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Big Picture: Sharing

• MPAS and WRF share 
• Support technology: http://forum.mmm.ucar.edu
• Pre-processor input from WPS
• Repo management (git) and hosting services (github)
• Basic tenets of gitflow-esque workflow
• A couple of physics suites (officially)
• Hybrid vertical coordinate and moist theta in WRF came from MPAS

• Want to more easily transfer physics between MPAS and WRF
• A goal is to allow physics transfer between MPAS and other models

• Several groups within NCAR (ACOM, CGD, MMM) and NOAA are working 
on (and are in various stages of implementing) a strategy for more widely 
sharing physics

CCPP = Common Community Physics Packages

http://forum.mmm.ucar.edu/
Wei Wang




Big Picture: Why are we doing this

Original interface to physics 
and host model.

The CCPP interface permits the same physics to be 
used with both the original and a new host model. 



Initially Selected Schemes to Port

Surface Layer
YSU PBL
New Tiedtke CU
WSM6 MP

• Choosing to wait for the Land Model. 
• Does not pose troubles for eventual CESM port.
• Does not pose troubles for MPAS or WRF port.

• CTSM effort is underway at NCAR. LILAC may provide a preferred way to 
access a supported land model for both MPAS and WRF.

Xu-Randall Cloud Fraction
GWDO
RRTMG LW 
RRTMG SW



Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Split the top-level scheme 

(usually WRF-centric 3d) apart 
from the scheme’s 2d (column) 
routine (still callable from existing 
MPAS and WRF drivers)

• Have _run, _init, _final, 
_timestep_init, and 
_timestep_final top-level routine 
names

module module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo
call gwdo2d

end subroutine gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo2d
< do stuff >

end subroutine gwdo2d
- - - - - - - - - - - - - - - - - - - -
end module module bl_gwdo

module module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo
call bl_gwdo_run

end subroutine gwdo
- - - - - - - - - - - - - - - - - - - -
end module module bl_gwdo

module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine bl_gwdo_run
< do stuff >

end subroutine bl_gwdo_run
- - - - - - - - - - - - - - - - - - - -
end module bl_gwdo

CCPP-ized

Mostly Original



Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Single horizontal index (if any) in 

the CCPP-ized routines
• No horizontal halo-dimensioned 

fields in CCPP-ized routines

real, dimension(its:ite,kts:kte) , intent(in ) :: t1, q1, zl
real, dimension(its:ite,kts:kte) , intent(in ) :: prsl
real, dimension(its:ite,kts:kme) , intent(in ) :: prsi

No “j” dimension

No horizontal memory dimensions



Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Push as much pre- and post-

processing into scheme as 
makes sense

• Array assignments in scheme 
top-level call due to horizontal 
index reduction are OK and 
expected

• Basically: allow removal of top-
level of scheme

ZAP: Computation of constants
ZAP: Initializations to zero
ZAP Diagnostics

!
qv2d(its:ite,:) = 0.0

!

!
do k = kts,kte
do i = its,ite
rthblten(i,k,j) = rthblten(i,k,j)/pi3d(i,k,j)

xt24 = mod(xtime+radt*0.5,1440.)
tloctm = gmt + xt24/60. + xlong(i,j)/15.
hrang = 15. * (tloctm-12.) * degrad
xxlat = xlat(i,j) * degrad



Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Interstitial code for helper 

routines called in top-level (non 
CCPP-ized) routines

NEW:
Assignments (3d -> 2d)
call ra_rrtmg_sw_mpas_timestep_init
call ra_rrtmg_sw_run
call ra_rrtmg_sw_mpas_timestep_final
Assignments (2d -> 3d)

ORIGINAL:
Starting on line 10000 – 400 lines of 
diagnostics surrounding the call to 
SWRAD



Process / What defines a “Ported Scheme”

• General Modifications
• Clean up INTENT – missing, particularize, wrong
• Reduce argument list to required minimal set
• Fix internal comments
• Single argument mostly = single field

• Unless multiple fields are not distinguishable within scheme
• Derived types are allowable, but break portability
• So, interstitial code would be OK for MPAS DDTs

• Most of the OPTIONAL arguments were not

• A cookbook for developers to follow
• Automated code depends on an accurate metadata file
• Constructing the metadata file takes time



The Metadata File

• For each of the CCPP-ized files, a metadata file is required
• For each CCPP-ized subroutine, a metadata section is required in that file
• Each argument in a CCPP-ized routine has a metadata entry

• The mapping of the host model’s variables (also with a metadata file) and 
the physics scheme’s variables are through the unique identifier of the 
field’s name

• The ordering of the arguments in the subroutine matches the ordering of the 
variables in the metadata file



Physics Scheme and Metadata

subroutine bl_gwdo_run(   &
sina, cosa,            &
rublten,rvblten,       &
dtaux3d,dtauy3d,       &
dusfcg,dvsfcg,         &
uproj, vproj,          &
t1, q1,                &
prsi, prsl, prslk, zl, &
kpblmax,               &
var, oc1,              &
oa2d1, oa2d2,          &
oa2d3, oa2d4,          &
ol2d1, ol2d2,          &
ol2d3, ol2d4,          &
g_, cp_, rd_,          &
rv_, fv_, pi_,         &
dxmeter, deltim, kpbl, &
its, ite,              &
kts, kte, kme,         &
errmsg, errflg         )

[ccpp-arg-table]
name = bl_gwdo_run
type = scheme

[sina]
standard_name = sine_of_map_rotation
long_name = sine of map rotation
units = dimensionless
dimensions = (horizontal_loop_begin:horizontal_loop_end)
type = real | kind = kind_phys
intent = in
optional = F

[cosa]
standard_name = cosine_of_map_rotation
long_name = cosine of map rotation
units = dimensionless
dimensions = (horizontal_loop_begin:horizontal_loop_end)
type = real | kind = kind_phys
intent = in
optional = F



The Metadata File

• A github repository holds the growing list of known fields (such as 
dimensions) and conventionally accepted names:

https://github.com/ESCOMP/CCPPStandardNames/blob/master/Metadata-standard-names.md
• Fields with vertical indexing may have “layers” (default) and “levels” 

(explicitly stated in name)
• Horizontal indexing allows full size (without halo) and threaded size
• The list of known constants is increasing

• Construction of names is often required

https://github.com/ESCOMP/CCPPStandardNames/blob/master/Metadata-standard-names.md


The Suite Definition File (SDF mostly TBD)
<suite name="MPAS_meso_ref_rad" version="1.0">

<group name="radiation">
<scheme>cld_xurandall</scheme>
<scheme>ra_rrtmg_sw_mpas</scheme>
<scheme>ra_rrtmg_sw</scheme>
<scheme>ra_rrtmg_lw_mpas</scheme>
<scheme>ra_rrtmg_lw</scheme>

</group>
</suite>

<suite name="MPAS_meso_ref_sfc" version="1.0">
<group name="surface_layer">

<scheme>sf_sfclay</scheme>
</group>

</suite>

<suite name="MPAS_meso_ref_pbl" version="1.0">
<group name="boundary_layer">

<scheme>bl_ysu</scheme>
<scheme>bl_gwdo</scheme>

</group>
</suite>

<suite name="MPAS_meso_ref_cu" version="1.0">
<group name="cumulus">

<scheme>cu_ntiedtke</scheme>
</group>

</suite>

<suite name="MPAS_meso_ref_mp" version="1.0">
<group name="microphysics">

<scheme>mp_wsm6</scheme>
</group>

</suite>

<suite name="mesoscale_reference" version="1.0">
<group name="physics_pre_LSM">

<suite name="MPAS_meso_ref_rad" group="radiation" />
<suite name="MPAS_meso_ref_sfc" group="surface_layer" />

</group>
<group name="physics_post_LSM">

<suite name="MPAS_meso_ref_pbl" group="boundary_layer" />
<suite name="MPAS_meso_ref_cu" group="cumulus" />

</group>
<group name=”physics_post_dynamics">

<suite name="MPAS_meso_ref_mp" group="microphysics" />
</group>

</suite>

The “group” attribute allows other host 
models to locate where the call to a 
particular scheme should go in the time 
step

The “group” element allows MPAS to 
schedule physics in a requested order



Changes MPAS

• The WRF model will not be converted to a CCPP-ized host model

• MPAS will have a transition period, allowing access to physics by the 
original driver and the new CCPP option

• The existing top-level drivers of each scheme remain in place
• These are not required when CCPP is used

• Rolling the calls to the  _to_MPAS and _from_MPAS routines into interstitial 
routines
• Interstitial routines are by definition associated with the host model
• Maintains bit-for-bit results



Easy Changes to MPAS to “interface” and “drivers”

if(.not.allocated(psfc_p) ) allocate(psfc_p(ims:ime,jms:jme) )

rho_p(i,k,j) = zz(k,i) * rho_zz(k,i)

if(.not.allocated(psfc_p) ) allocate(psfc_p(ims:ime) )

rho_p(i,k) = zz(k,i) * rho_zz(k,i)

mpas_atmphys_interface
• (k,i) -> (i,k,j) -> (i,k) -> (i,k,j) -> (k,i)

mpas_atmphys_interface_ccpp
• (k,i) -> (i,k) -> (k,i)



Big Picture: What we are doing

• Scheme sharing between MPAS and WRF
• Purpose is to get MPAS and CAM physics 

available for each other
• Using a jointly developed utility to provide 

Common Community Physics Packages 
(CCPP)

• Conventionalize the top-level physics 
schemes

• Describe the arguments in the top-level 
physics schemes in a separate metadata 
file

• Describe the available fields from the host 
model is a metadata file

• Map the available fields from the host 
model and those required by the physics 
schemes



Status: Importance of Verb Tense

• Started and stopped a few times to get our bearings and scope
• All first suite physics is ported, including non-conventionalized metadata files
• Getting all 

metadata and 
CCPP-ized
routines to be 
uniform

• Merging all 
separate git 
repositories 
into a single 
location

• Figuring out the 
data flow for the 
physics 
diagnostic data, 
leaning towards 
including / 
wrapping calls 
inside of 
interstitial 
routines


