WRFDA 2021 Update and Status of MPAS DA with JEDI

Zhiquan (Jake) Liu and Chris Snyder

On behalf of WRF and MPAS DA team Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

2021 Joint WRF and MPAS Users' Workshop

June 8, 2021

Two major new capabilities in WRFDA Release 4.3

Multi-Resolution Incremental 4DVAR (MRI-4DVAR): speed up 4DVAR

Liu, Z., J. Ban, J.-S, Hong, and Y.-H. Kuo, 2020: Multi-resolution incremental 4D-Var for WRF: Implementation and application at convective scale, *Q. J. R. Meteorol. Soc.*, 146, 3661-3674.

 Chemical/Aerosol DA for assimilation of surface data (PM2.5, PM10, O3, CO, SO2, NO2) using 3DVAR

Sun, W., Liu, Z., Chen, D., Zhao, P., and Chen, M., 2020: Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air quality forecasting and diagnose model deficiencies, *Atmos. Chem. Phys.*, 20, 9311-9329.

3-stage MRI-4DVar involves WRFDA, standalone programs and script Repeat 3-stage for multiple outer loops

- **Stage-1**: run WRFDA in "**Observer**" mode at full model resolution
 - Compute and write out OMB at different time slots within 4DVAR time window.
- **Stage-2**: run WRFDA in "**Minimizer**" mode at low resolution
 - Read OMB from Stage-1. Write out analysis and analysis increment at low resolution.

$$\mathbf{v}_{high}^{a} = \mathbf{U}_{high}^{-1} \mathbf{S} \mathbf{U}_{low} \mathbf{v}_{low}^{a}$$
 if minimization resolution increased from previous loop

• **Stage-3**: do "**Regrider**" outside of WRFDA

Sample script provided under ~var/mri4dvar

$$\mathbf{x}_{high}^{a} = \mathbf{x}_{high}^{g} + \mathbf{SU}_{low}\mathbf{v}_{low}^{a}$$

Works for cv_options=5,6,7

Afternoon thunderstorm case in Northern Taiwan

NCAR UCAR

Three 4DVar experiments with two outer loops

TABLE 1Wall-clock times of three experiments on theNCAR Cheyenne computing system

Experiment	Nodes	Wall-clock time
2 km 2 km	30	3 hr
6 km 6 km	16	41 min 4.4x
18 km 6 km	2 (18 km), 16 (6 km)	24 min 7.5x

2-km resolution: 451 x 451 x 52L

30-min 4DVar time window with **10-min surface obs**

Grid-summed total hourly rainfall

Averaged over 6 forecasts with different lead times of 7-12 hours

Fractions Skill Score for 6-h accumulated rainfall

Aerosol/Chemical 3DVar DA for WRF/Chem initial condition

setenv WRF_CHEM 1 ./configure wrfda ./compile all_wrfvar

Executable is still da_wrfvar.exe, but it can ingest a WRF/Chem forecast file as the background (the 'fg' file)

- Surface Obs:
 - PM2.5, PM10, O3, SO2, NO2, CO
- Analysis variables:
 - Gas phase: O3, SO2, NO2, CO
 - Aerosols: GOCART (15 species) or MOSAIC 4-bin (32 species)
- Univariate background error covariances
 - <u>https://github.com/wrf-model/GENBE_2.0</u>

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.3/users_guide_chap6.html#_Aerosol/Chemical_Data_Assimilation

Updated feature

contributed by Jamie Bresch, NCAR

- WRFDA gen_be_v3 is updated for cv_options=5 and ensemble applications.
 - See var/gen_be_v3/README.gen_be_v3.

MPAS DA development in the JEDI framework

- PANDA-C (Prediction and Data Assimilation for Cloud) project
 - NCAR/MMM + JCSDA
 - USAF funded since 2018
- JEDI: Joint Effort for Data assimilation
 Integration, led by JCSDA
 - **OOPS**: abstract DA algorithms
 - **UFO**: observation operators + QC filters
 - IODA: obs I/O & data structures
 - SABER: background error covariance models

MPAS-JED

+ interface to different models

Capabilities currently available in MPAS-JEDI

DA Algorithms

- 3DEnVar/4DEnVar: deterministic analysis
- Ensemble of DA (EDA): ensemble analysis
- 3DVar: multivariate background error covariances
- Can run in dual-resolution mode

Observations

- Conventional data
- GNSSRO data
- Clear-sky radiances
- All-sky radiances: Microwave and Infrared

Analysis is done directly on MPAS unstructured grid Works seamlessly for uniform mesh and variable mesh

Global month-long cycling experiments using MPAS-JEDI

- Period: 15 April-15 May 2018
- Observations from NCEP/EMC
 - "Baseline" obs: conv obs + GNSSRO + clear-sky radiances from 5 AMSU-A
 - Processing, "pre-QC," and bias correction of radiances from GSI
 - Radiance DA using CRTM
- 3DEnVar: 30-km mesh with all-sky MW radiances
 - 20 members: MPAS 6-h forecasts from GEFS analysis
- 4DEnVar: 120-km mesh with hourly all-sky AHI WV channel radiances
 20 members: MPAS 3-9-h forecasts from GEFS analysis

Conventional obs coverage at 2018041500

NCAR UCAR

5 AMSU-A data coverage at 2018041500

30-km mesh experiments: 500 hPa geopotential height ACC scores 3DEnVar with 20-member ensemble input

Note: GFS/ECMWF analysis assimilates a lot of more satellite observations with more advanced DA schemes (hybrid-4DEnVar with 80 member, 4DVAR) and higher resolution.

4DEnVar with hourly all-sky AHI radiances (120-km mesh)

RMSE(4DEnVar w/ AHI – 4DEnVar w/o AHI), verification against AHI radiances

BT13 (K) @ Tro

- Adding hourly AHI obs in the 4DEnVar clearly improved forecasts in the first 3 days
- Improvements are mainly in the Tropics

Regional MPAS-JEDI

NCAR UCAR

Regional 3DEnVar MPAS-JEDI cycling with 80-member ensemble

15km uniform mesh, 1-30 May 2019

2019-Jun

Aircraft observations: time series of OMB & OMA

2019-Jun

Aircraft U wind:

OMB/OMA RMS profile at a single time

2.00

1.75

1.50

1.25

1.00

0.75

0.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50

2.25

2.00

RMS(om

RMS(om

Final remarks

 WRFDA will be kept updated as needed. However, MMM no longer has resources to provide extensive support. No plans for future WRFDA tutorials.

• JEDI and MPAS-JEDI are under active development. MPAS-JEDI allows global and regional DA within the same framework. Expect first release to community in September.

