

WRFDA 2018 Update

Jake Liu

Juanzhen Sun, Jamie Bresch, Michael Kavulich, Junmei Ban, Jonathan Guerrette, Ying Zhang

NCAR/MMM

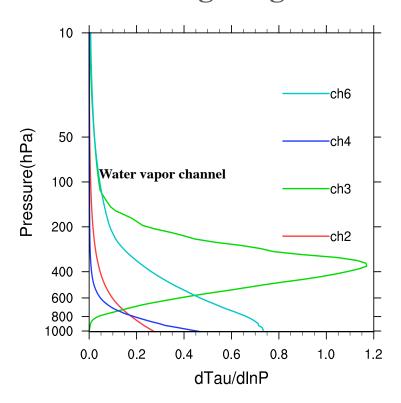
Outline

New and updated features in WRFDA V4.0

• Future plan

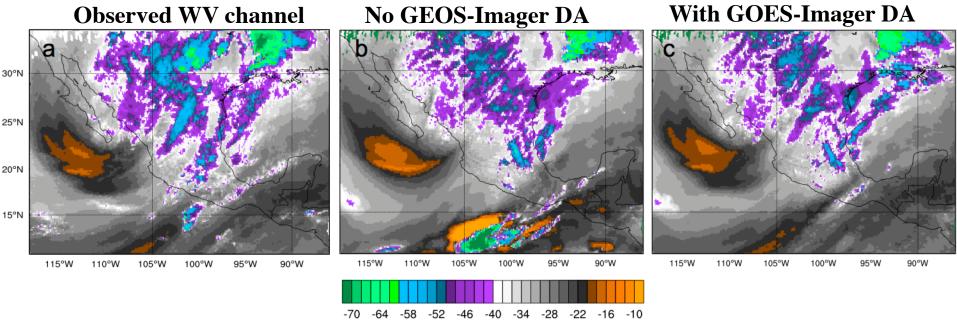
New Features in V4.0

- GOES-Imager radiance DA
 - Yang et al., 2017
- GPSRO Excess Phase non-local operator
 - Chen et al. 2009; Zhang et al., 2014
- Large Scale Analysis Constraint consistent (LSAC)
 - Vendrasco et al., 2016
- Divergence Constraint (DIVC)
 - Tong et al., 2016

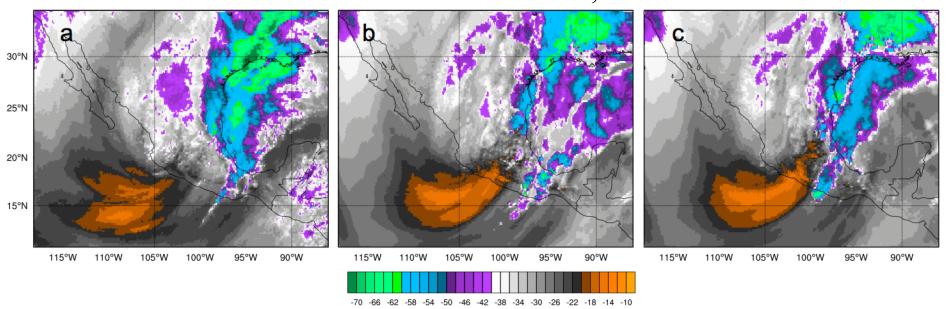

http://www2.mmm.ucar.edu/wrf/users/wrfda/updates-4.0.html

GOES-Imager

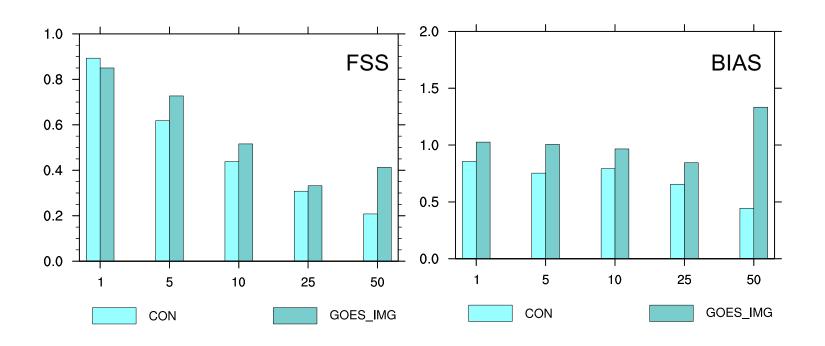
GOES-Imager: 5 channels

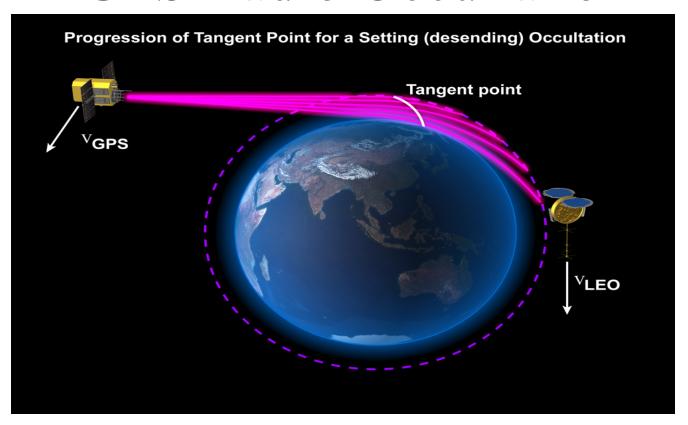

Channel Number	Center Frequency ()	Data Resolution (km)
1	0.65	1.0
2	3.9	4.0
3	6.5	4.0
4	10.7	4.0
6	13.3	8.0

Channels weighting function



Yang. C., Z. Liu, F. Gao, P. Child, J. Min, 2017: Impact of Assimilating GOES-Im ager Clear-sky Radiance with a Rapid Refresh Assimilation System for Convection-Permitting forecast over Mexico, J. G. R. Atmosphere, 122, 5472 – 5490.


Analysis valid at 00 UTC, 03/09/2016


24-h forecast valid at 00 UTC, 03/10/2016

Precip. Forecast Score

GPS Radio Occultation

Local refractivity observation operator at tangent point

$$N = 77.6 \frac{p}{T} + 3.73 \times 10^5 \frac{pq}{T^2(0.622 + 0.378q)},$$

Non-local excess phase (S) operator. Both model and observed refractivity integrated along ray line

$$S = \int_{\text{ray}} N \, dl \,,$$

Non-local operator parallelization

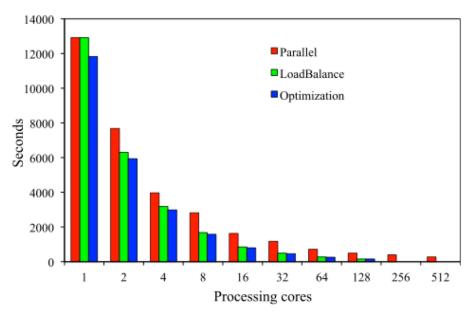


FIG. 2. The wall clock times for a five-iteration minimization of 3DVAR on NCAR Yellowstone.

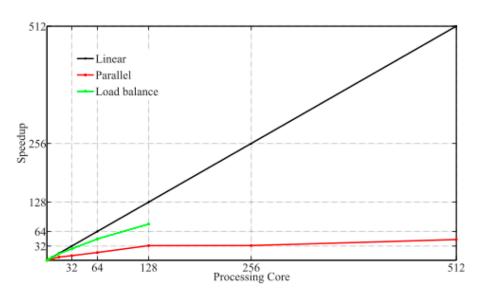
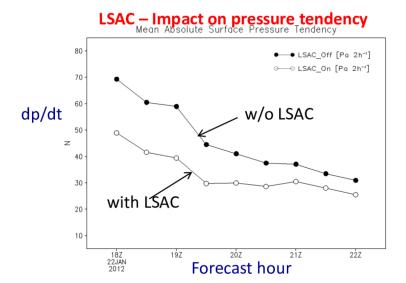
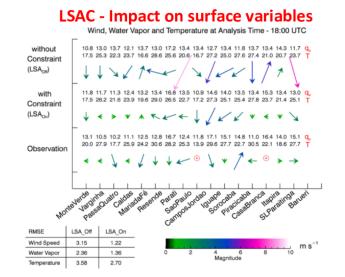


FIG. 3. As in Fig. 2, but for the parallel speedup.

and raprocents the ideal speedup or accoloration when

Zhang, X.,Y.-H. Kuo, S.-Y. Chen, X.-Y. Huang, and L.F. Hsiao, 2014: Parallelization Strategies for the GPS Radio Occultation Data Assimilation with a Nonlocal Operator in the Weather Research and Forecasting Model. JTECH, https://doi.org/10.1175/JTECH-D-13-00195.1

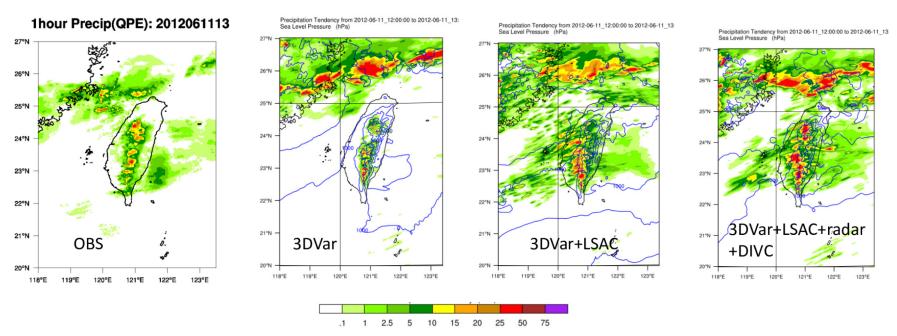

Two new constraints


- Large-scale analysis constraint (LSACO (Vendrasco et al 2016)
- Divergence Constraint (DIVC) (Tong et al. 2016)

$$\mathbf{J} = \mathbf{J}\mathbf{b} + \mathbf{J}\mathbf{o} + \frac{1}{2}(x_b - x_o^{la})^{\mathsf{T}}\mathbf{A}^{-1}(x_b - x_o^{la}) + \frac{1}{2}w_d\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)^2$$

LSAC

DIVC x_o^{la} : large-scale analysis A: Error variance of large-scale analysis W_d : Weighting coefficient



Impacts on precipitation forecast

Impact of LSAC and DIVC on precipitation forecast

(1h forecasts initialized at 2012061112)

Updated Features

- Prior to V4.0, WRFPlus code has been developed and maintained in a separated branch from WRF.
- WRFPlus is now fully integrated into WRF and TLM/ADJ, located under ~wrftladj
 - No separate WRFPlus tar file needed.
 - ./configure wrfplus; ./compile wrfplus → wrfplus.exe
 - Hope this will reduce maintenance cost
- Recall: "WRF-Var" (old name of WRFDA) code is merged/integrated into WRF code in V3.0 in April 2008!

Updated Features

• Starting with V4.0, binary CRTM coefficient files are NOT included in any of the WRF or WRFDA tar files. Please

- Download the subset of CRTM coeffs from
 - http://www2.mmm.ucar.edu/wrf/users/wrfda/download/ crtm_coeffs.html
- Or the full set of coeffs from JCSDA website
 - ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.2.3/crtm_v2.2.3.tar.gz

WRFDA with hybrid vertical coordinate (HVC) and moist potential temperature (THM)

- 3DVAR (and hybrid-EnVar) works with HVC since V3.9 (although not extensively tested), but does not work with THM
- Neither WRFPlus nor 4DVAR work with HVC or THM
- To turn off HVC, set hybrid opt=0 (and etac=0.0)
- To turn off THM, set use_theta_m=0 (this will lead to THM=T in WRF/WRFDA file)

Future Plan

- Make 3dvar (and hybrid-EnVar) works for THM
- Make wrfplus and 4dvar work for HVC and THM
- Multi-Resolution Incremental 4DVAR
- Extend all-sky radiance capability from microwave to infrared such as Himawari-AHI and GOES-16/17 ABI
- Assimilate frequent observations (AHI/ABI, radar) with advanced DA techniques (e.g., 4DVAR, hybrid-EnVar)