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Mesoscale Frontal Waves & Atmospheric Rivers

• Mesoscale frontal waves (MFWs) are small-scale, wave features that 
form along frontal boundaries

Fig. 1 from Parker (1998)
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Mesoscale Frontal Waves & Atmospheric Rivers

• Mesoscale frontal waves (MFWs) are small-scale, wave features that 
form along frontal boundaries

• MFWs can modulate aspects of ARs (e.g., duration, strength, 
location, orientation), posing a difficult forecasting problem 
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Mesoscale Frontal Waves & Atmospheric Rivers

• Mesoscale frontal waves (MFWs) are small-scale, wave features that 
form along frontal boundaries

• MFWs can modulate aspects of ARs (e.g., duration, strength, 
location, orientation), posing a difficult forecasting problem 

• Several studies examining secondary cyclogenesis in North Atlantic, 
but more to learn about relationship between MFW 
formation/evolution and ARs 

• Goal: quantify the impact of MFWs and diabatic processes on the 
ARs and associated landfalling precipitation
• Cases: December 2014 (significant upper-air support) vs. January 2010 

(primarily diabatically influenced)
• Method: modeling case studies with and without latent heating



Model for Prediction Across Scales (MPAS)

• MPAS v. 7.0

• Variable resolution mesh: 10 km centered on 30ºN, 157ºW, 
expanding to 60 km

10 km

60 km

• Physics choices:
• Kain-Fritsch (convective)
• WSM6 (microphysics)
• RRTMG (radiation)
• YSU (PBL)
• Noah (LSM)
• M-O (surface layer)



Model for Prediction Across Scales (MPAS)

• Initial conditions/SSTs
• ERA5 reanalysis, SSTs updated every day
• Simulations initialized 48-h prior to MFW formation 

• Output is post-processed:
• 3-D variables interpolated to 42 

pressure levels
• All variables interpolated to 

0.1ºx0.1º lat-lon grid

• Experiments:
• Control (CNTL)
• No latent heating (noLH)*

• Diabatic tendencies in MP, CP, and 
PBL schemes turned off 

10 km

60 km

*Thanks to Laura Fowler (NCAR) for this configuration
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December 2014: Russian River Watershed Impacts

6-h mean areal precipitation 6-h mean areal IVT * Maximum IVT

MPAS Simulations

CNTL noLH
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Mesoscale Frontal Wave Formation

850-hPa Specific Humidity, θ, Winds, & Relative Vorticity
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Mesoscale Frontal Wave Formation

850-hPa Specific Humidity, θ, Winds, & Relative Vorticity
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December 2014: Russian River Watershed Impacts MPAS Simulations

CNTL noLH
Total Precipitation:

148 mm (~5.8")
Total Precipitation:

53 mm (~2.1")

Peak IVT @ 12 UTC 
11 December

Peak IVT @ 06 UTC 
11 December

Max IVT:
1025 kg m-1 s-1

Max IVT:
850 kg m-1 s-1

Duration of AR 
Conditions:

36 hours

Duration of AR 
Conditions:

30 hours
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CNTL noLH

00 UTC 25 January 2010 MPAS Simulations
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CNTL noLH

00 UTC 25 January 2010 MPAS Simulations

CNTL noLH
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CNTL noLH

12 UTC 25 January 2010 MPAS Simulations

CNTL noLH
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~600–700
kg m-1 s-1

~400–500
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CNTL noLH

12 UTC 25 January 2010 MPAS Simulations

CNTL noLH
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CNTL noLH

18 UTC 25 January 2010 MPAS Simulations

CNTL noLH

IVT (kg m-1 s-1)
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Max IVT:
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Max IVT:
~90

kg m-1 s-1



CNTL noLH

06 UTC 26 January 2010 MPAS Simulations
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January 2010: Russian River Watershed Impacts MPAS Simulations

CNTL noLH

285 kg m-1 s-1

395 kg m-1 s-1

280 kg m-1 s-1

225 kg m-1 s-1



January 2010: Russian River Watershed Impacts MPAS Simulations

CNTL noLH

Onset of 2nd wave 
@ 18 UTC 25 Jan. 

Onset of 2nd “wave” @ 
06 UTC 26 Jan.

Duration of AR 
Conditions:

30 hours
(12h + 18h)

Duration of AR 
Conditions:

6 hours



January 2010: Russian River Watershed Impacts MPAS Simulations

CNTL noLHDuration of AR 
Conditions:

30 hours
(12h + 18h)

Duration of AR 
Conditions:

6 hours

Total Precipitation:
70 mm (~2.8")

Total Precipitation:
36 mm (~1.4")



Summary & Conclusions

• Removing effects of latent heating everywhere (not isolated to 
MFW/AR), but experiments give good idea of the importance of 
diabatic processes

• Case 1: December 2014 à significant upper-air support vs.
Case 2: January 2010 à primarily diabatically influenced

• Both cases: lack of diabatic processes caused differences in timing, 
intensity, and duration of peak AR conditions on the watershed 
scale
• December 2014: AR didn’t stall à weaker, shorter AR over RRW
• January 2010: Second wave didn’t intensify à weaker, shorter AR over RRW

• More to do! 
• Simulate more cases!


