Scavenging of ozone precursors in convective clouds observed during a SEAC⁴RS case study

Gustavo Cuchiara^{1,2}

A. Fried¹, M. Barth²

¹University of Colorado, Institute of Arctic and Alpine Research ²National Center for Atmospheric Research,

• Joint WRF and MPAS Users' Workshop 2019 • Boulder/CO - Jun 2019

gustavo.cuchiara@colorado.edu

Motivation

Many **chemical** and **physical** process within the convective core and anvil affect the net transport of **soluble species**:

- dissolution in cloud water or liquid phase precipitation (Seinfeld and Pandis, 2006)
 - aqueous chemistry (Barth et al, 2007)
 - ice deposition of HNO₃ and H₂O₂
 - Entrainment of air

Scavenging efficiencies (SE) is defined as the amount of soluble gas removed by a storm during the transport of an air parcel from its inflow to the outflow.

Ozone precursors

Deep Convective Clouds and Chemistry (DC3) campaign

Scavenging Efficiency Calculations - Observations

1. Find entrainment rate (ER) into storm from surrounding environment

2. Use ER to determine amount of soluble trace gas transported to top of storm

3. Compare measured mixing ratio in outflow to estimated value transported to top of storm

Fried et al. 2016

Scavenging Efficiency Calculations - Modeling

Absolute difference in CH₂O mixing ratios (wet scavenging ON - wet scavenging OFF)

Where q_i = trace gas mixing ratio in outflow box Bela et al. 2016; 2018

Cloud Physics vs Scavenging Efficiency

What happens to the dissolved trace gases when freezing occurs ?

- retained in the frozen drops
- degassed during the freezing process

- WRF-Chem simulations of DC3 storms predict CH₃OOH SEs (12-84%) greater than expected (<10%)
- CH₃OOH SE varies with ice retention factor

Case study

NASA SEAC⁴RS - Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys

September 2, 2013 - Air mass thunderstorms

WRF-Chem simulation

Domain	d01	d02	d03
WRF-chem Version	3.9.1 (released Feb 2018)		
Simulation period	From 09/02 at 06 UTC to 09/03 at 00 UTC		
Met. IB Cond.	North America Regional Reanalysis (NARR)		
Horizontal resol	12150m	4050m	1350m
Grid points (x,y)	145x136	256x214	490x424
Microphysics	Morrison two-moment scheme		
Short/Longwave rad	Rapid Radiative Transfer Model		
Land-surface	Noah Unified Land Surface Model (NOAH)		
Boundary layer	Yonsei University (YSU)		
Cumulus scheme	Kain-Fritsch	Kain-Fritsch	NONE
Initial cond. Chem.	CAM-chem		
Chem. mechanism	MOZART		
Biogenic emissions	MEGAN		
Anthropogenic emis.	NEI2011		
Wildfire emission	FINNv1		
Aerosols option	GOCART		

Longitude (°)

WRF-Chem - Simulation

Observed Scavenging Efficiencies (SE) – CH₂O & Peroxides

Ice retention, WRF-Chem

Microphysics vs Scavenging Efficiency

- Although some differences in cloud physics between storms, modeled storms are not much different
 - Higher soluble trace gases are often removed below the freezing level

Microphysics vs Scavenging Efficiency

• Although some differences in cloud physics between storms, modeled storms are not much different

• Higher soluble trace gases are often removed below the freezing level

Conclusions

1. WRF-Chem satisfactorily represents small-scale convective storms and it is useful tool for ER, SE, and rf estimations.

- **3.** rf for the SEAC⁴RS storms differ slightly from those found in DC3 severe storms. The smaller SEAC⁴RS storms (W factors ~ 3 to 9 less) appear to have less developed mixed phase regions resulting in less production of precipitation from cloud water than more severe storms. This suggests that rf may be dependent on the type of storm or stage of the storm development.
- 4. Retention of dissolved trace gases in frozen precipitation more important to moderately soluble trace gases

Thank you!

We gratefully acknowledge the support of:

Institute of Arctic and Alpine Research (INSTAAR) University of Colorado/Boulder

Atmospheric Chemistry Observation and Modeling (ACOM/NCAR)
This work is supported by NASA [grant NNX17AH52G]