Evaluation of a gray-zone PBL scheme at sub-kilometer resolutions

Song-You Hong, <u>Hyun-Joo Choi, Ji-Young Han</u>,

(Korea Institute of Atmospheric Prediction Systems: KIAPS)

Presentation

- ✓ Overviews of KIAPS activities
- ✓ A turbulent transport at gray-zone resolutions (Shin-Hong PBL, Shin and Hong, 2013, 2015)
- ✓ PBL and precipitation at grey-zone resolutions

Organization of KIAPS (as of April 2018)

Total	Director	Research Staff				Administrative staff			
		Principal Researcher	Senior Researcher	Researcher	Assistant	Principal Staff	Senior staff	Staff	Assistant
58+12	1	13 +1	26	12	5	1	2	3	6

Strategy (Sep. 2014) : Reference models

Korean (formerly KMA, KIAPS) Integrated Model (KIM) system

Dynamic core (non-hydrostatic over a cubed sphere)

- Cubed sphere, horizontal: Spectral element, vertical: Finite difference
- Flux-type compressible governing equations
- Time-split time integration: Slow mode \rightarrow third-order Runge-Kutta

Horizontal sound wave and gravity wave \rightarrow Forward-Backward

vertical sound wave and buoyancy \rightarrow implicit

Semi-real time forecasts : July 2015

Resolution : about 25 km for both UM and KIM

UM : KMA operational model

COLD : KIM with UM initial conditions

WARM : KIM with 3Dvar assimilation

* KIM : non-hydrostatic core with v2.x physics
* KIM : updated every 3 months in stage 2 (2.0: 1507, 2.1: 1510, 2.2: 1601...) and will be updated every 6 months in stage 3 (2017-)

*** Real-time forecasts in a non-hydrostatic spectral element with full physics, along with its own data assimilation on a cubed sphere grid

RAD (RRTMK, Baek 2017, JAMES)

- Unification of SW and LW solver
- G-Packed McICA: 3 times faster than McICA cy
- Revised two-stream approximation : reduces RMS error to 60 %

Mean r.m.s error of each cosine of solar zenith angle $\mu \downarrow 0$ bin

V3.0

GWD

KIM physics packages (KIM 3.1)

Physics schemes	KIM 3.1	Remarks
Cumulus parameterization (CPS)	Han et al. (2016) Kwon and Hong (2017)	Routed in GFS CPS of GRIMs, but with the improved cloud microphysics and the inclusion of scale-aware function, names KSAS (gray-zone SAS)
Shallow convection (SCV)	Hong and Jang (2018)	Routed in Tiedtke SCV (Tiedtke 1989) of GRIMs, but with improved diffusivity, and triggering function
Cloud microphysics (MPS)	Hong et al. (2004) Bae et al. (2018)	Routed in WSM5 (Hong et al. 2004) of WRF, but with the inclusion of cloud properties in radiation package (Bae et al. 201 6)
Radiation (RAD)	Baek (2017)	Routed in RRTMG (Iacono et al. 2008) of WRF, but with a newly developed unified RAD package
Cloudiness (CLD)	Park et al. (2016)	A newly developed prognostic cloudiness package based on the Tiedtke prognostic cloudiness (Tiedtke 1993)
Vertical diffusion (PBL)	Shin and Hong (2015) Lee et al. (2018)	Routed in YSU PBL (Hong et al. 2006, Hong 2010) of WRF, but with the inclusion of scale-aware function and stratocumulu s mixing
Aerosol chemistry (AER)	Choi et al. (2018)	A newly generated 3D aerosol data, based on IFS MACC 2D aerosol climatology
Orographic gravity wave drag (GWDo)	Choi and Hong (2015)	Routed in GWDo (Kim and Arakawa 1995, Hong et al. 2008) of GRIMs, but with the inclusion of orography blocking and ani sotropy of mountains
No-mountain gravity wave drag (noGWDo)	Choi et al. (2018)	A newly developed source-based spectral non-orographic GWD, based on Choi and Chun (2011) and Richter et al. (2010).
Land surface layer (LSM)	Koo et al. (2017, 2018)	Routed in Noah 3.0 of GRIMs (Ek et al., 2002, Chen and Dudhia, 2000), but a revised snow physics and the inclusion of for m drag
Ocean surface layer (OSM)	Kim and Hong (2010), Lee and Hong (2018)	Routed in GRIMs, but with the inclusion of salinity effect in latent heat flux computation

KIM Real time forecasts skill

500hPa geopotential height anomaly correlation at t=+120h fcst

Already good enough for operational use, but a lot of room for improvement

Plan for KIM 3.2 (2018 summer)

КРОР	 Add SSMIS Add MT-Saphir Increase computational efficiency 			
Hybrid-4DEnV	 VarBC applied for microwave radiance observations Assimilation of sea level pressure Improve multi-resolution outer-loop 			
Dynamics	 applying UP-based state-vector solver implementing 2nd-order of basis function 			
RAD	new lookup table of optical properties for ice/snow			
LAND	consistent fractional snow coverage for calculating snow albedo and surface flux			
PBL	Mixing hydrometeors in conserving the total water			
GWD	 bug fix in subgrid orographic drag (Toy/ESRL) improvement of resolution dependency of GWD scheme 			
CPS	bug fix for calculating subgrid-scale hydrometeor via deep convection scheme			
SCV	 generating subgrid-scale hydrometeor via shallow convection scheme and linking with prognostic cloud fraction and radiation schemes 			
MPS	 adopting partial cloudiness eliminating condensation process from water vapor to rainwater 			
PROGC	applying freezedry effect			
Phys coupling	applying variation-resolution			

A turbulent transport at gray-zone resolutions

At high resolutions : PBL gray-zone

Gray-zone PBL: Concepts & Methods

- Shin, H. H., and S.-Y. Hong, 2013: Analysis on Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions. *J. Atmos. Sci.*, doi:10.1175/JAS-D-12-0290.1.
- Shin, H. H., and S.-Y. Hong, 2015: Representation of the Subgrid-Scal e Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions. Mon. Wea. Rev.

Methods

(1) Construction of the 'true' data for 50–4000 m Δ

Methods

(2) Construction of the 'true' data for 50-4000 Δ

Turbulent vertical transport over the whole domain, for Δ

Resolution dependency

In mixed layer

SGS <w'θ'> is 50%–90%: Δ is 360 m – 1230 m

3D real case experiments : IHOP2002

• w (shaded) and v'w' (contour) : y-time cross-section

PBL and precipitation at gray-zon ne resolutions

(YSU PBL vs. Shin-Hong PBL)

PBL and precipitation at gray-zon ne resolutions

(YSU PBL vs. Shin-Hong PBL)

Reluctant to put my name in the scheme...

Hailey Hyeyum Shin (now in GFDL) Song-You Hong (now in KIAPS)

Let me call SH PBL!

Experimental Design

Model	WRF v3.7.1				
Horizontal resolution	27-9-3-1-0.333 km (1-way nesting)				
Vertical resolution	L51 (top: ~50 hPa)				
Time integration	48-h (00 UTC 18-20 December 2013)				
Initial & boundary conditions	FNL analysis (1° x 1°, 26 levels with top ~ 10 hPa) NCEP SST analysis (0.5° x 0.5°)				
Diffusion	2 nd order vertical diffusion with constant coefficient, 2D Smagorinsky horizontal diffusion				
	Convection	KSAS (scale aware, Kwon and Hong)			
	Microphysics	WSM5			
Physics	Radiation	RRTMG SW & LW			
	PBL	YSU (Hong et al. 2006) SH (Shin and Hong 2015)			
	Land surface	Noah			

KIAPS

Case overview

KIAPS

Precipitation

Precipitation rate (2013.12.19-20)

Observation

24h-accumulated precipitation (2013.12.19-20)

KIAPS

Simulation : SH_3km

Total Rain (SH, 2013121900-2013122000)

Bias = 4.409, RMSE = 13.454, PC = 0.035

Time series of precipitation (dx = 333 m)

Time

KIAPS

DMS COM 2013-12-19 00:00 UTC(12.19 09:00 KST)

W at 950 hPa (dx = 333 m)

Why surface precipitation decreases in SH over YSU PBL at 333 m?

Turbulent moisture flux (dx = 333 m)

KIAPS

Turbulent moisture flux (dx = 333 m)

KIAPS

rt moistur.

KIAPS

pressure [hPa]

pressure [hPa]

KIAPS

Korea Institute of Atmospheric Prediction Systems Beyond the limit of the modern science and technology

Thank you

KOREA INSTITUTE OF ITMOSPHERIC PREDICTION SYSTEMS

Vertical profile of hydrometers (dx = 333 m)

average over 21UTC 18 to 03UTC 19 Dec 2013

KIAPS

YSU \rightarrow **SH** at dx = 333 m

- cloud water increases (snow decreases) more significantly

 \rightarrow ice particle growth processes are suppressed