WRFDA 2020 Update

Zhiquan (Jake) Liu

NCAR/MMM

2020 Joint WRF/MPAS Virtual Workshop

June 9, 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

DA algorithms available in WRFDA

- Deterministic analysis
 - 3DVAR
 - 3 options for non-cloud analysis variables and static background error covariance models (cv_options = 5, 6, 7)
 - 3 options for cloud analysis variables needed for radar reflectivity and cloudy radiance DA (cloud_cv_options=1, 2, 3)
 - 4DVAR
 - Need WRFPlus: tangent linear and adjoint of WRF model
 - Can calculate adjoint-based forecast sensitivity to obs (FSO)
 - Hybrid-3D/4DEnVar
 - Can run in dual-resolution mode
- Ensemble analysis
 - ETKF (Ensemble Transform Kalman Filter) w/o localization
 - Ensemble of hybrid-EnVar with perturbed observations

	In-Si	tu: •	Rem	otely sensed retrievals:
	-	SYNOP	-	Atmospheric Motion Vectors (geo/polar)
	-	METAR	_	SATEM thickness
	-	SHIP	-	Ground-based GPS TPW or ZTD
	-	BUOY	_	SSM/I oceanic surface wind speed and TPW
	-	TEMP	_	Scatterometer oceanic surface winds
	-	PIBAL	_	Wind Profiler
	- AIREP, AIREP humidity-		idity-	Radar data (reflectivity/retrieved rainwater, and radial-wind)
	-	TAMDAR		- V3.9: No-rain echo radar DA (from KNU)
Bogus		S:	-	Satellite temperature/humidity/thickness profiles
	_	TC bogus	_	GPS refractivity (e.g. COSMIC)
	-	Global bogus	-	Stage IV precipitation/rain rate data (4D-Var only)

- Radiances (VarBC, RTTOV & CRTM, All-sky radiance):
 - HIRS NOAA-16, NOAA-17, NOAA-18, NOAA-19, METOP-A
 - AMSU-A NOAA-15/16/18/19, EOS-Aqua, METOP-A, METOP-B
 - AMSU-B NOAA-15, NOAA-16, NOAA-17
 - MHS NOAA-18, NOAA-19, METOP-A, METOP-B
 - AIRS EOS-Aqua
 - SSMIS DMSP-16, DMSP-17, DMSP-18
 - IASI METOP-A, METOP-B
 - ATMS Suomi-NPP
 - MWTS/MWHS FY-3 A/B; MWHS2 from FY-3 C/D (new in 4.1)
 - SEVIRI METEOSAT
 - AMSR2 GCOM-W1 (all-sky microwave radiance DA)
 - **GOES-Imager**, Himawari-AHI (new in 4.1)

New Features in release-v4.2

http://www2.mmm.ucar.edu/wrf/users/wrfda/updates-4.2.html

- New capability for directly assimilating radar reflectivity using a new observation operator and its TL/AD considering snow and graupel.
 - Wang, S. and Z. Liu, 2019: A radar reflectivity operator with icephase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data, Geosci. Model Dev., 12, 4031–4051.

• Now WRFDA has 3 options for radar reflectivity DA

Namelist parameter	Direct assimilation of reflectivity	Direct assimilation of reflectivity	Assimilation of retrieved hydrometeors
use_radar_rf =	True	True	False
radar_rf_opt =	1	2	No effect
use_radar_rhv =	False	False	True
use_radar_rqv =	False	False	True or False
cloud_cv_options =	1	2 or 3	2 or 3

New Features in release-v4.2

http://www2.mmm.ucar.edu/wrf/users/wrfda/updates-4.2.html

- New capability for variational bias correction of TAMDAR aircraft T observations.
 - Gao, F., Z. Liu, J. Ma, A. N. Jacobs, P. P. Childs, and H. Wang, 2019: Variational Bias Correction of TAMDAR Temperature Observations in the WRF Data Assimilation System. Monthly Weather Review. 147. 10.1175/MWR-D-18-0025.1.
- The bias correction is applied based upon aircraft's IDs and phases (descent/ascent/cruise). To turn on this function, set "use_varbc_tamdar = true" in \wrfvar4.

Note: Bias correction algorithm is not implemented for other aircraft types under 'airep'.

New Features in release-v4.2

- A new channel-based (i.e., can keep channels not affected by clouds) cloud detection scheme for hyperspectral Infrared sensors based on the **Particle Filter**. **Default** option
 - Xu D., T. Auligné, G. Descombes, and C. Snyder, 2016: A method for retrieving clouds with satellite infrared radiances using the particle filter. Geosci. Model Dev., 9, 3919–3932.
 - WRFDA includes two other schemes: Minimum Residual and ECMWF's ranking, which need the third-party software to make them work.
- New **gen_be_v3**, developed by Jamie Bresch (NCAR/MMM)
 - This program generates ensemble perturbations (for hybrid-EnVar input) and background error statistic file
 - Now only works for cv_options=7 and cloud_cv_options=2 applications.
 - gen_be_v3 is much more efficient than the standard gen_be package.

Updated Features in release-v4.2

- Improved analysis_type="RANDOMCV". Now multiple perturbed output can be obtained with one WRFDA run, set new namelist "n_randomcv" to the desired number of ensemble. (Contributed by Jamie Bresch)
- For EnVar DA applications, old logical "alpha_vertloc" namelist switch is replaced by new integer option "alpha_vertloc_opt". (contributed by Jamie Bresch)
 - =0, no vertical localization.
 - =1, the behavior is the same as before. Need a file named "be.vertloc.data" generated by an offline program
 - =2, default, recommended, let WRFDA internally calculate logP-based vertical localization. be.vertloc.dat will be written out.

Updated Features in release-v4.2

- New "ep_format" option to read in ensemble perturbation (ep) generated by existing gen_be_ep2 and new gen_be_v3 utilities. (by Jamie Bresch)
 - =1: (default) original format, double precision, each ep file is for one variable and one member, as the output from the current gen_be_ep2.
 - =11: same as ep_format=1 except data are in single precision
 - =2: single precision, each ep file is for one variable and all members
 - =3: single precision, each ep file is for one variable and all members but on decomposed patch domain. This is recommended for large size of grid points.

Bug fixes in release-v4.2

- Fix dual-resolution hybrid-EnVar significant different results with different number of processors.
 (By Jamie Bresch)
- A fix for retrieving a snow profile with radar reflectivity retrieval DA. (by Tao Sun, NUIST)
 - In the snow profile retrieval with radar DA, when the temperature is above 0°C, dry snow should be replaced by wet snow. This bug resulted in the overestimation of snow.

New features in develop branch

- Pixel-based cloud detection scheme for clear-sky Himawari AHI radiance DA
 - <u>https://github.com/wrf-model/WRF/pull/1139</u>
- Super-obbing capability for Himawari AHI radiances
 - <u>https://github.com/wrf-model/WRF/pull/1173</u>

Plan for v4.3 release

- Aerosol/Chemical DA capability for WRF-Chem
 Assimilate surface PM2.5, PM10, O3, CO, SO2, NO2
- Multi-Resolution Incremental 4DVar (MRI-4DVar)
 - Speed up 4DVar

