Why resolution matters when using WRF to drive hydrology and hydrodynamic models

Campbell D. Watson, Guillaume Aug--er, James P. Cipriani, Eli M. Dow, Michael E. Henderson, Harry R. Kolar, Mukul Tewari, Lloyd A. Treinish

IBM Research, Yorktown Heights, NY

The Jefferson Project at Lake George

A multi-year partnership initiated in June 2013

Understand and manage the complex factors threatening Lake George, NY

Monitor, model, predict and experiment

60+ scientists and engineers

50 km

WRF v3.8.1 – Weather

Nested domains over Lake George

10-m winds at Lake George

-We have run daily, 36-hr operational forecasts at 0.33 km for over 1.5 years -Over 2000 observations assimilated every forecast (3D-var), including seven from Lake George -42 vertical levels with 14 below 1 km

 \triangle 0.33 km

SUNTANS – Hydrodynamics

Lake hydrodynamics from SUNTANS

The Stanford unstructured-grid coastal ocean model Run in hydrostatic mode Triangular mesh with variable-resolution (10-30 m) 57 *z*-layers and approx. 110,000 grid cells

Hypothesis:

Weather forecasts at higher horizontal resolution provide more accurate surface winds which improves the simulation of lake hydrodynamics

Case study: A sudden downwelling event on June 15 2017

How Deep Thunder Represents Lake George at Different Resolutions

Terrain height and grid cells

Landmask

Histogram of wind speed over Lake George through June 2017

OBSERVATIONS

Two vertical profilers measure the water column at Anthony's Nose and Tea Island

Observed Water Temperature and Chlorophyll at Tea Island, June 2017

Downwelling event

Observed Winds and Chlorophyll at Tea Island, June 2017

20

25

30

11102.00

10.05.00

un:1:00

117.4.00

10-17-00

13 m

11129.00

1-26-09

12

10

8

6

Maximum depth of downwelling is <u>underestimated</u> using coarser weather forcing

- 16 [) ⁶⁹

More accurate simulation when increasing weather resolution. (Dynamically and quantitatively)

Guillaume Auger 6 June 2018

Other differences ?

In using **0.33 km weather**, the **water stores more heat** than in using 3 km weather.

Guillaume Auger 6 June 2018

Conclusions

Consequence of driving the lake circulation model with winds from 0.33 km instead of 3 km Deep Thunder:

- > Improved accuracy of temperature at Tea Island and Anthony's Nose
- > A deeper metalimnion
- > Cooler surface waters (reduced stratification)
- > Higher overall heat content

Is the cause only wind speed? What about cloudiness, air temperature, humidity....

And what is the connection to Chlorophyll?

cwatson@us.ibm.com

Offline Ecosystem Model (NPZDO₂)

2017-07-12 00:20:00

Zooplankton

Dissolved oxygen

^		
	0.9	-
	0.8	m3]
-	0.7	nol /
	0.6	[mr
	0.5	ation
	0.4	entra
-	0.3	Conc
-	0.2	tus C
	0.1	Jetrii
	0.0	
	100)
	80	level [%]
	60	ration
	40	en Satu
	40 20	Oxygen Satu