New chemistry and diagnostics for the MOZART chemistry suite in WRF-Chem

Mary Barth¹, Gabriele Pfister¹, Stacy Walters¹, Louisa Emmons¹, Gustavo Cuchiara^{1,2}

¹ National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Laboratory

² University of Colorado, Institute of Arctic and Alpine Research

T1-MOZCART Chemistry Option

- Gas chemistry is updated from MOZART v4 (Emmons et al., 2010)
- Isoprene chemistry expanded
- Lumped aromatics and terpenes split into individual species Toluene → benzene, toluene, xylenes Monoterpenes → a-pinene, b-pinene, limonene Detailed representation of organic nitrates
- Heterogeneous reactions (13 reactions between trace gas and aerosol) HO2 → 0.5 H2O2 N2O5 → 2 HNO3 NO2 → 0.5 OH+0.5 NO+0.5 HNO3 NO3 → HNO3 hydroxy nitrates → HNO3 GLYOXAL → CO2
 New chemistry allows researcher to analyze boundary layer chemistry it

New chemistry allows researcher to analyze boundary layer chemistry in more (better) detail

Example: August 12, 2014 FRAPPE/DISCOVER-AQ simulation

- 10-13 August 2014 simulation time with analysis nudging
- 12-km grid spacing with 51 vertical levels to 50 hPa
- Adjusted NEI2011v2 anthropogenic emissions, MEGAN biogenic emissions, FINN fire emissions

Surface Ozone: ± 2 ppbv differences

Example: September 2, 2013 SEAC4RS simulation

- 1-2 September 2013 simulation time
- 12-km grid spacing with 74 vertical levels to 50 hPa
- NEI2011v2 anthropogenic emissions, MEGAN biogenic emissions, FINN fire emissions

 Preliminary results – just beginning to evaluate with obs

Effect of Unlumping Aromatic Alkenes

← Toluene

.1

.05

.01

.0 -.01

-.05

-.1

-.5

Monoterpenes \rightarrow

- ⁵ Surface Toluene vs
- SUM(TOL,BENZ,XYL) causes ~2x ■ more (250 ppty to 500 ppty) of
 - ¹ more (250 pptv to 500 pptv) of these alkenes over anthropogenic regions in T1-MOZCART

Surface monoterpenes are up to ~2x less (1 ppbv to 0.5 ppbv). of these alkenes over forest regions in T1-MOZCART

T1-MOZCART Chemistry Option

- T1-MOZART description paper to be submitted to JAMES (Emmons et al.)
- T1-MOZART (chem_opt = 114) has 142 compounds
- MOZART v4 (chem_opt = 112) has 84 compounds
- \rightarrow Increase in computational costs and memory
- 48-hour simulation with 144 processors on Cheyenne
- > 215 CPU hours (1 hr 34 min wall clock time) and 62 Gb memory for MOZART v4
- ➢ 406 CPU hours (2 hr 53 min wall clock time) and 76 Gb memory for T1-MOZCART

New compounds → updating compounds for wet deposition and dry deposition Key update is the Henry's Law (solubility) coefficients

> New chemistry allows researcher to analyze boundary layer chemistry in more (better) detail

Updated Henry's Law Coefficients

- Input table of Henry's Law and Dissociation Constants based on JPL (2015) and Sander (2015)
- Accessed by wet deposition, dry deposition, convective-parameterized wet deposition
- Consistent values used throughout model
- Only available for MOZART suite of chemistry options (chem_opt = 111, 112, 114, 201, 202)
- module_dep_simple needs to be cleaned up

HLC.TBL contains:

Species	Eqn Type	MW	KH(298)	-∆H/R	K1(298)	-∆E/R	K2(298)	-∆E/R
H2O2	0	34.0136	87000	7320	2.20E-12	-3730	0	0
НСНО	0	30.0252	3230	7100	0	0	0	0
CH3OOH	0	48.0394	300	5280	0	0	0	0
03	0	47.9982	0.0103	2830	0	0	0	0
SO2	0	64.0648	1.36	3100	0.013	1960	6.60E-08	1500
NH3	1	17.0289	60.2	4160	1.70E-05	-4325	1.00E-14	-6716

Integrated Reaction Rates (IRR) Output collaboration with Will Vizuete (UNC), Chi-Tsan Wang (UNC)

- IRR = summation of a reaction rate from a start time to an output time (e.g. from start of simulation to each output time)
- Can specify which domain, how often the output occurs, which reaction rates are printed out (including all reactions)
- Output can be analyzed to determine chemical evolution, OH cycling, NOx budget, and chemical production and loss terms

Integrated Reaction Rates (IRR) Output

- Analysis can be done over regions of interest (e.g. urban plume) or along trajectories
- See P17, Pfister et al. poster for more information

OH reactivity for Denver Metro Area during FRAPPÉ 2014

OH reactivity along a trajectory from SW Weld Cty to Denver to ~RMNP

Integrated Reaction Rates (IRR) Output

- IRR output complements the tendency terms in the chem_diag option: advz_tend, advh_tend, conv_tend, vmix_tend, chem_tend
- See P17, Pfister et al. poster for more information

40.0 45.3 50.5 55.8 61.1 66.3 71.6 76.8 82.1 87.4

OH reactivity along a trajectory from SW Weld Cty to Denver to ~RMNP

NCAR/ACOM WRF-Chem Web Page

https://www2.acom.ucar.edu/wrf-chem

	WRF-CHEM PEOPLE	TOOLS	PUBLICATIONS	FAQ	PLANS		Search	Search			
	Modeling						Home » Modeling » V	VRF-Chem			
	WRF-CHEM										
	WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigat of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community. NOAA/ESRL scientists are the leaders and caretakers of t										
Developments that NCAR/ACOM has	de. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely lin						site as well as the PNNL A				
added in WRF-Chem						-	PREPROCESSORS				
	MOZART trace gas chem MOZART trace gas chem					sers Guide sers Guide	MEGAN biogenic emissions	ons			
	MOZART-T1 trace gas chemistry with GOCART aerosol scheme (new n V4.0)					sers Guide	Global anthropogenic emi	ssions			
	New TUV photolysis code (phot_opt = 4)					structions	Interpolate global model output for				
	Requires an additional data file:					dditional Data ile	WRF-Chem initial and bou conditions	ndary			
	Trajectories monitoring meteorology, chemistry, etc				In	nstructions	Go to TOOLS page for r information	nore			
N	Output of Integrated Reaction Rates (new in V4.0)				In	nstructions					
NCAR	Henry's Law Table (new i	n V4.0)			М	lore Information					
NCAR	Please see the Best Practices 2015 Tutorial Presentation that includes example namelists for running with MOZCART and MOZART-MOSAIC.										

NCAR/ACOM WRF-Chem Discussion Forum

https://www2.acom.ucar.edu/wrf-chem/discussion-forum

DISCUSSION FORUM

Note: The Discussion Forum is open for viewing but to participate, you must have or create a Google account. Please note that we can only provide help with the MOZART chemistry packages and the from us developed processing tools.

WRF-Chem general discussion. Subscribe

These are **only** for NCAR/ACOM tools and developments

WRF-Chem anthro_emiss: Anthropogenic emissions. Subscribe

WRF-Chem bio_emiss: Biogenic emissions. Subscribe

WRF-Chem fire_emiss: Fire emissions. Subscribe

WRF-Chem lightning: Lightning and Lightning NOx. Subscribe

WRF-Chem mozbc: Boundary conditions using MOZART global model output. Subscribe

WRF-Chem Run: Running WRF-chem for MOZCART and MOZART-MOSAIC. Subscribe

Future Model Development: Currently we have 3 scales of models

CAK

Model-Independent Chemistry Module (MICM)

• Same infrastructure for box models, regional-scale models, and global models

Seeking community involvement with MICM and MUSICA Singletrack is a unified atmosphere modeling system that is being planned MUSICA is a future global air quality model with regional refinement that is being planned

New Chemistry and Diagnostics for the MOZART Chemistry Suite

- T1-MOZCART chemistry scheme
 - Expands chemistry from MOZARTv4 (Emmons et al., 2010)
 - Still connected to GOCART aerosols
- Henry's Law coefficients
 - Table of coefficients for KH, K1, K2
 - Used in wet deposition (both subgrid and resolved), dry deposition
- Integrated rates of reactions
 - Creates new output for analyzing chemistry
- Model-Independent Chemistry Module
 - Future infrastructure for chemistry modeling at NCAR/ACOM

