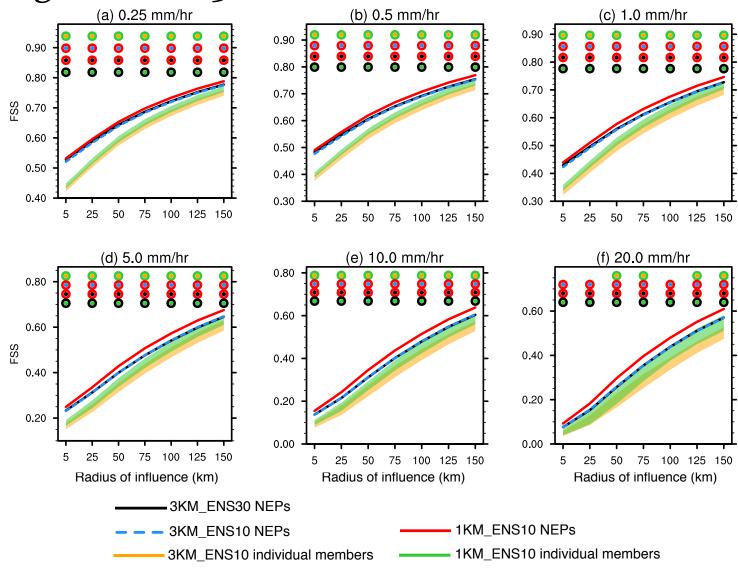


Reliability diagrams

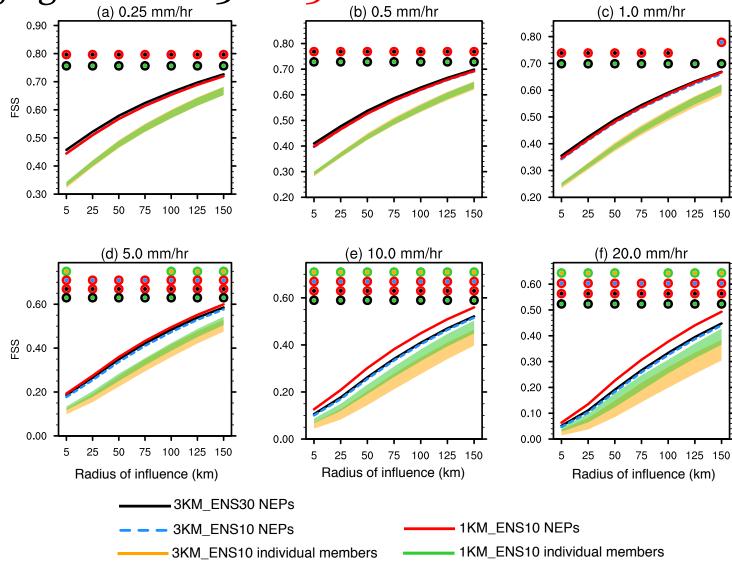
- Aggregated over 32 forecasts between 18-36 hours
 - 50-km radius of influence (similar findings with other radii)



Aggregated over 32 1-12-hr forecasts

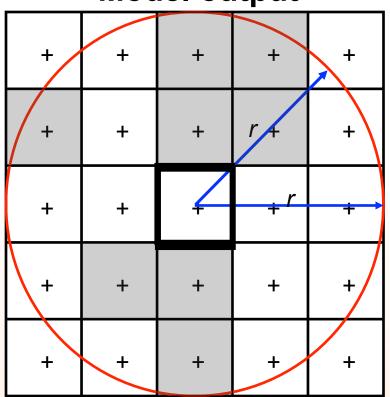


Aggregated over 32 18-36-hr forecasts

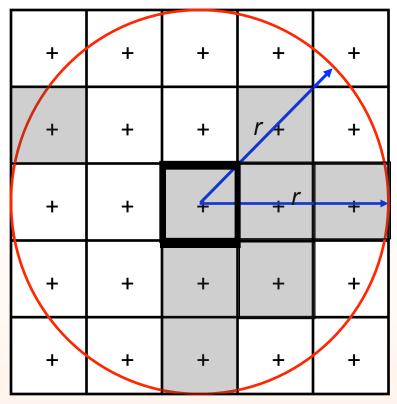


Example Applied to Model and Observations

Model output



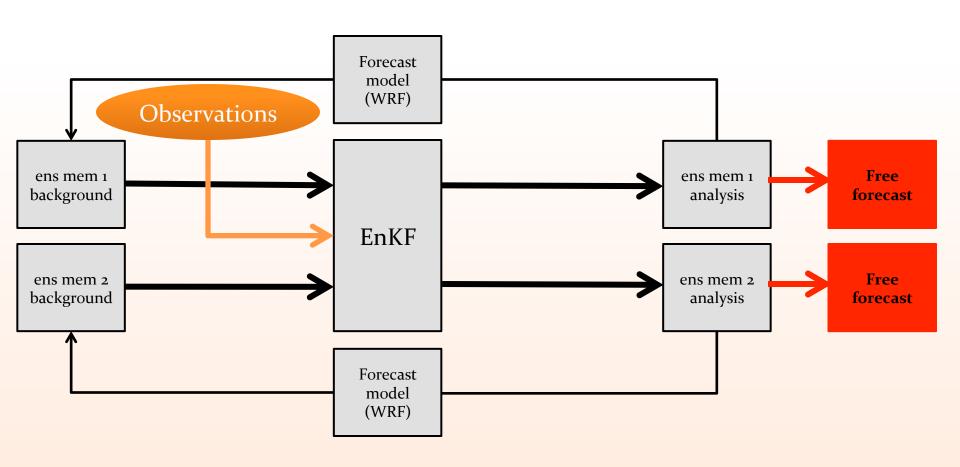
Observations



A perfect forecast using this neighborhood approach

Ensemble Kalman filter initialization

- Initial conditions for all ensemble members are dynamically consistent
 - No ad hoc assumptions or use of external models



What is data assimilation?

Gridded model forecast...the "background" or "first guess"

Background error covariances (errors of the background)

