

Improving the numerical efficiency of storm-scale NWP models

Lou Wicker NOAA's National Severe Storm Laboratory

> With special thanks to Kent Knopfmeier & Saulo Freitas

Improving the numerical efficiency of storm-scale NWP models

Lou Wicker NOAA's National Severe Storm Laboratory

> With special thanks to Kent Knopfmeier & Saulo Freitas

Challenges of CAM Config?

- Convective allowing models have high-aspect ratio grids
 - $\Delta x/\Delta z \sim O(5-10) \rightarrow \Delta x = 3$ km, $\Delta z = \sim 300-600$ m
 - W_{max} ~(20-30 m/s) in updrafts from high cape environments
 - W_{max} ~(5-10 m/s) in lowest kilometer within terrain/downslope events
- Vertical velocity <u>constrains</u> maximum stable time step [Δt ~ 20 sec]
- To maximize time step, filters are used to reduce W in WRF model
 - w_damp: directly reduces the vertical velocity using Rayleigh damping
 - mp_tend_lim: limits latent heating feedback in pressure equation
- Ideally
 - Would like to increase the stable time step
 - Would like to decrease the filtering

Experiments with 27 April 2011

Ensemble UH Tracks

NOAA

Composite Supercell & Tornadoes

Exp Configuration

- WRF v3.9.1
- HRRR—CONUS configuration (3 km, 51 levels)
- IC's: 00Z NAM 27 April 2011 / BC's every 3 hours.
- FILTER runs have
 - W_DAMP = 1
 - Mp_tend_lim = 0.07
- NOFILTER
 - W_DAMP = 0
 - Mp_tend_lim = 10.07
- Thompson microphysics (mp_physics=8)
- Control: $\Delta t = 15 \text{ s}$, no filters, RK3 integrator
- Run Δt = 20 s / Δt = 22.5 s (if possible)

What are impacts from filters?

6 hr Avg Profile of W where W_{max} column > 10 m/s

NOAA

RK3 runs

 $\Delta t = 20$ sec unstable without filter $\Delta t = 20$ sec stable with filter $\Delta t = 22.5$ sec <u>abs unstable</u>

• W-Profiles computed from each hour

- 6 hour period 18Z-00Z composite
- Each run has about O(1000) profiles

What are impacts from filters?

NOAA

Does this matter?

- Maybe not!
- "Next day" CAMS all have unique biases, climates, etc.
- Is reducing the maximum W-intensity a problem?
 - previous work clearly shows big days are detected by CAMs
 - already calibrated using surrogate severe methods, etc....
- CAMs (especially ensembles) are one of our best tools.
 - consistently proven their VALUE in NWS operations!
 - reliability of operational runs extremely important

Does this matter?

- BUT....
- Cycled data assimilation at CAM scales: another story?
- Weaker updrafts for biggest storms could mean:
 - Less water transported into upper troposphere/stratosphere
 - Fewer hydrometeors & smaller hydrometeors?
 - Increases in cloud top radiation errors?
 - Additional bias in reflectivity structure, rainfall, etc.
- Increased bias will definitely impact the efficacy of any cycled DA system at these resolutions..

Where to go from here?

- Can we increase the accuracy AND the efficiency of the models at the same time
 - E.g., is there a win/win here?
- Method
 - Change the time integrator
 - Look whether we can increase Δt
 - Reduce the filtering using increased stability from integrator?
 - Increase fidelity in the updraft distributions/intensities?

Pull ideas from CFD Community

- Other CFD disciplines use higher-order RK schemes to increase efficiency
- These schemes use 4-7 sub-steps
- CFL limits are 2-3x larger than RK3 (e.g., ω ~3.0-5.5 vs 1.73)
- Hu et al. (1996, J. Comp. Phys) is one of first "designer" schemes
- Hu96 is 5-step/2nd order scheme: stable to ω ~3.5
 - Formulation similar to RK3 ("linear-case" RK-scheme)
 - Easy to implement

NOAA

• WRF code modifications mostly in solve_em.F

Hu96 Runge-Kutta Integrator

- Are 2 more RHS evaluations really worth it?
- Depends on dynamics versus physics costs
 - From RK3: dynamics costs 50%, physics costs 50%
 - $\Delta t_{old} / \Delta t_{new} = (5/3*\frac{1}{2} + \frac{1}{2}) = 1.25$
- Same cost as RK3 if you can increase Δt by 25% using Hu96
- Benefits
 - Accuracy: Can you turn down or off the filters?
 - Trickiness: Can you use Hu96 only for the vertical dir?

Compare Runge-Kutta Integrators

RK3

NOAA

$$u^{0} = u^{t}$$

for $n = 1,3$
 $u^{n} = u^{0} + c_{n} \Delta t F(u^{n-1}), c_{n} = [0.3333333, 0.5, 1.0]$
endfor
 $u^{t+\Delta t} = u^{3}$ Large time steps

Small time steps

$$\Delta t_{small} = \frac{\Delta t}{ns} \rightarrow \text{constant}$$

for $m = 1, 3$
 $nsmall = ns / (4 - m)$
endfor

Hu96

Small time steps

for m = 1,5 $dt_{rkstep} = \Delta t * c_n$ $nsmall_{rkstep} = \max(1, ns * c_n)$ $\Delta t_s = \frac{dt_{rkstep}}{nsmall_{rkstep}} \rightarrow \text{non-constant!}$ endfor

- Hu96
- Hu96 scheme can be "sync'd" with RK3 on 3rd iteration
- Compute horizontal advection at "t", hold constant for n=1,2,3
- Compute v-adv using Hu96 add in h-adv for n=1,2,3
- Compute full 3D advection for last 2 iterations
- Saves the cost of the horizontal advection!
- This is linearly stable for advection AND time splitting!

Impacts of using Hu96?

Impacts of using Hu96 with no filter?

W-Distribution 18Z-00Z

NOAA

Hu96 results using larger time step? [with filter, unstable without]

W-Distribution 18Z-00Z

- 4 repeated runs for each timing.
- 3 hours of integration starting from 21Z
- Larger time steps also mean more small time steps

	∆t = 15 s	Δt = 20 s	Δt = 22.5 s
RK3	760 s	584 s	unstable
Hu96	Х	711 s (584 s + 20%)	630 s (584 s + 8%)
Hu96V-RK3H	Х	715 s [???]	Х

- Hu96 would run faster than RK3 at $\Delta t = 25$ s
- More hydrometeors, more physics → more efficiency
- Split advection should be even faster...

NOAR

Summary

- More to this story...
 - Scheme(s) were first tested in dry 2D models
 - NH/H Gravity wave tests, translating bubble all yielded results consistent with linear theory.
 - Full physics WRF results are much less promising than runs using WRF in idealized cloud model mode.
 - Appear to be some differences in results from v3.8.1
- Implementation of split HV-advection scheme?
 - Cost of storage and storing tends may not be worth it
- Other possibilities are available
 - Strong stability preserving RK methods? [trick is time-splitting them]
 - New optimizations tuned by wedding spatial and time discretizations
 - Lots of work being done on diagonal implicit RK schemes...

Thanks! Questions?

Bluto expresses my feelings after working on this project last few years....

