

Wildfire Pyroconvection and CAPE Buoyancy's drying and atmospheric intensification Atoossa Bakhshaii, Edward A. Johnson University of Calgary

June 12th, 2018 Joint WRF/MPAS Users' Workshop NCAR, Boulder, CO

- Canadian fire analysis and our motivation
- Fort McMurray wildfire
- WRF-Fire simulation and entrainment
- The roadblocks

Historical Analysis

The large fires account for the vast majority of the total area burned. Fires smaller than 100ha account for less than 1% of the area burned (Johnson et al., 1998).

Historical Analysis

A GIS database that calculates the area of forest burned on a national scale for each year since 2004.

These represent a small percentage of all fires but account for most of the area burned (usually more than 97% of total area burned)

Can we predict the large wildfires in a reasonable time?

5

Source: Horse River Wildfire, MWF-009-16

Canadian Wildland Fire Information System Interactive Map

Canadian Wildland Fire Information System

Does not incorporate 3-d atmosphere profile

Fort McMurray May-July 2016

It destroyed over 2,400 homes and buildings.

The insured damages estimated over 3.5 billions while the overall costs are announced around 9.5 billions.

The fire started on May 1st, 2016 and the mandatory evacuation was issued on May 3rd

The burning area covered 589,552 hectares.

The fire was declared under control July 4, 2016.

https://www.flickr.com/ph otos/premierofalberta/alb ums/721576673440025 10

http://www.atmos.albany.edu/facstaff/torn/atm418/mcs_schematic.png

2016 was a below average fire year

National Forestry Database. (http://www.nrcan.gc.ca/forests/report/disturbance/16392)

N56.7
Caracter

Skew-T
Stew-T

Based on burning map
N56.8°

Scapetic
Scapetic

MWF009-16
N56.66°

W111.53°
W111.49°
W111.43°
W111.41°
W111.39°
W111.37°
W

- Horse River fire (MWF009-2016) was reported 16:03 (23:03 UTC) on May 1st, 2016
- Then the NRT hotspots has almost a 5-hour delay and located about 2 km west of the MWF-009 fire report's location (figure 2).

Fire Images are courtesy from MWF-009-16, Alberta Parks report

NRT Hotspots

WRF-Fire Simulation

The hotspots are colored based on the the detection time

Model's Atmosphere Profiles

The simulation demonstrated a rapid change in environmental CAPE started at 18 UTC on May 2nd. The unstable atmosphere caused by diurnal heating and moistening the lower PBL. While nocturnal thermal inversion disappeared shortly after 18 UTC.

Fast Growing CAPE and BRN

- 887J/kg increases of CAPE in less than 5 hours
- BRN of 93
- LI of -4.7

Pyroconvection & Updraft

Image produced by VAPOR (www.vapor.ucar.edu)

Vertical wind speed

Horizontal wind

Entrainment and Drying

• 2-d plots at 10th model levels

Evaluation

Summary

- The simulation detected the rapid change in environmental CAPE started at 18 UTC on May 2nd. The CAPE reached to 887 J/kg in less than 5 hours with no CIN
- The high BRN of 93 at 23 UTC was an indicator of the small vertical wind shear.
- Mid-level Lifted Index changed from positive (1.5) to negative (-4.7) during the same period of time.
- The burning area is not exact match due to uncertainties in ignition and suppression and model biases.

The roadblocks

Data

- Spatial and temporal resolution
- Consistency
- Availability
- Optimization of WRF vertical levels
- Top of model
- Evaluation
- Dynamic Digital Fuel Map

Acknowledgment

- Edward Johnson, Kiyoko Miyanishi, Jan Mandel, Branko Kosovic, Pedro Jimenez, Adam Kochanski, Michael Duda, Scott Pearse, Kate Fossell, and Doug Phillips.
- University of Calgary, NCAR and WestGrid.

https://www.flickr.com/photos/premier ofalberta/26730049132/in/album-72157667344002510/

24 hours simulations of updrafts