

The NOAA RAP/HRRR orographic drag suite addition to WRF

Michael Toy^{1,2}, Joseph Olson², Tanya Smirnova^{1,2}, Jaymes Kenyon^{1,2}, John Brown² and Georg Grell²

Joint WRF/MPAS Users' Workshop

June 9, 2021

¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO

² Earth System Research Laboratory, NOAA, Boulder, CO

Acknowledgements: Jimy Dudhia, Dave Gill, Wei Wang and Michael Duda of NCAR/MMM

Outline

- Description of the orographic drag parameterizations
 - Two traditional: Gravity wave drag and low-level blocking
 - Two new: Small-scale gravity wave drag and turbulent orographic form drag
- Implementation of the drag suite in WRF version 4.3
 - Static orographic data generated by WPS
 - WRF namelist settings
- Results

Gravity waves, momentum flux, and drag

Subgrid-scale orographic gravity wave drag (GWD) and low-level blocking parameterizations

Parameterized wave stress: $\tau_x = \overline{\rho} \, \overline{u'w'}$ Drag: $\left(\frac{\partial U}{\partial t}\right)_{drag} = -\frac{1}{\overline{\rho}} \frac{\partial \tau_x}{\partial z}$

Refs: Kim and Arakawa (1995); Kim and Doyle (2005); Choi and Hong (2015)

These parameterizations are recommended for horizontal grid resolutions > 5 km

- Original WRF version activated by namelist option gwd_opt = 1
- GSL drag suite version activated by namelist option gwd_opt = 3

Two additional orographic drag parameterizations

Turbulent orographic form drag (TOFD) Beljaars et al. (2004)

- Positively correlated turbulent pressure perturbations and terrain slope cause an opposing drag force (Note: This is not gravity wave drag)
- Drag force decays exponentially with height (efolding height is ~ 1.5 km)
- Terrain height is band-pass filtered to remove horizontal variations >20 km and <2 km before calculating the standard deviation of the subgrid topography

Two additional orographic drag parameterizations

Turbulent orographic form drag (TOFD) Beljaars et al. (2004)

- Positively correlated turbulent pressure perturbations and terrain slope cause an opposing drag force (Note: This is not gravity wave drag)
- Drag force decays exponentially with height (efolding height is ~ 1.5 km)
- Terrain height is band-pass filtered to remove horizontal variations >20 km and <2 km before calculating the standard deviation of the subgrid topography

Small-scale gravity wave drag (SSGWD) in stable PBLs Tsiringakis et al. (2017); Steenveld et al. (2008)

- Highly stable PBL allows vertical propagation of gravity waves at smaller horizontal scales
- Drag force imparted throughout PBL depth
- Used for grid resolutions > 1 km

Rapid Refresh (RAP)/High-resolution Rapid Refresh (HRRR) NWP system developed at NOAA's Global Systems Laboratory (GSL)

• Built on WRF-ARW dynamical core

- HRRRv4/RAPv5 operational since 2 Dec 2020
- GWD physics used:
 - 13km RAP Full GSL orographic drag suite
 - 3km HRRR TOFD + SSGWD only

https://rapidrefresh.noaa.gov

The GSL drag suite included in WRF Version 4.3

- New physics module: module_bl_gwdo_gsl.F
- Suite is activated by WRF namelist option *gwd_opt* = 3 (original scheme is *gwd_opt* = 1)
- New geographical input data required for the WRF preprocessing system (WPS)
 - Download from: https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
 - Under "WPS Geographical Input Data Mandatory for Specific Applications", download the files orogwd3_* files from the "GWDO Data for GSL GWD" section
- If you've downloaded these files, then the following variables will be included in your geo_em.d*.nc files generated by geogrid.exe:

Standard deviation of subgrid topography Convexity of subgrid topography Directional orographic asymmetries Directional orographic effective lengths

The GSL drag suite included in WRF Version 4.3

- New physics module: module_bl_gwdo_gsl.F
- Suite is activated by WRF namelist option gwd_opt = 3 (original scheme is gwd_opt = 1)
- New geographical input data required for the WRF preprocessing system (WPS)
 - Download from: https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
 - Under "WPS Geographical Input Data Mandatory for Specific Applications", download the files orogwd3_* files from the "GWDO Data for GSL GWD" section
- If you've downloaded these files, then the following variables will be included in your geo_em.d*.nc files generated by geogrid.exe:

Standard deviation of subgrid topography RAP domain (13km grid)

Horizontal resolution "scale awareness"

- The large-scale gravity wave drag scheme has built-in scale awareness of the horizontal grid spacing based on empirical tuning of the GFS model and experiments with high-resolution simulations
 - The user may change the tuning parameters in the code if desired
 - Any future updates to the default parameters will be passed on to the WRF repository
- Large-scale GWD and blocking is tapered down to zero at 5 km grid spacing
- Small-scale GWD and turbulent orographic form drag is tapered down to zero at 1 km grid spacing

Drag contributions from each scheme

Diagnostic output can be switched on by setting the variable gwd_diags = 1 in the WRF namelist

13km RAP

Drag contributions from each scheme

Diagnostic output can be switched on by setting the variable gwd_diags = 1 in the WRF namelist

3km HRRR

Drag suite performance in the RAP (13km grid) Reforecasts 2–15 Feb 2019

Slide courtesy of Jaymes Kenyon

Drag suite performance in the RAP (13km grid) Reforecasts 2–15 Feb 2019

Slide courtesy of Jaymes Kenyon

Drag suite performance in the HRRR (3km grid)

Reforecasts 2–15 Feb 2019

24-h wind: full HRRR domain, 00/12 UTC

Note the smaller impact of the drag suite at finer resolution

Slide courtesy of Jaymes Kenyon

Drag suite performance in the HRRR (3km grid)

Reforecasts 2–15 Feb 2019

Note the smaller impact of the drag suite at finer resolution

Slide courtesy of Jaymes Kenyon

Summary

- The WRF Orographic Gravity Wave Drag + Blocking parameterization has been modified and two new physical processes have been added: Turbulent Orographic Form Drag and Small-scale Gravity Wave Drag
- Improved windspeed bias and RMS errors have been demonstrated in the 13 km RAP NWP model
- Modest improvements to the 3 km HRRR NWP model also demonstrated – We are testing to see if additional improvement can be made at these fine resolutions
- The GSL drag suite is included in the Common Community Physics Package (CCPP) library

• The suite may evolve into the UFS drag suite with time

References

- Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. *Q. J. R. Meteorol. Soc.*, **130**, 1327-1347.
- Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. *J. Geophy. Res. Atmos.*, **120**, 12445-12457.
- Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. *J. Atmos. Sci.*, **52**, 1875-1902.
- Kim, Y.-J., and J. D. Doyle, 2005: Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Q. J. R. Meteorol. Soc., 131, 1893-1921.
- Steeneveld, G. J., A. A. M. Holtslag, C. J. Nappo, B. J. H. van de Wiel, and L. Mahrt, 2008: Exploring the possible role of small-scale terrain drag on stable boundary layers over land. *J. Appl. Meteor.*, **47**, 2518-2530.
- Tsiringakis, A., G. J. Steeneveld, and A. A. M. Holtslag, 2017: Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology. Q. J. R. Meteorol. Soc., 143, 1504-1516.

