🔰 TempoQuest

Acceleration of WRF on the GPU

Daniel Abdi, Sam Elliott, Iman Gohari Don Berchoff, Gene Pache, John Manobianco

TempoQuest 1434 Spruce Street Boulder, CO 80302 720 726 9032 TempoQuest.com

THE WORLD'S FASTEST MOST PRECISE FORECASTS

Our Product

- TQI is a Weather Prediction Software and Analytics Company
- We Produce Micro-Weather Predictions for Custom Applications
- We Deliver and Support on Premise or via Software-as-a-Service
- Flagship Product: AceCAST-WRF
- The Breakthrough: 5X to 7X Acceleration Running the Weather Research Forecast (WRF) Model on Graphic Processing Units (GPU)

Our approach to Re-factoring

- WRF ported to run entirely on the GPU
- Profile and optimize most time consuming parts
- Avoid/minimize data transfer to/from GPU
- Leverage WRF registry to produce GPU code
- Pack halo data on GPU and send via infiniband
- Process multiple tiles and columns in a kernel

Our approach to Re-Factoring

- Two branches : hybrid CPU + GPU vs pure GPU
- 7x difference in speedup between those two
- "Premature optimization is the root of all evil"
- Parallelize->Profile->Optimize->Rewrite & Repeat

Profile on P100 GPU - Before Optimization

Profile on P100 GPU - After Optimization

Wrf dynamics profile: After Optimization

Cost of data transfer- P100 GPU + Haswell CPU

Avoid data transfers

Results: GPU WRF Strong Scaling for CONUS 2.5 km

~5x Speedup Full Model: 4 x P100 vs. 4 x HSW

CONUS 2.5km Source: http://www2.mmm.ucar.edu/wrf/bench/bench/ata v3911.html (Note "Physics options modified" in side bar)

CONUS 2.5 km Case on PSG Cluster - 4 nodes

Source: TQI – Abdi; Apr 18

- Based on WRF 3.8.1 trunk
- 1501 x 1201 grid x 35 levels
- Total 60 time steps, SP run
- Physics option modified:
 - WSM6
 - Radiation *off*
 - 5-layer TDS
- All WRF runs single precision
- PSG cluster node configuration:
 - 2 CPUs, 16 cores each
 - 4 x P100 GPUs
 - Or 4 x V100 GPUs
- CPU-only 1 MPI task each core
- CPU+GPU 1 MPI task per GPU

Results: GPU WRF Strong Scaling for CONUS 2.5 km

~7x Speedup Full Model: 4 x V100 vs. 4 x HSW

CONUS 2.5km Source: http://www2.mmm.ucar.edu/wrf/bench/bench/ata v3911.html (Note "Physics options modified" in side bar)

CONUS 2.5 km Case on PSG Cluster - 4 nodes

Source: TQI – Abdi; Apr 18

- Based on WRF 3.8.1 trunk
- 1501 x 1201 grid x 35 levels
- Total 60 time steps, SP run
- Physics option modified:
 - WSM6
 - Radiation *off*
 - 5-layer TDS
- All WRF runs single precision
- PSG cluster node configuration:
 - 2 CPUs, 16 cores each
 - 4 x P100 GPUs
 - Or 4 x V100 GPUs
- CPU-only 1 MPI task each core
- CPU+GPU 1 MPI task per GPU

Results: GPU WRF Strong Scaling for EM_LES

Results for EM_LES Case on PSG - 4 nodes Source: TQI – Abdi; Dec 18

- 1024 x 1024 grid x 60 levels
- Physics options:
 - Kessler
 - Mostly dycore time
- PSG cluster nodes:
 - 2 CPUs, 16 cores each
 - 4 x P100 GPUs
- CPU-only MPI task each core
- CPU+GPU MPI task per GPU

TempoQuest Systems Architecture

Conclusions

Conclusions

- TQI is a micro-weather prediction company with the goal of accelerating WRF by up to 10x using NVIDIA GPUs
- We had a breakthrough with acceleration of end-to-end
 WRF runs by 5x to 7x
- We deliver on-premise or software-as-service on the cloud
- Future goal: we feel the need for more speed ...