
Community infrastructure for facilitating improvement
and testing of physical parameterizations:

the Common Community Physics Package (CCPP)

Dom Heinzeller1,3, Ligia Bernardet1,3, Grant Firl2,3, Laurie Carson2,3,
Don Stark2,3, Man Zhang1,3, Jimy Dudhia2, Dave Gill2

1CU/CIRES at NOAA/ESRL Global Systems Division
2National Center for Atmospheric Research

3Developmental Testbed Center

Representing many contributors
• GMTB (Tim Brown, Chris Harrop, Gerard Ketefian,

Pedro Jimenez, Julie Schramm, Lulin Xue)
• EMC (V. Tallapragada, M. Iredell), GFDL (R. Benson)
• ESPC PI (Jim Doyle and the group)

2018 Joint WRF/MPAS Users’ Workshop, 06/13/2018

An atmospheric model zoo

5

FIM

FV3

CESM

MPAS

GSM (GFS)
COAMPS

UM (Unified Model)
NEPTUNE

… WRF (ARW,NMM)

4000

2000

6000

5000

22000

Lines of code in physics drivers (w/o comments)

6

Area within the
Developmental Testbed
Center (DTC) created to
accelerate transition of
physics developments by the
community onto NOAA’s
Unified Forecast System

https://dtcenter.org/testing-evaluation/global-model-test-bed

Approach
� Infrastructure for development of parameterizations/suites
� Development of hierarchical physics testbed
� Assessment of physics innovations

Global Model Test Bed (GMTB)

C
ou

rt
es

y
Li

gi
a B

er
na

rd
et

See also poster P2 by
Ligia Bernardet et al.

Common Community Physics Package
The Common Community Physics Package (CCPP) consists of an
infrastructure component ccpp-framework and a collection of
compliant physics suites ccpp-physics.

Driving principles:
� Readily available and well supported: open source, on Github,

accepting external contributions (review/approval process)
� Model-agnostic to enable collaboration and accelerate innovations
� Documented interfaces (metadata) facilitate using/enhancing existing

schemes, adding new schemes or transfer them between models
� Physics suite construct is important, but the CCPP must enable

easy interchange of schemes within a suite (need for interstitial code)

7

� Physics schemes caps: auto-generated from metadata
� Host model cap: “handcrafted”, include auto-generated code (CPP)

CCPP within the model system

8

ccpp-physics

ccpp-framework

Key features of the CCPP
� Runtime configuration:

suite definition file (XML)
� Ordering: user-defined

order of execution of schemes
� Subcycling: schemes can be

called at higher frequency than
others or than dynamics

� Grouping: schemes can be
called in groups with other
computations in between
(e.g. dycore, coupling)

9

<suite name="GFS_2017">
...
<group name="radiation">
<scheme>GFS_rrtmg_pre</scheme>
<scheme>rrtmg_sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg_sw_post</scheme>
<scheme>rrtmg_lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg_lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>

</group>
...
</suite>

suite interstitial scheme interstitial scheme

module scheme_template
contains

subroutine scheme_template_init()
end subroutine scheme_template_init

subroutine scheme_template_finalize()
end subroutine scheme_template_finalize

!>\section arg_table_scheme_template_run Argument Table
!!| local_name | standard_name | long_name | units | rank | type | kind | intent | optional |
!!|------------|---------------|-----------|-------|------|-----------|-------|--------|----------|
!!| errmsg | error_message | error msg | none | 0 | character | len=* | out | F |
!!| errflg | error_flag | error flg | flag | 0 | integer | | out | F |
!!| prs | air_pressure | air pres. | Pa | 2 | real | phys | inout | F |
!!

subroutine scheme_template_run(errmsg,errflg,prs)
implicit none
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg
real(kind=phys), intent(inout) :: prs(:,:)
...

end subroutine scheme_template_run
end module scheme_template

A CCPP-compliant physics scheme

10

1. Add new scheme to CCPP prebuild configuration (Python)
scheme_files = [

"existingscheme.F90",
"mynewscheme.F90",
"otherexistingscheme.F90",
]

2. Compile (CCPP)

3. Add new scheme to suite definition file (also runs init/finalize)
<scheme>existingscheme</scheme>

<scheme>mynewscheme</scheme>

<scheme>otherexistingscheme</scheme>

Adding a parameterization is easy!

11

Metadata tables:
variables requested

Metadata tables:
variables provided

ccpp-data: lookup table standard_name→ address of variable in memory

Metadata tables on host model side

12

CCPP
prebuild

ccpp
data

ccpp-physics

ccpp-framework

CCPP’s short past and long future
� First release of CCPP with GMTB Single Column Model in April 2018

(GFS physics), next release in July 2018 (with GFDL microphysics)
� Release with FV3 2018/2019 with 2020 physics candidates

� NOAA and NCAR agreed to collaborate on ccpp-framework:
enables interoperability of physics between NOAA/NCAR models
� Metadata updates: vertical direction, index ordering, …
� Automatic transforms, unit conversions, performance optimization
� Great opportunity to advance US modeling capabilities!

ccpp-framework

NOAA
physics

NCAR
physics

common
physics

Bonus material

14

Suppose one wants to diagnose a loss in conservation of
a specific variable that gets used and modified in many places.

1. Create a new “scheme” writing diagnostic output to screen/file

2. Add scheme to relevant places in suite definition file
...
<scheme>GFS_examplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...
<scheme>GFS_anotherexamplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...

3. No tinkering with host model code (driver, …)!

Side-effect: debugging made easy

15

Interstitital code
� “Suite-drivers” are called in current infrastructure (e.g. FV3):

� Suite Definition File instructs CCPP infrastructure to call individual
schemes; “interstitial” code within suite drivers ➔ interstitial schemes

slide stolen from Grant Firl 16

� Python script ccpp_prebuild.py
� requires metadata tables on both sides
� checks requested vs provided variables

by standard_name
� checks units, rank, type (more to come)
� creates Fortran code that adds

pointers to the host model variables
and stores them in the ccpp-data
structure (ccpp_fields.inc)

� creates caps for physics schemes
� populates makefiles with schemes and caps

Magic behind the scenes

17

Metadata tables:
variables requested

Metadata tables:
variables provided

CCPP
prebuild

� Python script ccpp_prebuild.py
� does all the magic before/at build time

� Model developers need to
� create ccpp_prebuild_MODEL.py config
� include auto-generated makefiles

(and ccpp_prebuild.py) in build system
� write host model cap that contains

ccpp_run calls and include statements
for auto-generated code (ccpp_fields.inc)

� manage memory for cdata structure

How to hook up CCPP w/ host model

18

Metadata tables:
variables requested

Metadata tables:
variables provided

CCPP
prebuild

