

Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central– eastern United States using a large dataset

Craig Schwartz and Ryan Sobash

The National Center for Atmospheric Research schwartz@ucar.edu

This work partially supported by NOAA Grant No. NA17OAR4590182 and the NCAR STEP program

Background and motivation

- There is still ambiguity about resolution requirements over the central-eastern CONUS for next-day forecasts
 - Several studies suggested 4-km forecasts were comparable to 1- and 2-km forecasts
 - But, a few suggested *improvements* from 1-km grid spacing
- Could relatively small sample sizes have anything to do with discrepancies?
 - 20–40 cases common in previous CONUS studies

We ran 497 corresponding 3- and 1-km forecasts

Computational domain

• **36-h forecasts**, GFS initial and boundary conditions

WRF settings and physics

- Forecast model: WRF-ARW (version 3.6.1)
- 40 vertical levels, 50-hPa top
- Physics (basically 'CONUS' physics suite)
 - Thompson microphysics
 - RRTMG longwave and shortwave radiation
 - MYJ PBL
 - NOAH land surface model
 - Aerosol, ozone climatologies for RRTMG
- 3- and 1-km forecasts identical except for grid spacing and time step

Case selection

- Cases drawn from SPC severe weather event archive
 Inclusion in archive based on many criteria
- Produced 3- and 1-km forecasts for all events in archive between Mar 15 and July 15 each year for 2011–2016
- Subjectively selected cool season events
 - Focused on events with more storm reports

Seasons and case distribution

- Spring: Mar 15 Jun 14 (279 forecasts)
- Summer: Jun 15 July 15 (140 forecasts)
- Cool season: Oct 15 Mar 14 (78 forecasts)

497 total forecasts

Verification

- Focus on 1-h accumulated precipitation from "nextday" <u>18–36-h forecasts</u>
 - Avoided the spin-up period
- NCEP Stage IV observations as "truth"
- Fractions skill score (FSS) quantifies displacement errors
 - Uses a neighborhood approach (*r* denotes neighborhood length scale)
- Bootstrap resampling to assess statistical significance

Verification domain

• **36-h forecasts**, GFS initial and boundary conditions

Spring FSSs

• Dashed: 3-km, Solid: 1-km

(279 forecasts)

Cool season FSSs

• Dashed: 3-km, Solid: 1-km

(78 forecasts)

Summer FSSs

• Dashed: 3-km, Solid: 1-km

(140 forecasts)

Forecast similarity and convective adjustment time scale

- Convective adjustment time scale (τ_c): CAPE/(1-h precip)
- Bigger values mean weaker forcing
- y axis: FSS for 3- and 1-km forecasts
 compared to each other, using r = 100
 km, aggregated over 18–36-h forecasts;
 forecast similarity

Synthesis

- By 18 h into a high-resolution forecast, predictability is lost on scales < 200 km
 - If something is unpredictable, finer grid spacing won't help

Other findings

- Precipitation biases varied regionally and seasonally
- Relative 3- and 1-km forecast skill varied regionally
 - Biggest benefit from 1-km over regions with higher CAPE, larger storm sizes
- Tornado forecasts improved in 1-km forecasts
 - Better representation of low-level rotation
 - Not because of better placement of features
 - See Sobash et al. (2019; WAF early online release)

Summary

- Evidence 1-km forecasts have benefits over 3-km forecasts during spring
- Springtime results differ from much previous work
 - Sample size differences probably not the reason
 - Model upgrades/improvements probably not the reason
- Improved initial conditions in this study may have led to differences compared to previous work
 - Primarily "hybrid" analyses; previous studies used 3DVAR ICs
 - More work needed to understand how analysis quality may impact forecast sensitivity to horizontal grid spacing

Forecast similarity and entity size

• An "entity": contiguous area of precipitation exceeding a threshold (basically an object)

 y axis: FSS for 3- and 1-km forecasts compared to each other, using r = 100 km, aggregated over 18-36-h forecasts

Forecast similarity and convective adjustment time scale

- Convective adjustment time scale (τ_c): MUCAPE/(1-h precip)
- Bigger values mean weaker forcing

 y axis: FSS for 3- and 1-km forecasts compared to each other, using r = 100 km, aggregated over 18-36-h forecasts

FSS as a function of entity size

• An "entity": contiguous area of precipitation exceeding a threshold (basically an object)

 FSSs for r = 100 km, aggregated over all 279 springtime 18–36-h forecasts