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• Continuous year long simulation for 2008 (near neutral 
climate conditions). 

• WRF applied at convection-permitting resolution. Actual WT 
locations and specs (from USGS database) applied to multi-
nested model domain.

• Multi-nested domain means all identical nests receive the 
same conditions from the parent. 

• Running multi-domain eliminates the stochastic sensitivity 
resulting from conducting separate simulations in the cloud.

• Centred over Iowa as current US state with highest WT 
density. 

• Goal: Assess the degree to which the results differ 
dependent on the precise WT parameterization used in 
WRF.

Key Study Points



Model configuration and physics settings (v3.8.1)

Simulation settings Values

Vertical resolution 41 levels up to 50 hPa (18 in lowest 1 km)

Time step for physics 72 seconds

Physics option Adopted scheme

Microphysics 5. Eta (Ferrier) (Ferrier et al. 2002)

Longwave radiation 1. Rapid radiative transfer model (RRTM) (Mlawer et al. 1997)

Shortwave radiation 1. Dudhia (Dudhia 1989)

Surface layer physics 1. MM5 similarity scheme (Beljaars 1995)

Land surface physics 2. Noah land surface model (Tewari et al. 2004)

Planetary boundary layer 5. MYNN 2.5 (Nakanishi and Niino 2006)

Cumulus parameterization 1. Kain-Fritsch (Kain 2004) (None in d02/3/4)



Domain and WTs Domain 1: 150 ´ 150 cells, 12 km

Domain 2,3,4: 247 ´ 206 cells, 4 km
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Downstream WT impact (xWT – noWT)



WT array wakes

Downstream propagation of the velocity deficit is greater in Fitch (32 km v 16 km 
EWP).

Consistent with previous study for a theoretical wind farm (30 km Fitch v 17 km 
EWP) (Volker et al. 2017).



Climate impacts: 2m Temp



Climate impacts: Specific Humidity



Climate impacts: Precipitation



Power production
Month CF (Fitch) % CF (EWP) %
June 38 40
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• Minimal climate impact from WT installations.
• Faster wake recovery in EWP nested domain.
• EWP wake recovery leads to smaller climate impacts and 

reduced array-array interactions than in Fitch nested domain.
• At a system-wide scale, this result leads to an improved efficiency 

in total power output, with a CF in EWP 2% greater than Fitch for 
the month of June.
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Concluding remarks
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