

Preparing MPAS-A for Global Retrospective Air Quality modeling: An evaluation of a 2016 simulation with comparisons to WRF

Robert C. Gilliam, Jerold A. Herwehe, O. Russell Bullock Jr., Jonathan Pleim and David Wong

CED/NERL/ORD/USEPA

2018 WRF/MPAS Users' Workshop, June 11-15, Boulder, CO

Sepa Outline

- Vision for US EPA's Next Generation AQ modeling system
- Evaluation of 2016 MPAS/WRF simulations
 - Surface meteorology
 - Precipitation
 - Radiation
 - Upper Air meteorology (raob)
- Next steps for MPAS/NextGen modeling system

€PA

Vision for Next Generation AQ Model

- Extend our AQ modeling to global scales using MPAS framework
 - Coarse global mesh with seamless refinement
 - Integrated chemistry (CMAQ components)
- Flexible configurations
 - Coupled global variable grid (e.g. MPAS-CMAQ)
 - Coupled regional (limited area WRF-CMAQ or MPAS-CMAQ)
 - Offline regional CMAQ using MPAS or WRF output
- Interoperability of chemistry model components
 - 1-D chemistry with the ability to couple to various met models like MPAS and FV3
 - Currently have a working MPAS-CMAQ prototype with testing limited to July 2013 and full 2016 underway
 - Comprehensive evaluation of the system next year

MPAS

⇒EPA

MPAS Meteorology Development

- Added US EPA physics package for retrospective simulations
 - ACM2 Boundary layer model
 - Pleim-Xiu Land Surface Model (PX LSM)
 - Updated Kain-Fritsch convective cloud scheme
 - including radiation feedback and dynamic lifetime
- Data Assimilation
 - Implemented FDDA similar to WRF
 - Implemented indirect soil moisture data assimilation in PX LSM
- Landuse
 - NLCD 2011 US Blended with MODIS 2013 including subgrid fractional coverage
- Model Evaluation
 - Atmospheric Model Evaluation Tool (AMETVI.3+)

€PA

Model Configurations

- Tested two MPAS mesh configurations for 2016 simulation (MPAS 5.2)
 - 92 km mesh resolution refined to 25 km over N. America
 - 46 km mesh resolution refined to 12 km over N. America
- 12 km CONUS WRF simulation (WRF3.8.1)
- Continuous simulations with FDDA, 10 day soil spin-up, no re-initialization
- EPA Physics and DA used in both MPAS and WRF:
 - PX LSM, ACM2 PBL and Pleim surface layer
 - RRTMG LW and SW Radiation
 - KF2 with subgrid Cu feedback (cu_rad_feedback = 1)
 - Morrison MP in WRF and WSM6 in MPAS
 - FDDA analysis nudging of T, Qv, U, V above PBL (GFS0.25deg in MPAS and NAM12 WRF)
 - Indirect soil moisture and temperature nudging in PX LSM using surface analysis based on NAM 12km blended with GFS 0.25 deg for MPAS and NAM 12km WRF

Surface Meteorology

Comparing the MPAS 92 to 25 km, 46 to 12 km and 12 km WRF simulations with observed 2m temperature, 2m moisture and 10m wind.

Day

MPAS 12km vs. WRF 12 km CONUS

Jan-Mar Daily RMSE of T2

MPAS 12km vs. WRF 12 km Over CONUS

CONUS Precipitation

Comparing the MPAS 46 to 12 km and 12 km WRF simulations with 2016 PRISM precipitation

Precipitation Total (mm) Jan-Dec 2016

Surface Solar Radiation Comparing the 46 to 12 km MPAS and 12 km WRF simulations with global BSRN shortwave radiation

Baseline Solar Radiation Network (BSRN)

http://bsrn.awi.de/

Early Afternoon relative to Solar Noon Feb-Dec 2016

Shortwave Radiation MAE (W/m^2)

Shortwave Radiation Bias (W/m^2)

Shortwave Radiation MAE (W/m^2)

Early Afternoon relative to Solar Noon Feb-Dec 2016

Shortwave Radiation SDEV Difference (W/m²)

Shortwave Radiation SDEV Difference (W/m^2)

MPAS 46-12km

WRF CONUS12

Upper Air Meteorology Comparing the 46 to 12 km MPAS and 12 km WRF simulations with rawindsonde soundings of temperature and wind.

EPA **MPAS-CMAQ** initial testing Layer 1 Ozone concentrations at July 31, 2013 at 8Z (4 pm China Time) Layer 1 03[2] Layer 1 03[4] [2]=COMBINE MPAS MPAS AQ 90 25 July2013.07 100.000 [4]=COMBINE_MPAS_MPAS_AQ_90_25_July2013.07 90 100.000 77 87.500 64 87.500 51 75.000 75.000 39 62.500 26 62.500 13 م م م م م 50.000 -0 -13 37.500 37.500 -26 21 -39 25.000 25.000 -51 16 -64 12.500 12.500 -77 -90 0.000 0.000 144 77 85 92 114 121 129 136 143 -180 -144 -108 -72 -36 36 72 108 180

July 31, 2013 08:00:00 UTC Min {-74.8, 39.914} = 0.000, Max {129.507, 36.367} = 153.089

Too low in remote regions

Longer spin-up needed

٠

Ozone concentrations realistic in high emission areas

Plots were made with VERDI. An interactive Javabased vis tool for MPAS/WRF/CMAQ output. https://www.cmascenter.org/verdi/

July 31, 2013 08:00:00 UTC

Min (137.108, 52.814) = 1.439, Max (129.507, 36.367) = 153.089

Set EPA

Progress and Near-term plan

- First Phase: Global MPAS-CMAQ
 - Accomplished porting EPA WRF Physics to MPAS
 - Evaluated for July 2013 and full year 2016 at coarse (92-25 km) and fine (46-12 km) meshes
 - Accomplished coupling MPAS and CMAQ
 - Evaluating July 2013
 - Running full year 2016 with more refine emissions for US (NEI)
- Second Phase:
 - Nesting regional MPAS/WRF-AQ into the global MPAS-AQ
 - Experimenting with customized grid refinement
- Third Phase: redesigned AQ model
 - Redesign CMAQ from ground up to refresh model structure and coding
 - Improve efficiency and flexibility.

Disclaimer

 The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

Extra Slides

€PA

MPAS-CMAQ

MPAS-CMAQ is an operational prototype of Next Gen AQ model

- AQ is called as module in MPAS
- 2-way data transfer through MPAS-AQ Coupler analogous to MPAS coupler for WRF Physics
- Advection of chemical species in MPAS identical to meteorological scalars
 - no need for mass adjustment for continuity
- MPAS uses z-coordinates in a hybrid terrain following layer structure
- For CMAQ generalized coordinates the vertical Jacobian = 1, $\rho J = \rho$
- The ACM2 PBL model has been rewritten in z-coords for both meteorology and AQ
- Subgrid cloud fractions from KF in MPAS used to affect photolysis in AQ
- GFS Ozone analysis for layers higher than 100 mb
- Initial testing for July 1-31, 2013 with no spin-up

Global emissions for MPAS-AQ

Global surface emissions of NO₂ (moles/m²/s) from 0.1 x 0.1 degree HTAP_v2.2 [Janssens-Maenhout et al., ACP 2015] grid maps re-gridded to unstructured 92-25 km MPAS mesh.

MODEL-RAOB Curtain Plot of Relative Humidity(%) at site KMFL

MODEL-RAOB Curtain Plot of Relative Humidity(%) at site KBIS MPAS 46-12km **WRF NRT** (qm) Pre Pre 2016-08-12 12:00:00 2016-10-07 12:00:00 2016-12-02 12:00:00 2016-01-01 00:00:00 2016-02-26 00:00:00 2016-04-22 00:00:00 2016-06-1 2016-01-01 12:00:00 2016-02-26 12:00:00 2016-04-22 12:00:00 2016-06-17 12:00:00 00:00:00 2016-08-12 00:00:00 2016-10-07 00:00:00 2016-12-02 00:00:00 Date/T MODEL-RAOB Curtain Plot of Relative Humidity(%) at site KOAK Date/Time MPAS 46-12km WRF NRT - 20 Pre

RH Distribution – All CONUS Sites – Jan-Dec 2016 – 300 mb

- Pattern of model ozone concentration is similar to observations in eastern U.S.
- Simulated ozone is too low in Mt West (CA, NV, CO) and central US

SEPA Max 8hr Ozone – July 7 - 29 **MPAS-CMAQ Bias** Bias difference (MPAS-CMAQ – WRF-CMAQ) O3 8hrmax Bias for Run MPAS AQ 90 25 July2013 for 20130707 to 20130729 MPAS AQ 90 25 July2013 – 2013ek CMAQv52 CB6 O3 8hrmax bias difference for 20130707 to 20130729 its = ppb units = ppb verage limit = 75% coverage limit = 75% - 30 25 30 20 25 20 15 15 10 10 -5 -5 -10 -10 -15 -15 -20 -25 -20 -30 -25 -35 < -30 < -40

CIRCLE=AQS_Daily;

CIRCLE=AQS_Daily;

- MPAS-CMAQ is relatively un-biased in East but low biased in west
- Compared to WRF-CMAQ, MPAS-CMAQ has slightly lower bias in East but much greater bias in West

SEPA Max 8hr Ozone – July 7 - 29 Bias difference (MPAS-CMAQ – WRF-CMAQ) **MPAS-CMAQ Bias** O3 8hrmax Bias for Run MPAS AQ 90 25 July2013 for 20130707 to 20130729 MPAS AQ 90 25 July2013 – 2013ek CMAQv52 CB6 O3 8hrmax bias difference for 20130707 to 20130729 its = ppb units = ppb verage limit = 75% coverage limit = 75% - 30 25 30 20 25 20 15 15 10 10 -5 -5 -10 -10 -15 -15 -20 -25 -20 -30 -25 -35 < -30 < -40

CIRCLE=AQS_Daily;

CIRCLE=AQS_Daily;

- MPAS-CMAQ is relatively un-biased in East but low biased in west
- Compared to WRF-CMAQ, MPAS-CMAQ has slightly lower bias in East but much greater bias in West