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OUTLINE

The Model for Prediction Across Scales (MPAS).

Contrasting the Grell-Freitas (GF) versus Multi-Scale Kain-Fritsch (MSKF) convective
parameterizations.

Impact on forecasts using a variable-resolution mesh in MPAS.

Upscaling effects.

Summary.




MODEL FOR PREDICTION ACROSS SCALES (MPAS)

Global variable-resolution mesh

» Horizontal discretization is based on unstructured centroidal
Voronoi meshes with selective grid-refinement.

» Horizontal discretization is comprised of mostly hexagons,
some pentagons, and a few triangles and 7-sided cells.

ADVANTAGES OF USING MESH REFINEMENT

» We avoid issues related to updating the lateral boundaries of
the regional domain, or issues related to nesting and nudging.

»We have two-way feedbacks between the coarser and refined
regions.

CHALLENGES

» COST: Currently, the time-step is the same in the coarse and
refined regions, and is the one needed over the refined area of
the global mesh.

»We need to have scale-aware physics schemes, or physics
that can be used from hydrostatic down to nonhydrostatic
scales, particularly deep convection and cloud microphysics.




ADAPTED FROM ARAKAWA AND SCHUBERT (Fig 1; 1974) FOR MPAS MESHES
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SCALE-AWARE CPs AND VARIABLE-RESOLUTION MESHES IN MPAS

» Moist physics (subgrid-scale convection and grid-scale cloud microphysics) are
responsible for restoring atmospheric stability.

» The effect of a scale-aware CP of deep convection is to gradually hand over restoring
atmospheric stability to the grid-scale cloud microphysics as horizontal resolution increases.
This occurs along the transition zone between the coarse and refined areas of the global

variable-resolution mesh.

15-3 km variable-resolution mesh centered over the Pacific Ocean
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TWO APPROACHES TO MODIFY NON SCALE-AWARE TO SCALE-AWARE CPS

GRELL FREITAS (GF)
Grell and Freitas 2014; Fowler et al. 2016;
Freitas et al. 2018

» Follows Arakawa and Wu (2013) to scale the cloud
base mass flux as a function of the area of the

convective updraft (o).

M -(1-0)2M Mpscs: Scaled mass flux.
Bsca B Mg: Original mass flux.

» o is simply parameterized as:

A: Area of updraft.
TTR? 0.2 . .
g = — and R = ~ R: Half-width radius.

&gl entrainment rate.

Simpson and Wiggert (1969)

MULTI-SCALE KAIN-FRITSCH (MSKF)
Zheng et al. 2016; Glotfelty et al. 2019

> Unlike GF, MSKF does not compute o. Instead,
MSKF choose to modify convection parameters
used in the original Kain-Fritsch (Kain, 2004) CP.

» MSKF scales the convective time-scale.

» MSKEF scales the stabilization capacity (i.e. CAPE).

MULTI-SCALE TIEDTKE (nTIEDTKE)

» Unlike GF, and as MSKF, nTIEDTKE does not

compute c. Instead, nTIEDTKE choose to modify
convection parameters used in the original Tiedtke
(1989) CP.

» NnTIEDTKE scales the convective time-scale.

» NnTIEDTKE scales the coefficient for conversion
from cloud water to rain water.



THE MULTI-SCALE KAIN-FRITSCH (MSKF) CONVECTIVE PARAMETERIZATION

Which moist physics should restore
stability to the atmosphere?

MSKF MSKF scheme SHOULD GSCM
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Schematic for scale dependency of subgrid scale (MSKF) and grid scale cloud microphysical (GSCM) schemes.
MSKF=Multi-Scale Kain-Fritsch scheme; GSCM=Grid scale Cloud Microphysics scheme.
Glotfelty et al. (2019).




MSKEF (continued): The scaling parameter (£)

Glotfelty et al. (2019).

» The Kain-Fritsch (KF; Kain 2004) CP was designed for
a horizontal resolution of about 25 km.

» MSKF uses a single scaling factor (B) to modify the
basic KF convection parameters:

1. The convective adjustment time-scale (t).
2. The stabilization capacity (A.).

B Scaling Parameter

P S IS DU U DU DO 25
30 25 20 15 10 5 0 f=1+In{—
Ax

Grid Spacing (km)

Variation of f parameter used in the MSK scheme (Zheng et al., 2016). ] ] . .
AX is the horizontal grid-resolution (km).



MSKF (continued): DYNAMIC CONVECTIVE ADJUSTMENT TIME-SCALE (7)

» 1 is the time needed to restore stability to the atmosphere by removing convective instabilities.

> Inthe original KF, t is set to 3600s for deep convection and 2400s for shallow convection.

> In MSKF, 1 is modified following Bechtold et al. (2008):

« pis the scale factor, 6 is a parameter varying
H H between 0.75 and 1.2.

:8 - 1 ,3  H s the depth of the convective cloud
Wer™ (5 Mp A3 i |

« W, is the cloud-averaged vertical velocity for
shallow or deep cloud.

* M, is the cloud base mass flux; A, is the
convective available potential energy.



MSKF (continued): DYNAMIC CONVECTIVE ADJUSTMENT TIME-SCALE (7)

» MSKEF further expresses M, as a function of the sub-cloud layer velocity (W), or:

* «aIs the non-dimensional Tokioka parameter

L H (Tokioka, 1988).
( S5 alWy, Ae)l/ 3  Wasg is the sub-cloud layer velocity, expressed
as:

* Uu+is the surface friction velocity.

« W2, is the convective velocity.
ZLCL is the height of the LCL.
» L is the Monin-Obukhov length.

2
Wsp = \[ 3812 +0.22W;% + 1.9 uz(“4er/,)



MSKF (continued): STABILIZATION CAPACITY (SC)

> KF (Kain 2004) restores atmospheric stability by removing about 90% of the total CAPE (A,):

"
o
[T

A= (1—-y)A, Y

» MSKEF gradually hands over restoring atmospheric stability to the grid-scale microphysics by
scaling y as a function of f3, or:

AZ= (1- V,B)Ae




30 km UNIFORM-MESH AND 30-6 km VARIABLE-MESH NUMERICAL EXPERIMENTS

DEC. 2015: CERES SSF
CLOUD-TOP TEMPERATURE (K)
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Fig. 1_4.7 Structure of the tropical atmosphere, showing the various regimes,
approximately as a function of sea surface temperature.

From Atmospheric Convection, K. Emmanuel, 1994



CONVECTIVE PRECIPITATION RATE (mm day-')
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GRID-SCALE PRECIPITATION RATE (mm day-')

(a) GFu - THOMPSON (b) MSKFu - THOMPSON
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TOTAL PRECIPITATION RATE DIFFERENCE (mm day-1)

(a) GFu-TMPA (b) MSKFu-TMPA
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HEATING RATES OVER REFINED MESH (K day-')
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As horizontal resolution increases, GF and MSKEF,
deep convection gradually converts to precipitating
shallow convection.




UPWARD MOISTURE FLUX

(a) MSKFu - 200 hPa [x102gm?s"] (b) MSKFu - 850 hPa [gm?s™]
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RELATIVE HUMIDITY (%)
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CPs AND VARIABLE-MESHES IN MPAS: UPSCALING EFFECTS

Upscaling effect: difference over the coarse area of the mesh between the variable- and uniform-
resolution experiments.

Rauscher et al., 2013
HYDROSTATIC 240-30 km VARIABLE-RESOLUTION MESH

Precipitation rate (mm day') Precipitable water (kg m2)

| R T
Increased wind speed / Increased wind speed
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DEPENDENCE OF GF ON MODEL TIME-STEP

Increased convective precipitation with decreasing
time-step.

Upscaling effect:

Increased in convective precipitation remains large
regardless of the time-step. Further analysis is
needed using GF, MSKF, and nTiedtke.
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SUMMARY

» The role of a scale-aware CP using variable-resolution in MPAS is to hand over restoring atmospheric
stability from the subgrid-scale CP to the grid-scale cloud microphysics scheme as horizontal resolution
increases.

» We distinguished between two kinds of scale-aware CP of deep convection:
« GF which scales the mass flux as a quadratic function of the size of the convective updraft.

« MSKF (nTiedtke) which scales the convective time-scale and other convective parameters of
their non scale-aware counterpart, but without including the size of the convective updraft.

» Over the refined area of the mesh, results show:

« Decreased (increased) convective (grid-scale) precipitation, transition of a deep CP to a shallow
precipitating CP.

» For regional climate applications within a global framework, upscaling effects need to be assessed
carefully.
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