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The current state of extended/subseasonal forecasting

• Subseasonal predictability is 
limited to just the first 2-4 weeks 
(depending on the time 
scale)1,2,3,4

• Tropical convection, an 
important driver of extratropical 
circulation, is poorly simulated 
in global models4,5

• Biases in convection, moisture, 
and circulation may poorly 
impact other aspects of the 
forecast (e.g., the MJO)4,6,7,8

1Kumar et al. 2011; 2Yuan et al. 2011; 3Li and Robertson 2015; 4Weber and Mass 2017; 5Lin 2007, 6Silva et al. 2014;
7Gonzalez and Jiang 2017; 8Kim 2017



Why convection-permitting resolution?

• Explicit convection can improve:
– Precipitation distribution1,2

– Diurnal cycle3

– Propagating convection/MJO4-8

– Mean state?9

• Thus, we expect improved 
extratropical prediction

1Holloway et al. 2012; 2Inoue et al. 2008; 3Sato et al. 2009; 4Davis et al. 2003; 5Miura et al. 2007; 6Miyakawa et al. 2014;      
7Wang et al. 2015; 8Pilon et al. 2016; 9Prein et al. 2015



Questions for today:

By going to convection-permitting resolution can we…

1. Improve the tropical mean state?

2. Better predict large-scale convective phenomena (i.e., the 
MJO)?

3. Increase subseasonal extratropical forecast skill?



3-km
65+ million cells

Our tool: MPAS

120-km

• Version: MPAS v5.1 – “out of the box”
• Domain:

• Resolution:

• Physics:
‘convection_permitting’ 
suite – no Cu scheme



All feature strong MJO events that 
propagate through the Maritime 
Continent:
1. Init: November 22, 2011
– DYNAMO MJO-2 case

2. Init: February 8, 2013
– MJO associated with strong 

extratropical pattern1

3. Init: December 2, 2003

• All integrated for 28 days
• FNL analyses for ICs and BCs 

(SSTs fixed at initial value)

Three case studies

1Vitart and Robinson 2018



1. Tropical mean state: volumetric precipitation

• Too much tropical 
precipitation in 3-km run

• ~10% too much precip. and 
evaporation

• Similar for all three cases
• No bias in global values



1. Tropical mean state: distribution of precip. rates

• 3-km simulation 
almost perfectly 
matches the TRMM 
distribution

• Parameterized 
convection runs 
exhibit too much 
(little) light (heavy) 
precipitation

Case 1



1. Tropical mean state: distribution of precip. rates

• Similar improvement for the other two cases

Case 2 Case 3



1. Tropical mean state: diurnal cycle

• Does the 3-km simulation improve the intensity and/or 
timing of the ocean/land diurnal cycle in the tropics?
– Could be very important for the simulation of, e.g., the 

MJO1

1Zhang 2005



1. Tropical mean state: diurnal cycle

• Significantly improved diurnal timing/amplitude over ocean
• Diurnal timing is somewhat improved over land
• Similar results for just the M.C. region

1Zhang 2005

ocean land

Case 1



1. Tropical mean state: diurnal cycle

• Diurnal 
improvement 
is less for 
Case 2, but 
similar for 
Case 3

1Zhang 2005

ocean

land

Case 2ocean

land

Case 3



2. Improved MJO?  -- Case 1
precipitation rate

• Substantial improvement of precipitation propagation



zonal wind – 850 hPa
2. Improved MJO?  -- Case 1



zonal wind – 200 hPa
2. Improved MJO?  -- Case 1



MJO RMM
indices:

2. Improved MJO?  -- Case 1



2. Improved MJO?  -- Case 2
precipitation rate

• Eastward propagation missed by all simulations



MJO RMM
indices:

2. Improved MJO?  -- Case 2



2. Improved MJO?  -- Case 3
precipitation rate

• Eastward propagation only captured by 3-km simulation



MJO RMM
indices:

2. Improved MJO?  -- Case 3



3. Improved extratropics?  -- Case 1
CFSR CFSv2 MPAS_15km MPAS_3km



3. Improved extratropics?  -- Case 2
CFSR CFSv2 MPAS_15km MPAS_3km



3. Improved extratropics?  -- Case 3
CFSR CFSv2 MPAS_15km MPAS_3km



Wrap-up:

By going to convection-permitting resolution can we…

1. Improve the tropical mean state?

2. Better predict large-scale convective phenomena (i.e., the 
MJO)?

3. Increase subseasonal extratropical forecast skill?

Case 1:            Case 2:             Case 3:

Case 1:            Case 2:             Case 3:

Case 1:            Case 2:             Case 3:



Conclusions

• Convection-permitting resolution can improve important 
aspects of the tropical mean state, but can introduce a 
positive precipitation bias

• In agreement with other studies, foregoing convective 
parameterization can improve the simulation of the MJO

• Global subseasonal forecast skill improvement is less 
clearly associated with convection-permitting resolution, 
but seems to be related to MJO simulation fidelity



Questions?
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Computer resources per run

• Supercomputer: Cheyenne (5.34 petaflops)
• Run on 1024 nodes à 36,864 cores
• Core hours: 2.7 million
• Wall clock: 74 hours
• Output: ~80TB



Why not use a “tropical channel” mesh?

• Would conserve 
resources!

• But Grell-Frietas is the 
only packaged scale-
aware scheme
– Produces too much 

precipitation



Physics parameterizations

• No convection scheme
• Thompson* microphysics
• RRTMG radiation
• MYNN* surface layer & PBL schemes
• Noah land surface
• 2D-Smagorinsky subgrid mixing scheme

*Sensitivity tests were done to compare with other schemes



M.C. barrier in MPAS_3km – Case 1
precipitation rate

Propagation halts over M.C. – Why?
Theory #1: Preceding convection over M.C./W. Pacific



M.C. barrier in MPAS_3km – Case 1
zonal wind – 200 hPa

Theory #1: Preceding convection over M.C./W. Pacfic
M.C. divergence disrupts MJO outflow



M.C. barrier in MPAS_3km – Case 1
evaporation rate

Theory #2: Stronger evap. W. of convection à more low-level moisture



M.C. barrier in MPAS_3km – Case 1
zonal wind – 850 hPa

Theory #2: Stronger evap. W. of convection à more low-level moisture
Low-level winds are not stronger. Fixed SSTs maybe be removing
the negative moisture (cooling) feedback of the winds.



Currently being investigated:

• “Why does the 15-km 
simulation fail to produce the 
eastward-propagating Kelvin 
waves (and thus an MJO)?”

• “Why does the 3-km MJO stall 
over the M.C.?”

• “What component(s) of the 
overall moisture tendency is/are 
captured better in the 3-km 
simulation?”

• “Will prescribed SSTs improve 
surface fluxes and thus MJO 
propagation?”

• “Is the improved PNA 
circulation tied to the MJO?” –
Look at Rossby Wave Source

• Vertical latent heating/vertical 
motion profiles

• Moisture/convection coupling


