Sensitivity of wind turbine array downstream effects to the parameterization used in WRF

Tristan J. Shepherd¹, P. Volker², R.J. Barthelmie¹, A. Hahmann², S.C. Pryor¹ ¹Cornell University ²Technical University of Denmark tristan.shepherd@cornell.edu

Acknowledgments: US Department of Energy (DE-SC0016438) and Cornell University's Atkinson Center for a Sustainable Future (ACSF-sp2279-2016). Computing resources: NSF ACI-1541215, NSF ACI-1548562 and DoE National Energy Research Scientific Computing Center (DE-AC02-05CH11231). Comell University

Pryor, S.C., Barthelmie, R.J., and Shepherd T.J. (2018): The influence of real-world wind turbine deployments on local to mesoscale climate. *Journal of Geophysical Research: Atmospheres*. doi: 10.1029/2017JD028114

Key Study Points

- Continuous year long simulation for 2008 (near neutral climate conditions).
- WRF applied at convection-permitting resolution. Actual WT locations and specs (from USGS database) applied to multinested model domain.
- Multi-nested domain means all identical nests receive the same conditions from the parent.
- Running multi-domain eliminates the stochastic sensitivity resulting from conducting separate simulations in the cloud.
- Centred over Iowa as current US state with highest WT density.
- Goal: Assess the degree to which the results differ dependent on the precise WT parameterization used in WRF.

Model configuration and physics settings (v3.8.1)

Simulation settings	Values
Vertical resolution	41 levels up to 50 hPa (18 in lowest 1 km)
Time step for physics	72 seconds
Physics option	Adopted scheme
Microphysics	5. Eta (Ferrier) (Ferrier et al. 2002)
Longwave radiation	1. Rapid radiative transfer model (RRTM) (Mlawer et al. 1997)
Shortwave radiation	1. Dudhia (Dudhia 1989)
Surface layer physics	1. MM5 similarity scheme (Beljaars 1995)
Land surface physics	2. Noah land surface model (Tewari et al. 2004)
Planetary boundary layer	5. MYNN 2.5 (Nakanishi and Niino 2006)
Cumulus parameterization	1. Kain-Fritsch (Kain 2004) (None in d02/3/4)

Mean wind speed / wind roses (June)

Downstream WT impact (xWT – noWT)

lomell University

WT array wakes

Consistent with previous study for a theoretical wind farm (30 km Fitch v 17 km EWP) (Volker et al. 2017).

Climate impacts: 2m Temp

Climate impacts: Specific Humidity

Climate impacts: Precipitation

Concluding remarks

- Minimal climate impact from WT installations.
- Faster wake recovery in EWP nested domain.
- EWP wake recovery leads to smaller climate impacts and reduced array-array interactions than in Fitch nested domain.
- At a system-wide scale, this result leads to an improved efficiency in total power output, with a CF in EWP 2% greater than Fitch for the month of June.
- Pryor, S.C., Barthelmie, R.J., and Shepherd T.J. (2018): The influence of real-world wind turbine deployments on local to mesoscale climate. *Journal of Geophysical Research: Atmospheres*. doi: 10.1029/2017JD028114
- Pryor, S.C., Barthelmie, R.J., and Shepherd T.J. (2018): Limited impacts from increased wind capacity on system efficiency and regional climate. *Nature Communications (under review).*

Acknowledgments:

US Department of Energy (DE-SC0016438) and Cornell University's Atkinson Center for a Sustainable Future (ACSF-sp2279-2016). Computing resources: NSF ACI-1541215, NSF ACI-1548562 and DoE National Energy Research Scientific Computing Center (DE-AC02-05CH11231).