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Outline

* Motivation

* Overview model development for improved subgrid-scale (SGS)
clouds and the interaction with the radiation scheme

* Summarize improvements

e Downward shortwave radiation at the surface
* Cloud ceilings

* The consequence of improving primary model physics biases:
* Low-level cold bias

e Subsequent work to alleviate the low-level cold bias



Motivation

* Cloud-Radiation interactions are V>
primary physical processes that can <
dictate the climate of a model forecast N

* As a primary physical process, any
systematic biases can result in
incorrect forcing of other processes,
such as surface fluxes, turbulence, and
convection.




History of Solar Radiation Biases in RAP/HRRR
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Resolved and Subgrid-Scale (SGS) Clouds in the
RAP (Ax=13km)/HRRR (Ax=3km)
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Modifications to SGS Cloud Components

vAg
Important subgrid scale (SGS) microphysical/macrophysical <DQ>
guantities for interaction with the radiation scheme
(changes noted in red):

* SGS Mixing ratio (g, and q;): .772

* Non-convective g,: Chaboureau and Bechtold (2002) (removed constraints)

* Mass-flux scheme: stronger mass-flux - deeper penetration - better areal coverage

* SGS Cloud fraction (A):
* Non-convective: Chaboureau and Bechtold (2002) (reduced, except for high RH)

e Convective: Chaboureau and Bechtold (2005)
* No longer use Xu-Randall (1996) cloud fraction (icloud = 1) — only use MYNN SGS clouds

* SGS cloud water/ice effective radii (r,):
* Water: Turner et al. (2007, BAMS)
* Ice: Mishra et al. (2014, JGR)



GOES-16 combined (ch1, 2, 3) visible albedo

Comparison of SW-up at
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GOES-16 combined (ch1, 2, 3) visible albedo

17:53:03 06 Jun 2019

Comparison of SW-up at
top of atmosphere

18 UTC 06 June 2019
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Comparison of SW-up at
top of atmosphere

20 UTC 06 June 2019
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Diurnal Mean Surface GHI (W m)
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Ceiling Diagnostic Algorithm in the RAP and HRRR

Legacy Diagnostic:

For each grid column, ceiling is diagnosed where:

e RH at PBLtop >

Experimental New Algorithm

= Thin, surface-based cloud layers (< “80 m deep) are disregarded

= |If grid-scale snow is present, the diagnosed ceiling is lowered

test 02/20/2019 (12:00) 6h fcst - Experimental
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Ceiling (kft agl)
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New Experimental Diagnostic:

* MYNN cloud fraction > 0.5

test 02/20/2019 (12:00) 6h fcst - Experimental Valid 02/20/2019 18:00 UTC
Ceiling (exp) (kft agl)




HRRR 1000-ft ceiling “dieoff” (E CONUS): 15 Mar -5 Jun 2019

HRRRv3 - Legacy diagnostic

HRRR Exp — Legacy diagnostic
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New Temperature Bias Characteristics (Oct—May)

12-hr Temperature Bias
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Changes to MYNN-EDMF to combat cold bias

(All changed made for both RAP and HRRR) Approximate

contribution to
warming 12 hr fcst:

* Mixing length:

* Increased the turbulent mixing "+0.1t0+0.2C

(daytime only)

* Added TKE cycling: ~+0.1C
* No longer re-spinning up the TKE every hour (in 0-3 hr fcst)
* Added dissipative heating (similar to Han and Bretherton 2019): ~+0.1C

~+0.1to0 +0.2 C
(mostly over water)

* Added buoyancy flux functions (Bechtold and Siebesma 1998):

* Surface layer scheme:
* Switched to exact calculation of z/L (from diagnostic mapping of Ri, = z/L)
* Increased C,; from 0.075 to 0.085

~+0.1t0+0.2C
(daytime only)
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RAP 12-h 2-m Temperature (E CONUS): 1-13 July 2016
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Summary

* Improvements to the mixing ratio, cloud fraction, and effective radii further
improve downward shortwave radiation forecasts

 Bias is reduced by about 50% compared to current operational RAP/HRRR
e RMSE is also reduced by about 10% (not shown)

e Subgrid clouds are also useful for detecting cloud ceilings

* However, improved SW-down forecasts result in near-surface cold bias
* |Increased diffusion help to alleviate the new cold bias, but more work is needed...

* These modifications will be in next operational upgrade of RAP and HRRR
* Some are already in v4.1, but more commits are coming...

* Further improvement to solar forecasts will probably need:
» Detailed regime-stratified verification (ShCu, StratoCu, etc)

e Further research: exponential random cloud overlap, aerosol interaction, subgrid-scale
precipitation processes, and cloud PDFs using higher-order moments
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Assembling the SGS Cloud Components for Radiation

Non-radiation physics:

Thompson Microphysics:
* Resolved q, g, q., q,, etc

* Effective radiir,

Grell-Freitas Convection:
* SGS g.and g,

In radiation driver:

MYNN-EDME:
* SGS g.and g,

* SGS cloud fraction

* SGS g.and g, are added to the
resolved g. and g;when g.=g;=0

Using icloud = 1:

SN
!

* MYNN SGS g. and g; are added
when the resolved g. and g;:

* g.<le-6 kgkg!and
* g;<le-8kgkg?

e Use MYNN SGS cloud fractions

SGS effective radii, r,:

* Water: Turner et al. (2007, BAMS)
* |ce: Mishra et al. (2014, JGR)

}

RRTMG SW and LW

|

Restore original g. and g;




An explicit representation of turbulent transport
associated with convective plumes of various sizes,

following Neggers (2015, JAMES) and Suselj et al. (2013,
JAS).

MYNN-EDMF: Dynamic Multi-Plume (DMP) Model @

* Total maximum number of plumes possible in a single column:
10.
* Diameters (£): 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 m.
* Lateral entrainment varies for each plume o (w#).
* Plumes condense only if they surpass the lifting condensation
level (LCL).
* Plumes are only active when:
o Superadiabatic in lowest 50 m.
o Positive surface heat flux
Plume number control:
o Width of largest plume < MIN(1.2* Ax, 1000)
o Width of largest plume < MIN(PBLH, 1000)
o Width of largest plume < MIN(cloud ceiling height, 1000)

More info: Olson, Joseph B., Jaymes S. Kenyon, Wayne M. Angevine, John M . Brown, Mariusz Pagowski, and Kay Suselj, 2019: A Description of the MYNN-EDMF

= _

b

\ /

\ /

%\ 3

W Q@ LCL

\

SANPA

Model grid column

Scheme and the Coupling to Other Components in WRF-ARW. NOAA Technical Memorandum OAR GSD, 61, pp. 37, https://doi.org/10.25923/n9wm-be49.
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Chaboureau and Bechtold subgrid cloud fraction:
stratus & convective components

Stratus Component

Convective Component

The subgrid variability of the saturation deficit, s, is expressed
in terms of the total water and liquid water temperature:

o . 5 1/2
0-strar= ol (@2 (%) — 2B T2 4 Fcy (1))
Where ¢, is a tuning constant, [ is the mixing length, and a
and b are thermodynamic functions arising from the
linearization of the function for the water vapor saturation
mixing ratio.

The subgrid variability of the saturation deficit is proportional
to the mass-flux, M:

(s€=s€)

* M x

Os—cony & M

~aMf(z/z")

Where « is a constant of proportionality (=5E-3) and fis a
vertical scaling function, set to f=a~?.
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Normalized saturation deficit >

Subgrid cloud fraction >

Q =a(m, — rsat(’fl))/o's—x

cf = MAX{0,MIN[1,0.5 + 0.36ATAN(1.55Q1)]}

o ARM

b= g 07s5qt (1) cf
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Taken from Chaboureau and Becthold (2002, JAS)
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