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NUDAPT dominant: 
furb = ∑c wc αc ;   wc = ( .5, .5, .9, .95 )

Proposed method:



Shaffer et al. 2016

h = 1 ⇒
p(x)=constant

h = 0 ⇒
p(x)=δ(x-x0)

furb=

Scale-aware (good for MPAS)
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Salamanca et al. 2018 shows similar 
nighttime temperature bias

- Phoenix 4 urban AZMET stations 
during 15-day clear-sky June 2012

- Same model configuration as 
Shaffer et al. 2016 using dominant 
urban fraction with NLCD data

- Non-urban class set to open 
shrubland

- Is there bias in the LULC data?



Li et al. 2014

Incorporating high-resolution land cover data to 
improve mixed agricultural and urban representation

NAIP NLCD

resolution 1-2 m 30 m

accuracy 92% 79-84%

availability 1 year 5 years
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1 meter NAIP
30 meter NLCD

Shaffer et al. 2016, Shaffer (Submitted JAMC), Li et al. 2014

Incorporating high-resolution land cover data to 
improve mixed agricultural and urban representation

● Urban classes in NLCD lose information of non-urban contribution
● WRF default ‘natural’ uses ‘cropland/grassland mosaic’, biased

Q: How to use NAIP within WRF?
Q: What is model sensitivity to changing input data product?

NAIP 2010

NAIP NLCD

resolution 1-2 m 30 m

accuracy 92% 79-84%

availability 1 year 5 years



Single Layer Urban Canopy Layer                        

● Building morphology (shading/trapping), materials (thermal 
conduction, fluxes)

● Sublayer modifications influence urban boundary layer 
(momentum, moisture, heat)

● Additional forcings, e.g., 
○ AH, e.g. Sailor and Lu 2004

● Detailed physical processes of the land surface are 
linked to observations of land-use and land-cover

● assumes a homogeneous canopy in grid cell/tile

Vtotal =  furban Vurban +  ( 1 - furban) Vnatural

“natural” vegetation (Noah LSM)

Chen et al. 2011, Chen and Dudhia 2001, Shaffer et al. 2016

Aggregation in WRF urban canopy and land surface models

“urban” (SLUCM)                                  



The urban class grid-cell total now becomes the urban “tile” contribution.

The urban and natural contributions for urban tiles can be separated:

The “natural” class can be combined with it’s respective LCC, via an effective 
areal fraction:

Modification to mosaic scheme aggregation
Vtotal =  furban Vurban +  ( 1 - furban) Vnatural

Vtotal =  ∑c αc Vc

α”natural”eff,c=α”natural”,c+αurb,c(1-furb,c)

Dominant

Mosaic

Shaffer et al. 2016, Shaffer (Submitted JAMC)



Aggregate Bin East-West
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[Figure 4] Percent of NAIP class (here Impervious) at 30 m x 
30 m kernel with 5 meter increment (box convolution), 30 m 
was chosen to mimic NLCD resolution, 5 m increment 
provides an ensemble for each 1m NAIP grid cell;

Figure 2
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NAIP 1m 12 class 
for WPHX-FT 1 km WRF grid cell

Step 1, binning
Proposed Method

1. Bin:  [Figures 2 and 4]
1 m categorical to 30 m percent

Define: [Figures 2]
Impervious = Building + Road

2. Classify at 30 m: [Figure 5]
Urban Classes
Use NLCD definition: [Figures 4, 5]

Partition 30 m percent impervious (Ψ) 
into NLCD developed classes[3],  
and assign to WRF urban[6,1] classes:

3. Re-classify at 1 m: [Figure 6]
Assign most probable WRF class 
to each 1 m NAIP grid cell

4. Aggregate to WRF grid: [Figures 8,10]
Direct from 1 m categorical to 1 km 
areal fraction per class 

! urb (Ψ) =

DOS,  0 < Ψ < 20 , Not used
DLI,  20 ≤ Ψ ≤ 49 , LIR
DMI, 50 ≤ Ψ ≤ 79  , HIR
DHI, 80 ≤ Ψ ≤ 100 , CIT

Shaffer (Submitted JAMC)
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Figure 6

Step 2, Classify at 30 m

Step 3, Re-classify at 1 m

[Figure 5] WRF urban class determined for each aggregate 
bin in Figure 4, using NLCD definition but not using DOS;

[Figure 6] Identification of WRF urban class for 1m NAIP 
impervious class (from Figure 3), with remaining NAIP classes 
merged to lower-level classification[5];

Proposed Method

1. Bin:  [Figures 2 and 4]
1 m categorical to 30 m percent

Define: [Figures 2]
Impervious = Building + Road

2. Classify at 30 m: [Figure 5]
Urban Classes
Use NLCD definition: [Figures 4, 5]

Partition 30 m percent impervious (Ψ) 
into NLCD developed classes[3],  
and assign to WRF urban[6,1] classes:

3. Re-classify at 1 m: [Figure 6]
Assign most probable WRF class 
to each 1 m NAIP grid cell

4. Aggregate to WRF grid: [Figures 8,10]
Direct from 1 m categorical to 1 km 
areal fraction per class 

! urb (Ψ) =

DOS,  0 < Ψ < 20 , Not used
DLI,  20 ≤ Ψ ≤ 49 , LIR
DMI, 50 ≤ Ψ ≤ 79  , HIR
DHI, 80 ≤ Ψ ≤ 100 , CIT

Shaffer (Submitted JAMC)



Step 4, aggregate to WRF grid
Figure 8

Proposed Method

1. Bin:  [Figures 2 and 4]
1 m categorical to 30 m percent

Define: [Figures 2]
Impervious = Building + Road

2. Classify at 30 m: [Figure 5]
Urban Classes
Use NLCD definition: [Figures 4, 5]

Partition 30 m percent impervious (Ψ) 
into NLCD developed classes[3],  
and assign to WRF urban[6,1] classes:

3. Re-classify at 1 m: [Figure 6]
Assign most probable WRF class 
to each 1 m NAIP grid cell

4. Aggregate to WRF grid: [Figures 8,10]
Direct from 1 m categorical to 1 km 
areal fraction per class 

! urb (Ψ) =

DOS,  0 < Ψ < 20 , Not used
DLI,  20 ≤ Ψ ≤ 49 , LIR
DMI, 50 ≤ Ψ ≤ 79  , HIR
DHI, 80 ≤ Ψ ≤ 100 , CIT

Figure 10

WRF 1km grid for CAP-LTER study area, 
zoomed to show Phoenix

[Figure 8] Total (of 3 classes) urban areal 
fraction with reclassified NAIP.

[Figure 10] Dominant WRF land cover 
class with urban classes derived from 
NAIP within the CAP-LTER area. Non-
urban classes are derived from 1km 
MODIS IGBP data.

Shaffer (Submitted JAMC)

To evaluate NLCD bias:

- Bin 1m to 30m to emulate NLCD

- Use dominant urban at 30m and 
bin to 1km

- Prescribe “natural” as open 
shrubland

- Use effective areal fraction for 
natural class



Maps of WRF 1km grid for CAP-LTER study 
area showing: 

[Figure 7 and 8] Total (of 3 classes) urban areal 
fraction with NLCD, and NAIP, respectively.

[Figure 9 and 10] Dominant WRF land cover 
class with the NLCD based urban classes, and 
replaced by NAIP within the CAP-LTER area, 
respectively. Non-urban classes are derived 
from 1km MODIS IGBP data.

Figure 7

Figure 10Figure 9

NLCD based 
NAIP based Figure 8

Shaffer (Submitted JAMC)



Case Areal 
fraction

Urban fraction

1 (1b) NLCD WRF defaults

2 (2a) NLCD NAIP

3 (3) NAIP WRF defaults

4 (4a) NAIP NAIP

WRF-v3.6.1 
4 nested domains centered on Phoenix, AZ 
d01-d03: Noah + SLUCM 1-way
provide d04 LBC + IC
d04: Noah-mosaic LSM + SLUCM  (cases)
Land cover: MODIS + NLCD or NAIP
furb,c= μ(p(Ψ|c)) as per Shaffer et al. 2016

Sensitivity Experiments

Shaffer et al. 2015, Shaffer et al. 2016, Shaffer (Submitted JAMC)

Analysis: 
d04 1km
17 June 2012 18Z to 20 June 2012 18Z
5-minute model output
Focus on 2-meter air temperature (for now)
time-averaged for 0000-0500 local time (nighttime)

d01 forcing:
Microphysics:

Radiation:
PBL-SLS:

NCEP FNL 1°, 6-hr, 26 levels
WSM-3
Dudhia + RRTM
YSU-MM5



NAIP urban fraction is lower than default WRF, 
resulting in more “natural” contribution (open shrubland), 
reducing nighttime temperature by ≈ 1 °C

Case Areal 
fraction

Urban fraction

1 (1b) NLCD WRF defaults

2 (2a) NLCD NAIP

3 (3) NAIP WRF defaults

4 (4a) NAIP NAIP

“natural” class effective areal fraction

Effect from urban fraction derived using NAIP versus default WRF values, with NLCD α 

α”natural”eff,c=α”natural”,c+αurb,c(1-furb,c)

Shaffer (Submitted JAMC)



Mixed increase and decrease with NAIP versus NLCD α in urban 
core has mixed influence on temperature

Lower α rural fringe, shows a ≈1-3 °C decrease

Case Areal 
fraction

Urban fraction

1 (1b) NLCD WRF defaults

2 (2a) NLCD NAIP

3 (3) NAIP WRF defaults

4 (4a) NAIP NAIP

“natural” class effective areal fraction

Effect from areal fraction derived using NAIP versus NLCD

α”natural”eff,c=α”natural”,c+αurb,c(1-furb,c)

Shaffer (Submitted JAMC)



Case Areal 
fraction

Urban fraction

1 (1b) NLCD WRF defaults

2 (2a) NLCD NAIP

3 (3) NAIP WRF defaults

4 (4a) NAIP NAIP

Again, NAIP shows a ≈1-3 °C decrease.

“natural” class effective areal fraction

Effect from using NAIP versus NLCD

α”natural”eff,c=α”natural”,c+αurb,c(1-furb,c)

Shaffer (Submitted JAMC)



Case Areal 
fraction

Urban fraction

1 (1b) NLCD WRF defaults

2 (2a) NLCD NAIP

3 (3) NAIP WRF defaults

4 (4a) NAIP NAIP

“natural” class effective areal fraction

Using WRF derived furb with NAIP α show ≈ 1-3 °C influence

Effect from urban fraction derived using NAIP versus default WRF values, with NAIP α

α”natural”eff,c=α”natural”,c+αurb,c(1-furb,c)

Shaffer (Submitted JAMC)



● The Noah mosaic scheme was adapted for using effective areal fractions 

● The proposed method with NAIP allows for direct calculation of areal fractions for the WRF 
Noah-mosaic land surface model approach, without the need for urban fraction and “natural” 
class parameters, with NAIP non-urban classes.

● Need to consider appropriateness of NLCD based urban class approach for this resolution data 
(1 m) within current urban models, where front and back yard may change from LIR to HIR 
based upon impervious fraction, yet the urban schemes assume unresolved homogeneous 
canyons. 

○ Are the aggregated fluxes correctly parameterized?
○ Are there more appropriate urban class definitions (e.g. Local Climate Zone Stewart and 

Oke 2012)?

Conclusions



Conclusions

● Pre-monsoon summertime nocturnal 2-meter temperature differences demonstrate sensitivity to 
input data source, showing that, 

○ changing NLCD to NAIP to derive urban classes give a change of  ≈ 1 °C owing to smaller 
urban footprint

○ the reduced urban fraction of NAIP, especially in the rural fringe, shows a ≈1-3 °C change, 
which remained consistent with changed urban class area

○ using default urban fraction versus from NAIP gives ≈ 1-2 °C change, both increase or 
decrease depending on development density.

● Comparison with observations will be conducted, in addition to investigating “tuning” of additional 
urban parameters, and deriving fractional contribution of non-urban classes from NAIP

● In preparation: additional input data products (i.e. Landsat), and classifications (i.e. NLCD40) are 
being explored. These cases will be evaluated with WRF model predictions versus observations.



Fresno, CA Central Arizona Phoenix LTER Baltimore Ecosystem Study LTER

Study areas using National Agricultural Imagery Program data

Multiscale data development for integrated agricultural and urban applications

Fresno, CA

CAP-LTER

Central FL

BES-LTER

Detroit

Li et al (in Prep), Shaffer and Li (In Prep), Smith et al. (2017.), Li et al. (In Prep)

Photo credit: S.R.Shaffer



Development of the Integrated WRF-Urban-Crop model 
● Quantify complex hydro-climate-soil-crop interactions 
○ Essential for supporting agricultural management strategies and 

policy decisions at multiple scales: 

global continental local farm/urban
● Apply to investigations within mixed developed urban regions.

Image Sources: goes.gsfc.nasa.gov, climate.gov, maps.google.com 



Conversion 
Scenarios

CROP 

Neighborhood Scale
City Scale

Scale-aware 
Parameterization

Physics Based 
Prediction

Daytime LST

Verify

Multiscale data development for integrated agricultural and urban applications

Metropolitan Scale

Internet2
HPC

High Resolution 
Classification

Stations



Thank you
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