Representation of Turbulent Mixing in the Atmospheric Boundary Layer at Gray Zone Grid Spacings

Hyeyum (Hailey) Shin

National Center for Atmospheric Research

With acknowledgement to Jimy Dudhia, Song-You Hong, and Peggy LeMone

1D PBL parameterization: $\Delta >> L$

Figure is adopted from Kealy (2019, Weather).

Gray Zone: $\Delta \sim L$

Figure is adopted from Kealy (2019, Weather).

$\Delta = O(0.1-1 \text{ km})$

- (model resolution) $\Delta \sim L$ (the peak of energy-containing scales)
 - $L \sim z_i$ (boundary-layer depth)

- The diurnal variations of the ABL: L
 - O(0.1-1 km) in the convective ABL
 - Smaller than O(0.1 km) in the stable ABL

Gray Zone: $\Delta \sim L$

Figure is adopted from Kealy (2019, Weather).

• (an example) Subgrid-scale Vertical Heat Transport

• Spatially filtered LES for gray-zone grid spacings The original method by Honnert et al. (2011, JAS)

reference "subgrid-scale" perturbations: $w' = w_{LES} - w$

• Gray zone depends on L

L depends on *z*_i, and..

L depends on *z*_i, *z*, and..

Figure is adopted from de Roode et al. (2004, JAS).

Figure is adopted from **Honnert et al. (2011, JAS)**.

10

L depends on z_i , z, variables, and...

• ABL Stability (Shin and Hong 2013)

Figure is adopted from **Shin and Hong (2013, JAS)**.

Figure is adopted from *LeMone (1973, JAS)*.

Figure is adopted from **Siebesma et al. (2007, JAS)**.

Gray Zone and Resolution Dependency

• z_i , z, prognostic variables, and ABL stability

How Various Types of PBL Schemes Behave on Scales That Permit Resolved Eddies?

Or

How Resolved Eddies in the Gray Zone Respond to Subgrid-Scale Parameterizations?

Shin and Dudhia (2016, MWR)

An idealized, well-constrained, dry CBL case

Case Description

- no moisture
- a constant & homogeneous surface heat flux: 0.2 K m s⁻¹
- $U_g = 10 \text{ m s}^{-1}$
- no horizontal convective rolls

Simulation Setup

	Subgrid-Scale vertical transport	Subgrid-Scale horizontal transport	Grid spacing (m)	No. of grids	Domain size (km²)
LES	3D TKE	3D TKE	25	320 ²	8 ²
Reference	Filtered from the LES		250, 500, 1000	32 ² , 16 ² , 8 ²	8 ²
Simulations	5 PBL schemes in the WRF model	3D TKE	250, 500, 1000	32 ²	8², 16², 32²

"Parameterized" vertical transport <w'θ'>

None of them are scale aware.

"Parameterized" vertical transport <w'θ'>

BLACK: simulations

Response of Resolved Motions

0 0.2 0.4 0.6

0.8

0 0.2 0.4 0.6 0.8

Resolved θ' and w' are overestimated.

17

0 0.2 0.4 0.6 0.8 1

Resolved vertical velocity at 0.5*z*_i

Test a Simple Parameterization: Prescribed Profiles with Explicit Resolution Dependency Functions

Shin and Hong (2015, MWR)

- WRF PBL option = 11
- **Convective PBL:** Explicit grid-size dependency
- **Stable PBL:** Same as in the YSU PBL (Hong 2010, QJRMS)
- Free Atmosphere: Same as in the YSU PBL (Hong et al. 2006, MWR)

(1) Prescribed non-local heat transport

(2) Prescribed resolution dependency

(3) z, Variable, and Atmospheric Stability

Vertical heat transport <w'θ'> in mixed layer

Vertical Profiles of Heat Transport

24

Vertical Profiles of Resolved Variances

25

Gray Zone: $\Delta \sim L$

Figure is adopted from Kealy (2019, Weather).

Additional Remarks: Recent Developments with WRF

- 1D, but more sophisticated scale-aware representations
 - Olson et al. (2019, BAMS): A scale-aware representation of the mass flux formulation in the MYNN-EDMF scheme
- 3D PBL parameterizations
 - Zhang et al. (2018, MWR)
 - Kosović et al. (2020, J. Phys. Conf. Ser.)