

2018 Joint WRF/MPAS Users' Workshop

The Operational Future of the Rapid-Refresh (RAP) and High-Resolution Rapid Refresh (HRRR)

14 June 2018

Curtis Alexander, Steve Weygandt, Stan Benjamin, David Dowell, Ming Hu, Tanya Smirnova, Joseph Olson, Jaymes Kenyon, Georg Grell, Eric James, Haidao Lin, Terra Ladwig, John Brown, Trevor Alcott and Isidora Jankov

NOAA/ESRL/GLOBAL SYSTEMS DIVISION

RAP/HRRR: Hourly-Updating Weather Forecast Suite

RAPv4/HRRRv3 Model Forecast Changes

90°W

80°W

 \bigcirc

140°W

130°W

120°W

110°W

100°W

 $oldsymbol{O}$

Schedule

RAP/HRRR Transition to Operations

ESRL RAPv5/HRRRv4 What:	When:	NCEP RAPv4/HRRRv3 What:	When:
Begin ESRL RAPv5/HRRRv4	Mid-March 2018	GSD-EMC Package Briefing	14 April 2017
Spring Freeze ESRL RAPv5/HRRRv4	30 Apr 2018	GSD-EMC Package Briefing	30 May 2017
Shartaat Tarm Changes		GSD code hand-off to EMC	26 Jun 2017
Fractional lake ice-concentrations (GFS-ba	used)	NCEP EE2 Meeting	06 Jul 2017
Assimilation moisture observations above 3	300mb	EMC 24x7 parallel	21 Aug 2017
Change to revised albedo/land use from M	ODIS	EMC Evaluation Begins	20 Nov 2017
Update cloud water number concentration	from RAP to HRRR	EMC Evaluation Ends	20 Jan 2018
initialization (default value that is too low)		EMC CCB Meeting	26 Jan 2018
Lin Novt		NCEP Director Briefing	02 Feb 2018
Transition to WRFv3.9.1		EMC code hand-off to NCO	15 Feb 2018
Updated MYNN PBL and LSM (gravity way	ve drag, etc)	NCO 24x7 parallel	Mar 2018
		NCO 30-day start	25 May 2018
		NCO Management Meeting	25 June 2018

NCEP Implementation

14 June 2018 • 3

11 July 2018

RAPv4/HRRRv3 Summary of Changes

Operational RAPv3/HRRRv2

WRF/MPAS

igodol

RAPv3/HRRRv2

N	lodel	Run at:	Dor	nain	Grid Points	Gr Spac	id cing	Vertio Leve	cal Is	al Vertica s Coordin		Pressi Top	ure	Boun Cond s	dary ition	Initialized		
	RAP	GSD, NCO	No Ame	orth erica	953 x 834	⁽ 13 ki		.m 50		Sig	ma	10 m	b	GF	S	Hourly (cycled)		
F	IRRR	GSD, NCO	COI	NUS	1799 x 1059 3		xm 50			Sigm		20 m	b	RA	AP fore		ourly (pre- ecast hour cvcle)	
ſ	Model	Versio	on	As	similatio	on	Rad	ar DA	Rad LW	liation V/SW	Micro	physics	Cun Pa	nulus ram	PE	BL	LSM	
	RAP	WRF-A v3.6 [.]	RW GSI Hybrid + Ensemble to 0.7		d 0.75	13-km DFI		RR RR	TMG/ RTMG	Tho Aero	mpson sol v3.6	G Sha	F + allow	MY v3	NN 9.6	RUC v3.6		
ł	HRRR	WRF-A v3.6 [.]	WRF-ARW GS v3.6+ Ensem		GSI Hybri emble to	d 0.75	3-km 15-min LH		RR RR	TMG/ RTMG	Tho Aero:	mpson sol v3.6	No	one	MY v3	NN 8.6	RUC v3.6	
N	lodel	Horiz/Vert		Scala Ivecti	r Upj on Dam	oer- vel ping	Diffusion Option		6 ^t Di	6 th Order Diffusion		SW Radiation Update		and se	MP T Lin	end nit	Time- Step	
	RAP	5 th /5 th	P C	ositive Definite	e- <mark>w-Ra</mark> ge 0	yleigh .2	Sim	ple (1)		Yes 0.12	2	20 min	MC Sea	DIS sonal	0.01	K/s	60 s	
F	IRRR	5 th /5 th Positive- w-Rayle		yleigh .2	Sim	ple (1)		Yes 0.25	15	min with SW-dt	MC Sea	DIS sonal	0.07	K/s	20 s			

RAPv4/HRRRv3 Summary of Changes

Upcoming RAPv4/HRRRv3

No Change in CONUS Domains

Newer Model Version More Ensemble Weight Advanced "Physics Suite"

Seasonal Vegetation Fraction/Leaf Area Index

igodol

RAPv4/HRRRv3

WRF/MPAS

	Model	Run at:	Dor	nain	Grid Points	Grid Spacing		yertica g Levels		Vertical Coordinate		Press Top	ure	Boun Cond s	dary ition	Initialized		
	RAP	GSD, NCO	No Ame	orth erica	953 x 834	13	km	m 50		Sigma Hyt	a-Isob orid	ob 10 ml		GF	S	Ho (Cy	ourly cled)	
	HRRR	GSD, NCO	CO	NUS	1799 x 1059	99 x 159 3 k		m 50		Sigma- Hybri		20 mb		RA	P	Hour foreca cy	rly (pre- ast hour vcle)	
	Model	Versio	on	As	ssimilatio	on	Rada	ar DA	Rad LW	liation V/SW	Micro	physics	Cun Pa	nulus ram	PE	BL	LSM	
	RAP	WRF-A v3.8.1	RW +	C Ense	SSI Hybri emble to	d 0.85	13-kr ½ St	n DFI, rength	RR RR	TMG/ RTMG	Thor Aeroso	mpson ol v3.8.1	G Sha	F + allow	MY v3.	NN 8.1	RUC v3.8.1	
"	HRRR	WRF-A v3.8.1	RW +	(Ense	GSI Hybri emble to	d 0.85	3-km 5 15-min LH		RR RR	RTMG/ Tho RTMG Aeros		npson ol v3.8.1		one	MY v3.	NN 8.1	RUC v3.8.1	
	Model	Horiz/Ve Advectio	rt nAc	Scala Ivecti	r Upp on Dam	oer- vel ping	Dif O	fusion ption	6 ^t Di	^h Order iffusior	r Ra	SW diation pdate	La U	and Ise	MP T Lin	end hit	Time- Step	
	RAP	5 th /5 th	P	ositiv Definit	e- w-Ray e 0	yleigh .2	Fu	ull (2)		Yes 0.12	2	0 min	MC Sea	DDIS sonal	0.01	K/s	60 s	
	HRRR	5 th /5 th	th /5 th Positive- Definite		e- w-Ray e 0	yleigh .2	Fu	Full (2)		Yes 0.25	15	15 min with SW-dt		DDIS sonal	0.07	K/s	20 s	

 $oldsymbol{O}$

2018 RAPv4/HRRRv3 Change Highlights

Data Assimilation	Model	Land-surface/post
Merge with GSI trunk – Mar 2017	WRF-ARW v3.8.1+ incl. phys changes	MODIS higher-res 15" land-use data
New Observations for assimilation:	Physics changes:	
Add AMVs over land and TAMDAR	Thompson microphysics – improved	VIIRS real-time greenness veg
NCEP new VAD wind retrievals	ice clouds (not excessive)	fraction
Add IASI, CrIS, SEVIRI radiances		
Use direct readout radiances (larger volume)	MYNN PBL update – better sub-grid clouds, EDMF (local/deep) mixing	Revised roughness length
Assimilation Methods:		10m wind (not ~8m)
Revised PBL pseudo-obs –better winds/RH	Land-sfc model update – mosaic	
More ens weight in hybrid DA (0.85/0.15)	snow, 2m temp diagnostic	Wind gust diag fixed (stronger at night)
Cloud building	Revised Grell-Freitas cumulus (RAP)	
 smaller qc/qi, cloud CCN now specified GOES/METAR build <1200m 	Eclipse-ready short-wave radiation	Visibility diag improved
	Numerics changes:	
Radar reflectivity assimilation - Latent heating reduced by 50% - RAP only	Hybrid vertical coordinate from NCAR Low-level subgrid wind drag	
- also affects HRRR – reduces high precip bias	Diffusion – horiz only, not on slopes	

RAP/HRRR Performance History

WRF/MPAS

RAP Performance

Landfalling Tropical Cyclones

- 2017 hurricanes in operational and experimental HRRR domains
- Realistic structures and impacts but some errors in track forecasts
- Future improvements to RAP/HRRR/regional FV3 data assimilation (e.g., tcvitals, radar, satellite)

WRF/MPAS

ESRL/GSD Regional Model Projects

	20	09			20	10			2	011				20	12			20	013			2	2014	L .	Τ		201	5		2016			2016				2017			2018		
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q	2 Q3	3Q	4	Q1	Q2	Q 3	Q4	Q 1	Q2	2 Q3	B Q	4 Q	1 Q	2Q	3 Q4	4 C	21 0	22 0	23	Q4	Q1	Q2	Q3	Q 4	Q'	1 Q2	2 Q3	Q4	Q1	Q2	Q 3	Q4	
												_																														
	RAF	Pv1	R&D					RA	<mark>Pv′</mark>	1 T2C																																
													R/	APv2	2 R&	D		F	RAP	v2 T	20																				L	
				_	_	1	HRF	Rv1	R	<u>k</u> D					1				H	RR	Rv1	T2O)																		L	
																			F	RAP	v3/H	RRF	Rv2 F	R&D		F	<mark>RAP</mark> v	<mark>/3/H</mark>	RR	Rv2	T2O										L	
																																RA	Pv4	HRF	Rv3	RA	Pv4/	HRR	Rv3			
								-			+	_							_		_	_		_	_								K					20				
													с т																			-						H	IRE	=v2.1	1	
											н	RR	K-I		≺&D														HK	KK-	ILE	Pos	t-Pro	ocess	sing i	≺&D		Pos	T2		sing	
								1			1						1				Т								HR	RRF	= Alr	bha	F	IRRF		eta			12			
																													• •• •	Rð	SD.	, na	.	R	&D		F	IRRF	REv1	R&I	כ	
					nd	\٨/١					ha		"	19E	⊃" ∽	nd	١m	nlo	m	ont	atic	h	~ "D	$2 \cap$	"																	
	V O				IIIU	VV		5 -		eeu	Ja	UN		721	1 6			ipie	71110	5110	anc	JIIS		20																		
<u>A</u>	viat	tio	<u>n</u> (F	-A/	۹, ۱		٩R,	MI	IT/	ĽL,	A۷	NC	C) -	- C	CoS	PA	Pr	oje	ect -	- 8	SIP/	/FII	P/G	TG	/et	tc.	–	15	5 m	in	out	tpu	t									
					<u>S</u>	eve	ere	(SF	⊃C	;, N	SS	SL)) —	Vo	orte	x II	/SE	ΞP	roje	ect	:s –	W	ΌF	- H	Ιοι	urly	/ Ma	axi	mι	ım	Fie	elde	5									
					-								E	nei	rgy	(D	OE	E) –	- W	′FI	P 1.	/2,	SF	IP I	Pro	oje	cts	-/	4 ve	era	geo	d D	ire	ct/[Diffu	Jse	Ra	ld/V	Vin	d		
																											dro		111	/\\/				D)	Δ			۱۸/۸		roid	_	
																													17			, C		-) ·			I, IN				5	
																									F	Q	PF/	Pty	ype		Air	Qı	lal	ity	(W)	FO	s) –	Sr	nok	e		
	۱۸/		=/N/	PΔ	S		ightarrow			Ove	ربار	viev	.																					14	. Ir	ine	20	18		(g	

Downstream Applications

Operational Downstream Dependencies from RAP/HRRR

- 1. Real-Time Mesoscale Analysis (RTMA/URMA/smartinit) (analysis)
- 2. National Blend of Models (NMB) (general forecasting)
- 3. National Water Model (NWM) (hydrology)
- 4. Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) (air quality)
- 5. Local Aviation MOS Program (LMP/GLMP) (aviation)
- 6. Graphical Turbulence Guidance (GTG) (aviation)
- 7. High-Resolution Ensemble Forecast (HREF/HIRESW) (CAM ensemble)
- 8. Short Range Ensemble Forecast (SREF/NARRE) (mesoscale ensembles)
- 9. Surface Objective Analysis (SurfaceOA) (severe)
- 10. National Ocean Service (NOSOFS) (ocean)

GSD-EMC-NCO Implementation Efficiency

Model Systems	Year	Number of Quarters (3 is minimum)	Quarters/System	% Improvement
RAPv1	2012	9	9	-
RAPv2 and HRRRv1	2014	10	5	45%
RAPv3/HRRRv2	2016	7	3.5	30%
RAPv4/HRRRv3 (CONUS and AK)	2018	4	1.3	63%

Average 46% improvement (each implementation ~2x faster)

Increasing T2O efficiency from:

- More familiarity with the model system software (GSI, ARW, UPP)
- More familiarity with the target high performance computer (WCOSS) and O2R optimizations
- More developer involvement at GSD and EMC ٠

<u>T2O challenges remain:</u>

- Heterogeneity of R&D and operational HPC environments
- Increasing sophistication/complexity of model system components

2020 RAPv5/HRRRv4 Change Highlights

Model	Data Assimilation	Land-surface / post
WRF-ARWv4.0+ incl. phys changes	Merge with GSI trunk – 2018	Switch to MODIS albedo (higher), replace 1-deg
Physics changes:	New Observations for assimilation:	albedo.
MYNN PBL update – yet better sub- grid clouds, improved EDMF mixing	GOES-16 radiances, GLM lightning MRMS dual-polarization radar mosaics	Add zenith-ang albedo adj
length, goal: retaining stable layers	Extra mesonet data incl. anemometer hgt TC vitals for trop cyclone location/	Fractional sea/lake ice concentration
Aerosols sources/sinks –	strength	? – FVCOM SST/ice
fire/smoke,	Satellite-based AOD (aerosol optical depth)	
dust - Add smoke with VIIRS fire radiative power	Aircraft/raob moisture obs for p<300 hPa	VIIRS/MODIS/GOES fire radiative power
Improved land-surface/snow model	Assimilation Methods:	HRRRE prob products
including better 2m T/Td	HRRR - 3km ensemble DA (40 mems out to	Full cycle RAP land-sfc
diagnostics	1h) – effective in 2017/18 tests.	
- no snow mosaic for T<271K	Reduced LH for radar assim in HRRR	
Latest Grell-Freitas conv (RAP only)		
Lake model for small lakes	Cloud/hydrometeor assim within ens DA	
Enhanced gravity-wave drag	DA for subgrid cloud fraction/cloud water w/ METAR, satellite cloud fraction	

GLOBAL SYSTEMS DIVISION

WRF/MPAS

igodot

Exploring Dual-Polarization QC of Radial Velocities

Exploring Dual-Polarization QC of Radial Velocities

WRF/MPAS

igodot

HRRR Dual-Polarization Radar Data Assimilation

 Z_{DR} column-located temperature tendencies using Z_{H} derived rate

RAP/HRRR GOES Lightning Assimilation

Mean annual lightning flash densities. The bounding curves indicate the extensive coverage of the GLM data (including many regions with no other convective indicator coverage), while the color shading indicates the frequency of lightning occurrence.

RAP/HRRR More Vertical Levels?

WRF run time cost (compared to operational configuration): 15%-25%

WRF/MPAS

RAP/HRRR More Vertical Levels?

- Vertical level spacing is shown in these figures.
- The new configuration keeps the spacing below 400m all the way up to approximately level 45.

 \bigcirc

More Vertical Levels: Shallow Airmass Retention

Smoke Forecasting in RAP and HRRR

- Single tracer (smoke) added to experimental RAP and HRRR versions
- Smoke from Alaska, Canada, Mexico, and elsewhere simulated in RAP and provided to HRRR through boundary conditions
- Biomass burning emissions and inline plume rise parameterization based on satellite (VIIRS, MODIS) FRP data
- Full coupling: feedback of smoke on predicted radiation, cloudiness, and precipitation
- Candidate for operational implementation in 2020

 \bigcirc

Experimental smoke forecast for 14 June 2018 (rapidrefresh.noaa.gov/hrrr/HRRRsmoke/)

Ravan Ahmadov and Eric James

36-member ensemble analysis system

- Daily initialization of nested WRF-ARW system from GFS+GDAS, followed by hourly cycling
- GSI for ob preprocessing and ensemble priors
- EnKF data assimilation
 - conventional observations both domains
 - radar reflectivity 3-km domain
- Analysis variables: U, V, PH, T, MU, QVAPOR, QCLOUD, QICE, QRAIN, QSNOW
- Posterior inflation

Ensemble forecasts

WRF/MPAS

• 9 members out to ~36 hours

 \bigcirc

- 0000 UTC, 1200 UTC, and other selected times
- Graphics for 3-km domain https://rapidrefresh.noaa.gov/hrrr/HRRRE/

igodol

03z-21z HRRRE 2018 Design

HRRRE Design

00z HRRRE 2018 Design

WRF/MPAS • HRRRE Design

Convective-Allowing Ensemble Configurations

Attribute	HRRRE	NCAR Ensemble	HREF
Dynamic Core	ARW	ARW	ARW and NMMB
Physics	RAP/HRRR Suite	RAP/HRRR Suite	Mixed
Initial Condition Atmos	GFS + GDAS once-daily restart	Continuous cycle	RAP and NAM
Initial Condition Soil	RAP/HRRR soil + perturbations	Continuous cycle	RAP and NAM
Hourly DA Cycling	EnKF w/posterior inflation	EnKF w/posterior inflation	None (6 of 8 members)
Lateral Boundary	Perturbations	Perturbations	RAP and NAM
Stochastic Physics	None (or LSM, PBL, MP, Cu)	None	None
Number of DA Members	36	80	None
Number of Fcst Members	9	10	8 (4 time-lagged)

 \bigcirc

Real-time Demos Spring 2018 "May Day" Forecast

• Forecasts from HREF, HRRRE, NCAR Ensemble, CAPS EnKF, and OU (MAP) were evaluated recently during Hazardous Weather Testbed "Spring Experiment".

Probabilistic Verification: 12-18 h Precipitation

April 2018

HRRRE: singlemodel system

HRRRE Init 12 UTC 06 June 2018: 24-30 hr forecasts

WRF/MPAS •

14 June 2018 • 27

Map Center: -97.23, 35.55

HRRRE Init 12 UTC 06 June 2018: 27 hr forecasts

HRRRE 06/06/2018 (12:00) 27h fcst - Experimental Valid 06/07/2018 15:00 UTC

HRRRE Nine Members27 hr forecastsValid 15 UTC 07 June 2018

A few members depicted a scenario with sustained convection in OK

WRF/MPAS •

 \bigcirc

HRRRE Init 12 UTC 07 June 2018: 00-06 hr forecasts

Map Center: -97.23, 35.55

HRRRE Init 12 UTC 07 June 2018: 03 hr forecasts

HRRRE 06/07/2018 (12:00) 3h fcst - Experimental Valid 06/07/2018 15:00 UTC

HRRRE Nine Members3 hr forecastsValid 15 UTC 07 June 2018

All members depicted a scenario with sustained convection in OK

WRF/MPAS •

HRRR and HRRRE Reflectivity Forecast Skill

CSI (20 km) Eastern US 15 Mar – 5 May 2018

HRRR

- reflectivity-based T tend. during 1-h model spinup
- hydrometeor specification

HRRRE members 1, 2, 3

• EnKF reflectivity assimilation

14 June 2018 • 31

WRF/MPAS •

HPC Needs

High Impact Weather Prediction Needs: HPC

ESRL/GSD Regional Model Projects

Path to FV3

GSD-EMC Plan for CAM Unification

	FY	ARW-Framework	FV3-Framework
 2018 HRRREv1 real-time evaluations More HRRREv1 retro testing and development 	2018	 RAPv4/HRRRv3 Operational RAPv5/HRRRv4 Experimental Dev: Storm-Scale Ensemble DA Larger CONUS Domain Improved Physics 	 Real-time 15-km Global + 3 km FV3 Nest Regional Stand-Alone FV3 + DA developed, tested Multiple physics options tested on CAM scales, including RAP/HRRR Physics Suite Comparisons between global nests and stand-alone regional to ensure consistent behavior
2019		 Testbed and objective verification 	- Testbed and objective verification
 HRRREv1 configuration frozen Code delivery to EMC as part of HRRRv4 	2019	 RAPv5/HRRRv4 Experimental Testing Storm-Scale Ensemble DA JEDI Observation Operators HRRRv3 included in HREEv3 	 Optimization of CAM-scale DA and physics Hourly-Updating CAM Ensemble DA JEDI Observation Operators EV3 CAM included in HREEv3
2020		- Testbed and objective verification	- Testbed and objective verification
 HRRRv4/HRRREv1 operational Switch to FV3 dycore 	2020	- RAPv5/HRRRv4 Implementation - ARW Development Frozen	 FV3-Rapid-Refresh Optimization Complete JEDI Integration
2021		·	• In-Core DA
 FV-HRRR development Merger of CAMs begins 	2021		<u>Real-Time Experimental Rapid Refresh Forecast</u> <u>System (RRFS)</u> • FV3-HRRR Ready • Merge NPS CAM Products
 FV-HRRR becomes RRFS in operations 	2022		 <u>RRFS Operational</u> Unified 3-km CAM Ensemble Physics/DA for Days 1-3
•			

WRF/MPAS • Future