

Convection-Permitting WRF Climate Modeling at Continental-Scales Andreas F. Prein, R. Rasmussen, C. Liu, and K. Ikeda

National Center for Atmospheric Research (NCAR) prein@ucar.edu

> WRF/MPAS Users' Workshop 2021 9 June, 2021 | 10:40 - 11:00 UTC

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

OVERVIEW

- 1. Convection-Permitting Climate Modeling at NCAR
- 2. Simulating Precipitation in the Western U.S. & Eastern U.S.
- 3. Mesoscale Convective Systems in South America
- 4. Conclusions

UCAR

CO-Headwaters [Rasmussen et al. 2014]

- Reanalysis downscaled
- 2001-2008
- dx=4 km
- future PGW, RCP8.5

CONUS-1 [Liu et al. 2017, Clim Dyn]

- Reanalysis downscaled
- 2001-2013
- dx=4 km
- future PGW, RCP8.5

CONUS-2 [in progress]

Kilometer-Scale

Simulations

Climate

NCAR/RAL

- GCM downscaled
- 1995-2014
- dx=4 km

CONUS404 [in progress]

- Reanalysis downscaled
- 1979-2019
- dx=4 km

South America [in progress]

- Reanalysis downscaled
- 20-years
- dx=4 km
- future PGW, RCP8.5

Simulation the Water Cycle in the Rockies

Flow interactions with topography are much improved at kilometer-scale grid spacings.

Compared to a 4 km model a 12 km model underestimates snowfall in the coastal mountains but overestimates it along the Continental Divide.

Kilometer-scale grid spacing is essential in capturing the accumulation and melt of the snowpack in the western U.S.

(CAUSES) project [Lin et al. 2017, Nat. Com.]

Significant improvement in precipitation amount, intensity, and frequency

Substantial reduction of uncertainties due to elimination of deep convection scheme

Convective Precipitation Diurnal Cycle

Amount

[Mooney et al. 2016; Ban et al. 2015]

Mesoscale Convective Systems (MCSs)

Simulation the water cycle in the Plains

Fritsch et al. 1986:

NCAR UCAR

"MCSs contribute between 30—70% to the warm season precipitation (April—September) in region between the Rocky mountains and the Mississippi River."

Clouds Above the United States and Errors at the Surface (CAUSES) project [Lin et al. 2017, Nat. Com.]

90° W

75° W

60° W

105° W

25° N

20° N

120° W

We Need Kilometer-Scale Models to Simulate MCSs

improvement in simulating heavy rainfall.

Annual Cycle of Mesoscale Convective Systems

Comparison of Simulated and Observed Cloud Brightness Temperature (CONUS404)

WRF 4 km chanel4 - 2013-06-01 00:00:00

brightness temperature of GOES14 channel 4 [K]

200.0 208.5 216.9 225.4 233.8 242.3 250.8 259.2 267.7 276.2 284.6 293.1 301.5 310.0

Kilometer-Scale Modeling in South America

South America Affinity Group

- 81 community members
 - From Americas and Europe
 - In support of the <u>ANDEX RHP</u> (GEGEX)

SAAG website

https://ral.ucar.edu/projects/south-america

Precipitation and Cloud Field | Nov. 10-16, 2018

NCAR UCAR

Observations

- Brightness Temperature GRIDSAT
- Precipitation IMERG

Observed and Simulated Tracks of Organized Precipitation Nov. 2018

Ratio of Precipitation from Organized Systems June 2018 – May 2019

Annual Cycle of Organized Storms

June 2018 – May 2019

Conclusion

- 1. Kilometer-Scale WRF Climate Simulations Largely Improve
 - a) The amount, frequency, intensity, and phase of precipitation
 - b) Simulation of snowpack dynamics
 - c) Simulating of the convective precipitation diurnal cycle
 - d) The frequency and intensity of mesoscale convective systems
- 2. Correctly simulating land surface processes is essential
- 3. The same model physics work well over tropical, mid-, and high-latitude land areas

Andreas F. Prein (prein@ucar.edu)

Models are approaching observational quality

Streamflow volume forecasts using precipitation from CONUS1 model outperform forecasts that use precipitation observations during the flood season in Iowa.

OUR SKILL IN MODELING MOUNTAIN RAIN AND SNOW IS BYPASSING THE SKILL OF OUR OBSERVATIONAL NETWORKS

Jessica Lundquist, Mimi Hughes, Ethan Gutmann, and Sarah Kapnick

In mountainous areas, high-resolution atmospheric models can represent total annual precipitation better than the collective network of precipitation gauges.

RESEARCH ARTICLE

High-resolution monthly precipitation climatologies over Norway (1981–2010): Joining numerical model data sets and in situ observations

Alice Crespi¹ • | Cristian Lussana² | Michele Brunetti³ | Andreas Dobler² | Maurizio Maugeri^{1,3} | Ole Einar Tveito²

NCAR UCAR

Flow Interaction with Topography

The Sierra Nevada Barrier Jet in CONUS1

