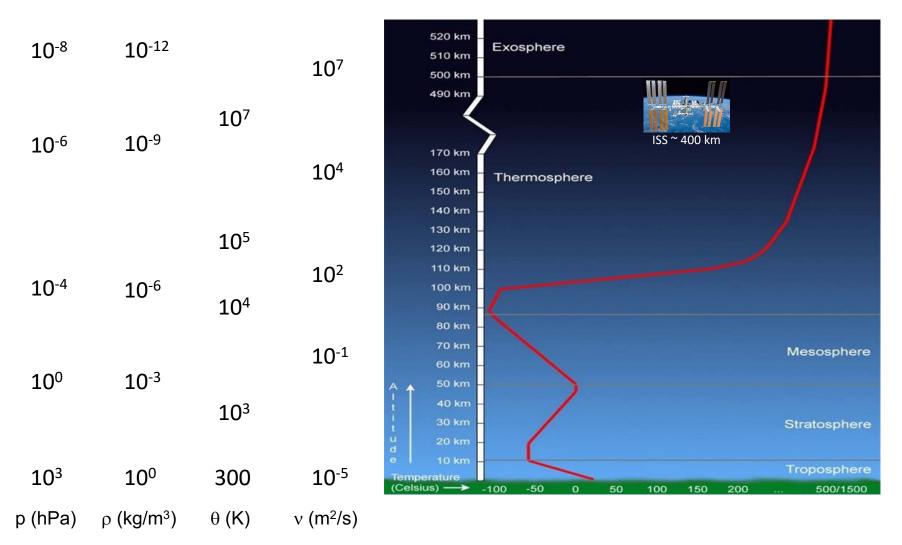
Design and Configuration of MPAS for Deep-Atmosphere NWP and Geospace Applications

Joe Klemp and Bill Skamarock NCAR Mesoscale and Microscale Meteorology Laboratory Boulder, Colorado, USA

Average Temperature Profile in the Earth's Atmosphere



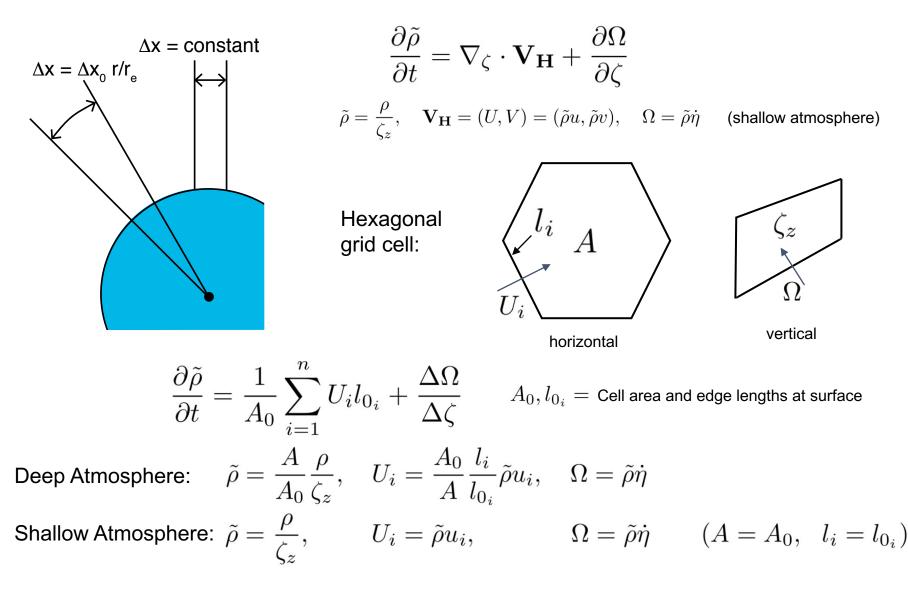
Deep Atmosphere (Full 3-D MPAS model):

- Use actual geocentric distance r instead of the Earth radius r_e in the governing equations and the grid mesh configuration
- Allow gravity to vary with height, $g(z) = g_0 \frac{r_e^2}{(r_e+z)^2}$
- Include Coriolis force terms involving vertical velocity components

Geospace, above ~ 150 km (2-D MPAS slab model):

- Include variable atmospheric composition and its coupling to the dynamics
- Modify the thermodynamic equation to account for variable composition
- Include (large) kinematic viscosity and thermal diffusivity terms
- Add appropriate physics and chemistry for the upper atmosphere (solar and Joule heating, ion drag, oxygen disassociation, etc.)

Deep Atmosphere Extensions for MPAS: Geometry



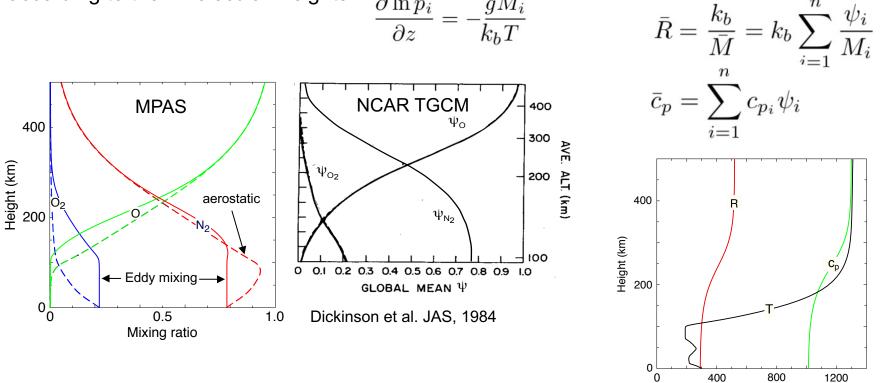
Geospace Extensions for MPAS: Composition

Primary atmospheric constituents: n = 3 (N₂, O₂, O)

Aerostatic balance: constituents distributed according to their molecular weights:

 $\frac{\partial \ln p_i}{\partial z} = -\frac{g M_i}{k_b T}$

Thermodynamic Coefficients



Temperature (K) and R, c_p [m²/(s²K)]

Composite thermodynamic properties vary only with the mixing ratios of the atmospheric constituents:

Geospace Extensions for MPAS: Thermodynamic Equation

Internal energy equation:

$$c_p \frac{dT}{dt} - RT \frac{d\ln p}{dt} = Q$$

From definition of potential temperature, $\theta = T p^{-\kappa}$

$$\frac{d\ln\theta}{dt} = \frac{d\ln T}{dt} - \kappa \frac{d\ln p}{dt} - \ln p \frac{d\kappa}{dt}$$
$$\frac{d\ln\theta}{dt} = \frac{Q}{c_p T} - \ln p \frac{d\kappa}{dt} \quad (\neq 0 \text{ for } Q = 0)$$

Flux form thermodynamic equation:

$$\frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{V}\theta = \frac{\rho Q}{c_p \pi} - \Theta \ln p \frac{d\kappa}{dt}$$

Small but potentially significant correction !

$$\Theta = \rho \theta, \quad \mathbf{V} = \rho \mathbf{v}$$

 $\kappa = \frac{R}{c_p}$

$$\begin{aligned} \partial_{t}\mathbf{V}_{H} &= -\mathbf{v}_{H}\nabla_{\zeta}\cdot\mathbf{V}_{H} - \partial_{\zeta}(\Omega\mathbf{v}_{H}) - \tilde{\rho}_{d}\nabla_{\zeta}K - p\left[\frac{\rho_{d}}{\rho_{m}}z_{\zeta}\nabla_{\zeta}\phi + z_{H}\frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- \eta\mathbf{k}\times\mathbf{V}_{H}\left(\frac{\mathbf{v}_{H}W}{r} - eW\cos\alpha_{r} + (\nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla)\mathbf{v}_{H} + F_{\mathbf{V}_{H}}\right) \\ \partial_{t}W &= -(\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- (\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- (\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ \partial_{t}\Theta_{m} &= -(\nabla\cdot\mathbf{v}\theta_{m})_{\zeta} - \theta_{m}\phi\left[\frac{\partial\tilde{\rho}_{d}K}{\partial t} + (\nabla\cdot\tilde{\rho}_{d}\kappa\mathbf{v})_{\zeta}\right] + \frac{1}{c_{p}\pi}\nabla\cdot(k_{c}\nabla T) + F_{\Theta_{m}} \\ \partial_{t}\tilde{\rho}_{d} &= -(\nabla\cdot\mathbf{V})_{\zeta} \\ \partial_{t}Q_{j} &= -(\nabla\cdot\mathbf{V}q_{j})_{\zeta} + F_{Q_{j}}, \\ \frac{\partial\Psi_{i}}{\partial t} &= -\nabla\cdot\mathbf{V}\psi_{i} - \frac{\partial}{\partial\zeta}\left[\alpha^{-1}\mathbf{L}\psi\right] + \frac{\partial}{\partial\zeta}\left[\tilde{\rho}_{d}K_{e}(\zeta)\frac{\partial\psi_{i}}{\partial\zeta}\right] + \mathbf{S} - \mathbf{R} \end{aligned}$$

$$\begin{aligned} \partial_{t}\mathbf{V}_{H} &= -\mathbf{v}_{H}\nabla_{\zeta}\cdot\mathbf{V}_{H} - \partial_{\zeta}(\Omega\mathbf{v}_{H}) - \tilde{\rho}_{d}\nabla_{\zeta}K - p\left[\frac{\rho_{d}}{\rho_{m}}z_{\zeta}\nabla_{\zeta}\phi\right] + z_{H}\frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- \eta\mathbf{k}\times\mathbf{V}_{H} - \frac{\mathbf{v}_{H}W}{r} - eW\cos\alpha_{r} + (\nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla)\mathbf{v}_{H} + F\mathbf{v}_{H} \\ \partial_{t}W &= -(\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi\right] + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &+ \frac{uU + vV}{r} + e(U\cos\alpha_{r} - V\sin\alpha_{r}) + \nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla\mathbf{w} + F_{W} \\ \partial_{t}\Theta_{m} &= -(\nabla\cdot\mathbf{V}\theta_{m})_{\zeta} - \theta_{m}\phi\left[\frac{\partial\tilde{\rho}_{d}\kappa}{\partial t} + (\nabla\cdot\tilde{\rho}_{d}\kappa\mathbf{v})_{\zeta}\right] + \frac{1}{c_{p}\pi}\nabla\cdot(k_{c}\nabla T) + F_{\Theta_{m}} \\ \partial_{t}\tilde{\rho}_{d} &= -(\nabla\cdot\mathbf{V})_{\zeta} \\ Pressure gradients are \\ calculated using \ln\rho instead of \rho \\ \partial_{t}Q_{j} &= -(\nabla\cdot\mathbf{V}q_{j})_{\zeta} + F_{Q_{j}}, \\ \frac{\partial\Psi_{i}}{\partial t} &= -\nabla\cdot\mathbf{V}\psi_{i} - \frac{\partial}{\partial\zeta}\left[\alpha^{-1}\mathbf{L}\psi\right] + \frac{\partial}{\partial\zeta}\left[\tilde{\rho}_{d}K_{e}(\zeta)\frac{\partial\psi_{i}}{\partial\zeta}\right] + \mathbf{S} - \mathbf{R} \end{aligned}$$

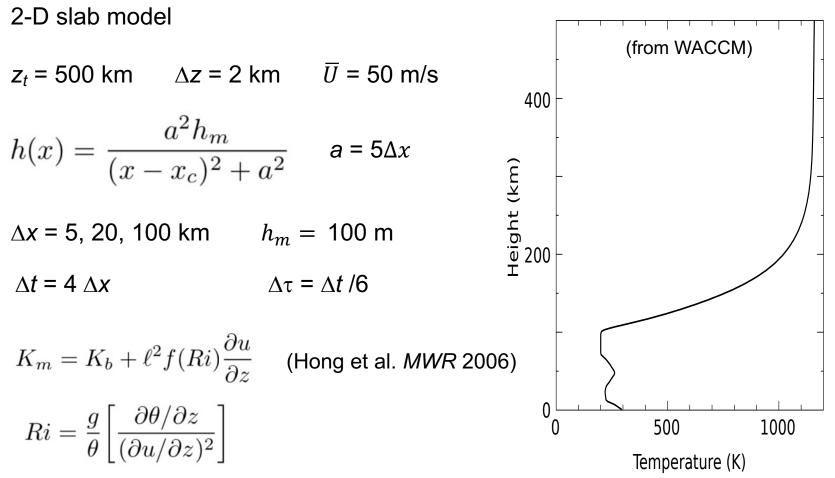
$$\begin{split} \partial_{t}\mathbf{V}_{H} &= -\mathbf{v}_{H}\nabla_{\zeta}\cdot\mathbf{V}_{H} - \partial_{\zeta}(\Omega\mathbf{v}_{H}) - \tilde{\rho}_{d}\nabla_{\zeta}K - p\left[\frac{\rho_{d}}{\rho_{m}}z_{\zeta}\nabla_{\zeta}\phi + z_{H}\frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- \eta\mathbf{k}\times\mathbf{V}_{H} - \frac{\mathbf{v}_{H}W}{r} - eW\cos\alpha_{r} + (\nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla)\mathbf{v}_{H} + F\mathbf{v}_{H} \\ \partial_{t}W &= -(\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &+ \frac{uU + vV}{r} + e(U\cos\alpha_{r} - V\sin\alpha_{r}) + \nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla\mathbf{w} + F_{W} \\ \partial_{t}\Theta_{m} &= -(\nabla\cdot\mathbf{V}\theta_{m})_{\zeta} - \theta_{m}\phi\left[\frac{\partial\tilde{\rho}_{d}\kappa}{\partial t} + (\nabla\cdot\tilde{\rho}_{d}\kappa\mathbf{v})_{\zeta}\right] + \frac{1}{c_{p}\pi}\nabla\cdot(k_{c}\nabla T) + F_{\Theta_{m}} \\ \partial_{t}\rho_{d} &= -(\nabla\cdot\mathbf{V})_{\zeta} \\ \partial_{t}Q_{j} &= -(\nabla\cdot\mathbf{V}q_{j})_{\zeta} + F_{Q_{j}}, \\ \partial\frac{\partial\Psi_{i}}{\partial t} &= -\nabla\cdot\mathbf{V}\psi_{i} - \frac{\partial}{\partial\zeta}\left[\alpha^{-1}\mathbf{L}\psi\right] + \frac{\partial}{\partial\zeta}\left[\tilde{\rho}_{d}K_{e}(\zeta)\frac{\partial\psi_{i}}{\partial\zeta}\right] + \mathbf{S} - \mathbf{R} \\ f &= 2\Omega_{e}\sin\psi \end{split}$$

$$\begin{aligned} \partial_{t}\mathbf{V}_{H} &= -\mathbf{v}_{H}\nabla_{\zeta}\cdot\mathbf{V}_{H} - \partial_{\zeta}(\Omega\mathbf{v}_{H}) - \tilde{\rho}_{d}\nabla_{\zeta}K - p\left[\frac{\rho_{d}}{\rho_{m}}z_{\zeta}\nabla_{\zeta}\phi + z_{H}\frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &- \eta\mathbf{k}\times\mathbf{V}_{H} - \frac{\mathbf{v}_{H}W}{r} - eW\cos\alpha_{r} + (\nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nabla)\mathbf{v}_{H} + F\mathbf{v}_{H} \\ \partial_{t}W &= -(\nabla\cdot\mathbf{v}W)_{\zeta} - p\left[\frac{\rho_{d}}{\rho_{m}}\partial_{\zeta}\phi + \frac{gz_{\zeta}}{R_{d}T_{m}}\right] \\ &+ \frac{uU + vV}{r} + e(U\cos\alpha_{r} - V\sin\alpha_{r}) + \nabla\tilde{\rho}_{d}\mathbf{v}\cdot\nablaw + F_{W} \\ \partial_{t}\Theta_{m} &= -(\nabla\cdot\mathbf{V}\theta_{m})_{\zeta} - \theta_{m}\phi\left[\frac{\partial\tilde{\rho}_{d}K}{\partial t} + (\nabla\cdot\tilde{\rho}_{d}\mathbf{K}\mathbf{v})_{\zeta}\right] + \frac{1}{c_{p}\pi}\nabla\cdot(k_{c}\nabla T) + F_{\Theta_{m}} \\ \partial_{t}\tilde{\rho}_{d} &= -(\nabla\cdot\mathbf{V})_{\zeta} \\ \partial_{t}\rho_{d} &= -(\nabla\cdot\mathbf{V}q_{j})_{\zeta} + F_{Q_{j}}, \\ \frac{\partial\Psi_{i}}{\partial t} &= -\nabla\cdot\mathbf{V}\psi_{i} - \frac{\partial}{\partial\zeta}\left[\alpha^{-1}\mathbf{L}\psi\right] + \frac{\partial}{\partial\zeta}\left[\tilde{\rho}_{d}K_{e}(\zeta)\frac{\partial\psi_{i}}{\partial\zeta}\right] + \mathbf{S} - \mathbf{R} \end{aligned}$$

Dynamical equations are solved using the same split-explicit time integration as in MPAS for the shallow atmosphere

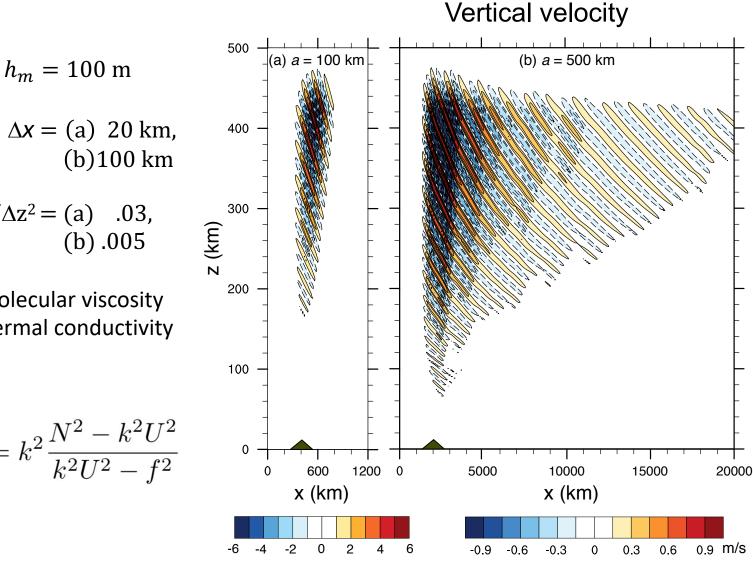
Geospace Extensions for MPAS: Mountain-wave test cases

Temperature Sounding



Impulsive startup produces large amplitude acoustic modes in the upper domain. This startup noise is controlled by imposing Rayleigh damping on deviations from the initial state at early times.

Mountain-wave test case hydrostatic scales



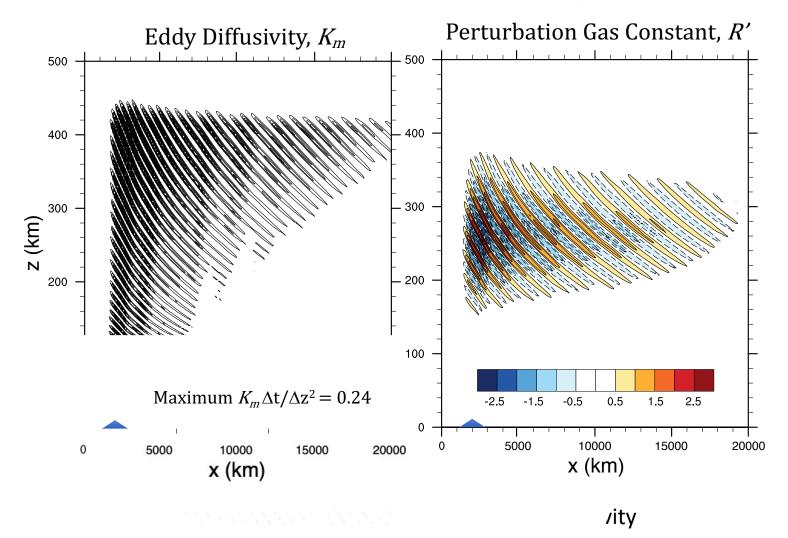
(b)100 km $K_b\Delta t/\Delta z^2 = (a)$.03, (b) .005

No molecular viscosity or thermal conductivity

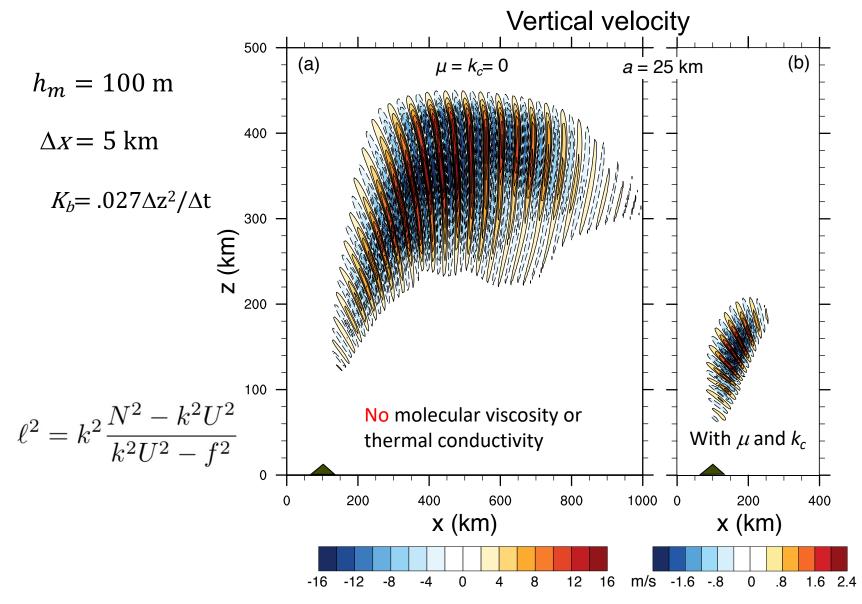
$$\ell^2 = k^2 \frac{N^2 - k^2 U^2}{k^2 U^2 - f^2}$$

Mountain-wave test case hydrostatic scales

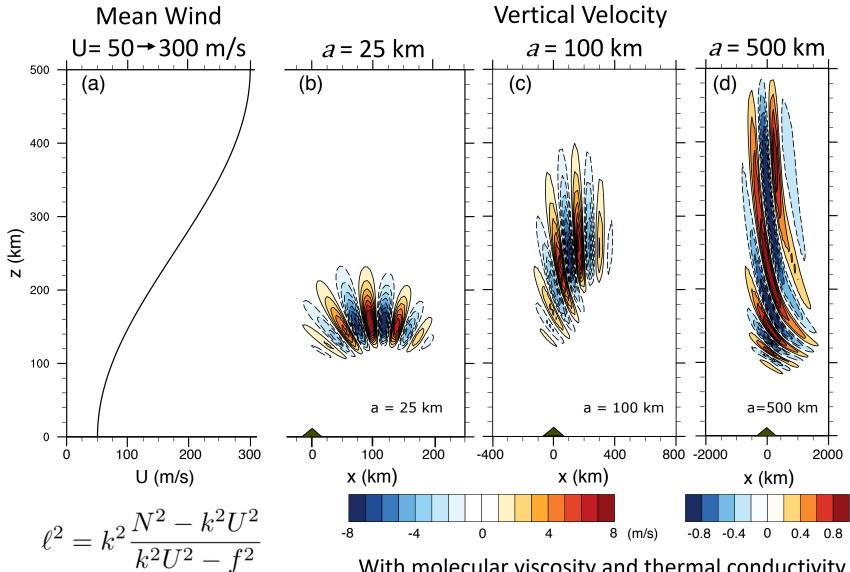
 $h_m = 100 \text{ m}$ a = 500 km $K_b \Delta t / \Delta z^2 = 0.005$



Mountain-wave test case nonhydrostatic scales



Mountain-wave test case Stronger mean wind



With molecular viscosity and thermal conductivity

- Height-based hybrid terrain-following coordinate seems well suited for deep atmosphere domains.
- Split-explicit finite-volume numerics for solving the nonhydrostatic dynamical equations appear to remain viable for the deep atmosphere.
- Equations are solved in double precision using full thermodynamic variables (not as perturbations from a reference state).
- Large molecular diffusivity and conductivity terms require special implicit treatment (currently using ADI).
- Large acoustic noise due to impulsive startup may require special filtering.
- Next steps: Implement in 3-D MPAS code, evaluate more realistic test cases, begin adding thermospheric physics.