
Sharing Physics Between WRF and MPAS with CCPP

June 9, 2020 Boulder, CO

Ming Chen
Jimy Dudhia
Jihyeon Jang
Wei Wang
Kelly Werner

Cheryl Craig
Steve Goldhaber

Dave Gill
Laura Fowler

Big Picture: Sharing

• MPAS and WRF share
• Support technology: http://forum.mmm.ucar.edu
• Pre-processor input from WPS
• Repo management (git) and hosting services (github)
• Basic tenets of gitflow-esque workflow
• A couple of physics suites (officially)
• Hybrid vertical coordinate and moist theta in WRF came from MPAS

• Want to more easily transfer physics between MPAS and WRF
• A goal is to allow physics transfer between MPAS and other models

• Several groups within NCAR (ACOM, CGD, MMM) and NOAA are working
on (and are in various stages of implementing) a strategy for more widely
sharing physics

CCPP = Common Community Physics Packages

http://forum.mmm.ucar.edu/
Wei Wang

Big Picture: Why are we doing this

Original interface to physics
and host model.

The CCPP interface permits the same physics to be
used with both the original and a new host model.

Initially Selected Schemes to Port

Surface Layer
YSU PBL
New Tiedtke CU
WSM6 MP

• Choosing to wait for the Land Model.
• Does not pose troubles for eventual CESM port.
• Does not pose troubles for MPAS or WRF port.

• CTSM effort is underway at NCAR. LILAC may provide a preferred way to
access a supported land model for both MPAS and WRF.

Xu-Randall Cloud Fraction
GWDO
RRTMG LW
RRTMG SW

Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Split the top-level scheme

(usually WRF-centric 3d) apart
from the scheme’s 2d (column)
routine (still callable from existing
MPAS and WRF drivers)

• Have _run, _init, _final,
_timestep_init, and
_timestep_final top-level routine
names

module module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo
call gwdo2d

end subroutine gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo2d
< do stuff >

end subroutine gwdo2d
- - - - - - - - - - - - - - - - - - - -
end module module bl_gwdo

module module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine gwdo
call bl_gwdo_run

end subroutine gwdo
- - - - - - - - - - - - - - - - - - - -
end module module bl_gwdo

module bl_gwdo
- - - - - - - - - - - - - - - - - - - -

subroutine bl_gwdo_run
< do stuff >

end subroutine bl_gwdo_run
- - - - - - - - - - - - - - - - - - - -
end module bl_gwdo

CCPP-ized

Mostly Original

Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Single horizontal index (if any) in

the CCPP-ized routines
• No horizontal halo-dimensioned

fields in CCPP-ized routines

real, dimension(its:ite,kts:kte) , intent(in) :: t1, q1, zl
real, dimension(its:ite,kts:kte) , intent(in) :: prsl
real, dimension(its:ite,kts:kme) , intent(in) :: prsi

No “j” dimension

No horizontal memory dimensions

Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Push as much pre- and post-

processing into scheme as
makes sense

• Array assignments in scheme
top-level call due to horizontal
index reduction are OK and
expected

• Basically: allow removal of top-
level of scheme

ZAP: Computation of constants
ZAP: Initializations to zero
ZAP Diagnostics

!
qv2d(its:ite,:) = 0.0

!

!
do k = kts,kte
do i = its,ite
rthblten(i,k,j) = rthblten(i,k,j)/pi3d(i,k,j)

xt24 = mod(xtime+radt*0.5,1440.)
tloctm = gmt + xt24/60. + xlong(i,j)/15.
hrang = 15. * (tloctm-12.) * degrad
xxlat = xlat(i,j) * degrad

Process / What defines a “Ported Scheme”

• Modifications to scheme for CCPP
• Interstitial code for helper

routines called in top-level (non
CCPP-ized) routines

NEW:
Assignments (3d -> 2d)
call ra_rrtmg_sw_mpas_timestep_init
call ra_rrtmg_sw_run
call ra_rrtmg_sw_mpas_timestep_final
Assignments (2d -> 3d)

ORIGINAL:
Starting on line 10000 – 400 lines of
diagnostics surrounding the call to
SWRAD

Process / What defines a “Ported Scheme”

• General Modifications
• Clean up INTENT – missing, particularize, wrong
• Reduce argument list to required minimal set
• Fix internal comments
• Single argument mostly = single field

• Unless multiple fields are not distinguishable within scheme
• Derived types are allowable, but break portability
• So, interstitial code would be OK for MPAS DDTs

• Most of the OPTIONAL arguments were not

• A cookbook for developers to follow
• Automated code depends on an accurate metadata file
• Constructing the metadata file takes time

The Metadata File

• For each of the CCPP-ized files, a metadata file is required
• For each CCPP-ized subroutine, a metadata section is required in that file
• Each argument in a CCPP-ized routine has a metadata entry

• The mapping of the host model’s variables (also with a metadata file) and
the physics scheme’s variables are through the unique identifier of the
field’s name

• The ordering of the arguments in the subroutine matches the ordering of the
variables in the metadata file

Physics Scheme and Metadata

subroutine bl_gwdo_run(&
sina, cosa, &
rublten,rvblten, &
dtaux3d,dtauy3d, &
dusfcg,dvsfcg, &
uproj, vproj, &
t1, q1, &
prsi, prsl, prslk, zl, &
kpblmax, &
var, oc1, &
oa2d1, oa2d2, &
oa2d3, oa2d4, &
ol2d1, ol2d2, &
ol2d3, ol2d4, &
g_, cp_, rd_, &
rv_, fv_, pi_, &
dxmeter, deltim, kpbl, &
its, ite, &
kts, kte, kme, &
errmsg, errflg)

[ccpp-arg-table]
name = bl_gwdo_run
type = scheme

[sina]
standard_name = sine_of_map_rotation
long_name = sine of map rotation
units = dimensionless
dimensions = (horizontal_loop_begin:horizontal_loop_end)
type = real | kind = kind_phys
intent = in
optional = F

[cosa]
standard_name = cosine_of_map_rotation
long_name = cosine of map rotation
units = dimensionless
dimensions = (horizontal_loop_begin:horizontal_loop_end)
type = real | kind = kind_phys
intent = in
optional = F

The Metadata File

• A github repository holds the growing list of known fields (such as
dimensions) and conventionally accepted names:

https://github.com/ESCOMP/CCPPStandardNames/blob/master/Metadata-standard-names.md
• Fields with vertical indexing may have “layers” (default) and “levels”

(explicitly stated in name)
• Horizontal indexing allows full size (without halo) and threaded size
• The list of known constants is increasing

• Construction of names is often required

https://github.com/ESCOMP/CCPPStandardNames/blob/master/Metadata-standard-names.md

The Suite Definition File (SDF mostly TBD)
<suite name="MPAS_meso_ref_rad" version="1.0">

<group name="radiation">
<scheme>cld_xurandall</scheme>
<scheme>ra_rrtmg_sw_mpas</scheme>
<scheme>ra_rrtmg_sw</scheme>
<scheme>ra_rrtmg_lw_mpas</scheme>
<scheme>ra_rrtmg_lw</scheme>

</group>
</suite>

<suite name="MPAS_meso_ref_sfc" version="1.0">
<group name="surface_layer">

<scheme>sf_sfclay</scheme>
</group>

</suite>

<suite name="MPAS_meso_ref_pbl" version="1.0">
<group name="boundary_layer">

<scheme>bl_ysu</scheme>
<scheme>bl_gwdo</scheme>

</group>
</suite>

<suite name="MPAS_meso_ref_cu" version="1.0">
<group name="cumulus">

<scheme>cu_ntiedtke</scheme>
</group>

</suite>

<suite name="MPAS_meso_ref_mp" version="1.0">
<group name="microphysics">

<scheme>mp_wsm6</scheme>
</group>

</suite>

<suite name="mesoscale_reference" version="1.0">
<group name="physics_pre_LSM">

<suite name="MPAS_meso_ref_rad" group="radiation" />
<suite name="MPAS_meso_ref_sfc" group="surface_layer" />

</group>
<group name="physics_post_LSM">

<suite name="MPAS_meso_ref_pbl" group="boundary_layer" />
<suite name="MPAS_meso_ref_cu" group="cumulus" />

</group>
<group name=”physics_post_dynamics">

<suite name="MPAS_meso_ref_mp" group="microphysics" />
</group>

</suite>

The “group” attribute allows other host
models to locate where the call to a
particular scheme should go in the time
step

The “group” element allows MPAS to
schedule physics in a requested order

Changes MPAS

• The WRF model will not be converted to a CCPP-ized host model

• MPAS will have a transition period, allowing access to physics by the
original driver and the new CCPP option

• The existing top-level drivers of each scheme remain in place
• These are not required when CCPP is used

• Rolling the calls to the _to_MPAS and _from_MPAS routines into interstitial
routines
• Interstitial routines are by definition associated with the host model
• Maintains bit-for-bit results

Easy Changes to MPAS to “interface” and “drivers”

if(.not.allocated(psfc_p)) allocate(psfc_p(ims:ime,jms:jme))

rho_p(i,k,j) = zz(k,i) * rho_zz(k,i)

if(.not.allocated(psfc_p)) allocate(psfc_p(ims:ime))

rho_p(i,k) = zz(k,i) * rho_zz(k,i)

mpas_atmphys_interface
• (k,i) -> (i,k,j) -> (i,k) -> (i,k,j) -> (k,i)

mpas_atmphys_interface_ccpp
• (k,i) -> (i,k) -> (k,i)

Big Picture: What we are doing

• Scheme sharing between MPAS and WRF
• Purpose is to get MPAS and CAM physics

available for each other
• Using a jointly developed utility to provide

Common Community Physics Packages
(CCPP)

• Conventionalize the top-level physics
schemes

• Describe the arguments in the top-level
physics schemes in a separate metadata
file

• Describe the available fields from the host
model is a metadata file

• Map the available fields from the host
model and those required by the physics
schemes

Status: Importance of Verb Tense

• Started and stopped a few times to get our bearings and scope
• All first suite physics is ported, including non-conventionalized metadata files
• Getting all

metadata and
CCPP-ized
routines to be
uniform

• Merging all
separate git
repositories
into a single
location

• Figuring out the
data flow for the
physics
diagnostic data,
leaning towards
including /
wrapping calls
inside of
interstitial
routines

