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Outline

Goals:

|. Overview the primary model physics development in support of NOAA’s Unified
Forecast System (UFS)

2. Convince the audience that a robust holistic effort is ongoing to improve the
representation of physics and reduce systematic model errors

3. Working towards a skillful forecast model that can also be useful for scientific research

Today’s Topics:

O Our approach to the development of the UFS

o LSM, PBL, Convection, Microphysics, Radiation, GVWD, and Atmospheric Composition
o Tentative test plans

O Summary
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Approach to Physics Development Ny

e Full adoption of the Common Community Physics Package (CCPP)
e Development is typically performed within defined CCPP suites
o Specific scheme intercomparisons are performed within GFS/RRFS suites
e Working towards unified physics suite for all scales and applications
o In some cases, like GWD, complementary subcomponents are easy to unify
o In other cases, like LSM and microphysics, target schemes have been chosen
and subcomponents from other sources will be added
o In yet other cases, like PBL and convection, outstanding science questions still
need to be resolved before the final design is known
e Physics development adopts a two-stream approach:
o Focus some development on improving the current operational schemes
o Spend some time researching/designing longer-term scheme/suite features
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Overview of PBL Schemes

Primary Developers Type/Features
e TKE-L
e Scale-Adaptive
- il H EM hris Breth w
TKE-EDMF Jongil Han (EMC), Chris Bretherton (UW) e Uses separate ShCu scheme
e Usedin GFS
- .5, 2.6, 3.
Joseph Olson (GSL), Jaymes Kenyon : ;}::Iel'ﬁ(j::e:hz’:’ 6,3.0)
MYNN-EDMF (GSL), Wayne Angevine (CSL), John P _
Brown (GSL) e Integrated ShCu physics
e Used in RAP/HRRR
. ) e TKE-epsilon
TKE-Epsilon Chunxi Zhang (EMC) e Scale-Adaptive
SHOC Peter Bogenschutz (NCAR), Steve e TKE-L (diagnostic HOMs)

Kreuger (Utah), Alexei Belochitski (EMC) | e Scale-Adaptive
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Recent modifications to the MYNN-EDMF \!

« Reduced numerical noise isolated in the stability functions
o Only use level 2.5 Sy and then specify S, = Pr Sy

o Specifies Prandtl number, Pr, according to Esau and Grachev (2007,
WindEng), but slightly modified to honor the original MYNN in the

unstable limit: Pr = Pry + c Ri
g

o Where Pry = 0.80, ¢ = 3.0, and Ri, is limited to a lower bound of -0.013,
which results in a Pr of 0.76 in the unstable limit.

« Modified mixing lengths to minimize the noise-impact of clouds
and precipitation on the buoyancy length scale.

o Changes to the specification of length scales in the PBL were small,
mostly impacts free atmosphere.
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RRFS Retro (04-12 Sep 2020): Wind Speed, fhr 12
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RRFS Retro (04-12 Sep 2020): Temperature, fhr 12 X7
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Updated TKE-EDMF PBL scheme for GFSv17 N/

T

e Include wind shear effect in
characteristic mixing length
calculation, reducing the
mixing length in strong shear | Hybrid-EDMF

. =| KE-EDMF control
enwronment such as | TKE-EDMF updated
hurricane.

e To suppress too much PBL growth, the PBL updraft overshoot is
limited by bulk Richardson number-based-PBL depth.

e To improve the simulation of strong stable layers, the background
diffusivity (K,) in the inversion layers is reduced as a function of surface
roughness and green vegetation fraction.
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TMENT O
Global Systems Laboratory

Updated background diffusivity (K,) in the inversion layers
improves the surface inversion prediction

GFSv16

CCEEO1x vs. Observed Sounding for KDNRhit: 00 UTC 08 Nov 2019
Forecast Hour 12 Valid: 12 UTC 08 Nov 2019

Updated K

CCEEO02x vs. Observed Sounding for KDNRit: 00 UTC 08 Nov 2019
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PBL Summary

e Yet to determine the “optimal” design/framework to address the full set

boundary-layer-related forecast challenges:
o TKE-L, TTE, or TKE-¢, other?
o Mass-flux scheme or a higher-order closure?

e Still assessing and developing at dx = 12 and 3 km grid spacing

e Significant improvements have been made for both MYNN-EDMF and
TKE-EDMF
o Hurricanes, stable layers, and wind speed & temperature profiles

e Code universalization under way (led by Laura Fowler, NCAR):

o MYNN-EDMF will be universalized for CCPP, WRF, and MPAS
o Easier code management and more frequent updates will be possible
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Overview of Convective Schemes

Scheme

Primary Developers

Type/Features

Scale-Aware SAS

Jongil Han (EMC)

Quasi-Eq Arakawa-Schubert
Deep and shallow cumulus
Scale-aware

Grell-Freitas

Hannah Vagasky (GSL), Haiqin Li (GSL),
Saulo Freitas (NASA), Georg Grell (GSL)

Multi-closure ensemble
PDF mass-flux profiles
Arakawa-Wu scale-aware
Aerosol-aware

Chikira-Sugiyama

Minoru Chikira and Masahiro Sugiyama
(Research Institute for Global Change,
JAMSTEC)

Prognostic CKE closure
Arakawa-Wu scale-aware
Spectral cloud representation

RAS

Shrinivas Moorthi (EMC)
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e Double moment microphysics
tendencies - improved coupling

e Atmospheric composition treatmy.ﬁ

included
e Evaluate full aerosol interactions
e Ongoing Work
* Implement different chemistry options

« Explore Machine Learning (ML)
algorithms

» Refine scale-awareness to improve
convective evolution at dx = 3 km.
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sa-SAS Convection changes for GFSv17 Xz

Goal: To reduce the existing biases in GFSv16 such as:
(1)underestimated CAPE,

(2)cold bias in tropospheric profiles, and

(3)improve the propagation of tropical kelvin waves

e More strict convection trigger (which helps to enhance CAPE)
o No triggering if sub-cloud mean RH is less than a threshold value (set to 75%).
o Updraft parcel starts from lower 20% of PBL depth only for trigger to avoid a spurious
convection triggering due to rapid surface heating in the morning.
o About 30% reduced entrainment rate below cloud base to reduce false alarm storms.

e Reduced rain evaporation with removal of wind shear dependency
(reduces the cold bias in the Tropics).

e Include a stochastic parameterization of organized convection using
cellular automata (Lisa Bengsston NOAA/PSL) (improves kelvin waves).



Example of improvements
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« Uses a stochastic cellular automaton to
address stochasticity, horizontal
communication, and memory in
convection parameterization.

* In UFS coupled to saSAS to
parameterize feedback associated with
sub-grid and cross-grid convective

The cellular automaton exhibits self-
organizing behavior and is used
within the convection scheme to
address sub-grid convective
organization.

Bengtsson, L., et al (2021). A stochastic
parameterization of organized tropical
convection using cellular automata for global
forecasts in NOAA's Unified Forecast
System. Journal of Advances in Modeling
Earth Systems
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Convection Summary

e Another good example of our two-stream approach:
o Continuing to improve the current operational scheme (sa-SAS) in the GFS
o Experimenting with improved coupling to aerosols (GF scheme)

e Chipping away at systematic biases in the GFSv16 with the sa-SAS

© Reduced cold bias in Tropics
o Reduced the low CAPE bias
o Improved propagation of Kelvin waves with Cellular Automata

e GF improvements:

o Improved coupling to double-moment microphysics schemes
o Improved coupling to aerosols
o Results in improved ACC scores
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Scheme

GFDL

Primary Developers

Linjiong Zhou (GFDL), S-J Lin (GFDL),
Lucas Harris (GFDL)

Type/Features

Single-moment

Descendent of the Lin Scheme
Can create partial-cloudiness
in subsaturated grid cells
Currently used in GFSv16

Thompson
Aerosol-Aware

Greg Thompson (UCAR), Trude Eidhammer
(NCAR), Anders Jensen (NCAR),
Ruiyi Sun (EMC)

Double-moment in qc, qi, qr
Ice & water friendly aerosols
Updated aerosol emissions
Runs stable with new sub-
timestepping capability
Currently used in RAP/HRRR
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Updated Development of the Thompson Scheme 2.

Currently used operationally for regional applications, now being tested and
developed for global applications.

e Improve computational stability and efficiency
o Constraints on phase-change processes
o New ability to sub-timestep as scheme in CCPP
o Semi-Lagrangian sedimentation
o Treat fast and slow processes differently (integration into dynamical core)

e Improved surface aerosol emissions:
o Bug was removed which over-amplified the surface emissions of
water-friendly aerosols
o We have taken a step further to improve the specification of emissions:
m Go away from evolved atmospheric climatological values
m Specify directly from surface emission observations (GOCART)
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INITIAL THOMPSON AEROSOL-AWARE MICROPHYSICAL SIMULATIONS

AEROSOL NUMBER CONCENTRATIONS [m?]
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INITIAL THOMPSON AEROSOL-AWARE MICROPHYSICAL SIMULATIONS

DAY 31 RESULTS
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THOMPSON AEROSOL-AWARE MICROPHYSICAL SIMULATIONS
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o Notable increase in downward shortwave radiation in the
’ northern hemisphere where there is a decrease in aerosols.
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Summary for Microphysics

e Promising results for improving the computational stability for longer timesteps
(not shown).
o These proposed modifications are still being evaluated - will not be considered
for the next upgrade of the GFS.
e Surface aerosol emissions have been improved:
o Specifying emissions from observations (GOCART).
m Results do impact precipitation and radiation; may require further tuning.
e Near-term plans are to use the prescribed MERRAZ2 aerosol climatology for
radiation interactions for both deterministic and ensemble applications.
o New GOCART-derived emissions are under consideration for the single
chemistry member of the GEFS ensemble system.
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Scheme

Primary Developers

Type/Features

RRTMG

Eli Mlawer (AER), Mike locono (AER)

LW - 16 bands

SW - 14 bands

Uses McICA to represent
unresolved clouds

RRTMGP

Robert Pincus (CU/PSL), Eli Mlawer (AER)
Dustin Swales (CU/PSL - CCPP coupling)

Conceptually similar to
RRTMG

Correlated k-distribution for
absorption by gases

McICA for small scale cloud
structure

SW Emulator

Dave Turner (GSL), Ryan Lagerquist (CIRA)

Machine Learning-based
Modified U-net
Computationally efficient
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Updated Features with RRTMGP

Improved physics
e Clouds scatter longwave radiation
e Approximate heating rate response to
surface temperature between radiation calls

Improved software
e Clear conceptual divisions allow for precise
and flexible cloud/radiation coupling
e GPU-ready using OpenACC or OpenMP
compiler directives (6-8x speedup)

2021 WRF/MPAS Workshop

Improved data
Modern spectroscopic data, especially more
absorption of sunlight by water vapor
Spectral data provided at runtime; enables a
range of cost/accuracy tradeoffs

Computational performance
RRTMGP remains slower than RRTMG due
to different memory patterns
Reduced-resolution spectral data are nearly
complete; will improve
Refactoring is ongoing
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Improvements with RRTMGP

The importance of updated spectroscopic data: The impact of physics innovations:

Error (W/m?)

Error (W/m?)

2021 WRF/MPAS Workshop
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Emulating the Radiation Scheme with ML Vg

e Radiation schemes are computationally expensive; called every ~10 time steps
e Developed a Machine Learning (ML) algorithm to mimic the shortwave
parameterization RRTM Shortwave Scheme (c) Attributes diagram for Foet

%bservation frequency

800"
SNIT - c 600 01
e Has near perfect reliability and low bias S
e Is over 1,000 faster than RRTM c 400 ool e
_8 200" RS !
©
e Current/ future work: g o
M k' I t t' I 'd t' © — Multi-layer cloud Prediction frequency
o Making emulator vertical grid agnostic 2 _200||—=iilocloug o §ediction frequenc
o Incorporating aerosols and precipitation § [ —— singlelayer cloud
A -400 0.1
o Building a complementary longwave emulator S
e Will be tested in the Unified Forecast System —600 * o
e Paperin review at JTECH P
Prediction
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Summary for Radiation Scheme Development &7

Development has been largely two-streamed:

o Updating to the more contemporary RRTMGP scheme
« Improved physics: LW scattering, Surface temperature impacts
» Improved data: modem spectroscopic data
* Improved software: flexible cloud-radiation coupling, GPU-ready
 Still working on improving computational efficiency

o Experimenting with machine learning-based emulators
« Much computationally faster than “traditional” approaches

« May eventually be able to incorporate impacts of:
3D effects
Cloud overlap assumptions

* Not yet available in CCPP
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Overview of Unified GWP Scheme Development &

Goals:

» A unified drag parameterization in the FV3GFS, which includes the
effects of both orographic and non-stationary gravity waves (GW), and
turbulent orographic form drag

» A “scale-aware” scheme for horizontal grids from ~100km to ~1km

Objectives:

* Incorporate the GSL orographic drag suite and UGWP.v1 into the
CCPP Unified Drag Suite.

» Perform extensive testing of the suite

2021 WRF/MPAS Workshop



GSL Orographic Drag Suite

Large-scale gravity waves| FIo blocking

- ———'—""_\/_\/ bl ; iti

m——r\mf\y B Traditionally used components
- = ] :
AEeee o Large-scale GWD and flow blocking
S —— I drag taper off by Ax = 5km

I New components:

o Small-scale GWD and form drag can
Small-scale gravity wavesg Form Drag be used down to Ax =1 km

pressure X area

Form
Ug
—

= = Future Work:

dapted from E
. . . normal forces
riginal version e Merge small- and large-

3 i . treamlined : :
 provioed by Ser @ bedy . Adaptedfrom  Scale GWD with Fourier
! eme Beljaars etal.  (multi-scale/wave)

. |Delft Univ. of Tech. ——— '
- S o0 puntrody  (2004) formulation
P & _\_/,_

2021 WRF/MPAS Workshop 29

& B 2 |




CCPP GWD scheme flow charts

New unified gravity wave physics suite

ooooooooooo

ugwpv1_gsldrag.F90

ugwp_v1

CCPP Large-scale OGWD ~ (Yudin 2020;
“UngV']_gSldl’ag” + bIOCklng Yudin 2021)
scheme

GSL drag_suite

Large-scale OGWD  (Kim & Doyle
+ blocking 2005)

(Tsiringakis et al.
Small-scale OGWD 2017)

GWD
tendencies
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Global FV3GFS Tests (Ax ~13km, 127 levels)

West CONUS 10-m wind speed
(black curve = OBS)
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GWD Summary

e Components of the GSL drag suite are now integrated into uGWPv1:
o Overall improvements seen in 500 mb ACC
o Overall improvements seen in 10-m wind speeds
e Still assessing and developing at dx = 12 and 3 km grid spacing
o SSGWD and TOFD especially need further assessment at dx = 3 km (just beginning)
e GSL drag suite has now been implemented into WRFv4.3
o Preprocessing of subgrid terrain fields have also been added (Thanks Michael Duda)
o We intend to keep updating this suite as it evolves in the UFS
o Review Michael Toy’s presentation for more information (Wed, 09 June 2021)
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Tentative Test Plan for GFSv17

Most experiments:

e Evaluation of control simulations has been completed 70 cases over 1 year
e Goal: Finalize configuration of GFSv17 within 3-6 months
o Complete RRTMGP/uGWP tests (new schemes) el pre-:\le:t: e
o Complete PBL/Convection/Sfc Layer (modified schemes) Sv?steesr over
o Complete combined tests and final tuning
e After the atmospheric configuration is known, RRTMGP:
development/testing will be in coupled mode 10 cases over 1 year
e Continue parallel development/testing of experimental candidate
schemes

33
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Summary

e \We have expanded our scope from being either regional or global to include all

time and spatial scales for any application.
o Improve current operational physical parameterizations
o Research and development for longer-term improvements for the UFS
e \We are working towards a unified physics suite for all scales/applications
o We commonly test/assess physical parameterizations on a variety of regimes and at different scales

e All components of the model are under intense development
o Some will be ready for near-future upgrades, some meant for successive upgrades

e Some schemes are already integrated into WRF/MPAS.

o Scheme universalization and/or CCPP will be the primary mechanism for community collaboration
e \We would like to thank our collaborators from a variety of institutions (NSSL, CSL,

PSL, GML, NASA, UCAR/NCAR, NRL, DOE, GLERL, ARL, GFDL, AOML...).
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Extra Slides
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| UGWPV1: Monthly AUG/2018 (20-day averaged) 4 ®(JFSR20
and 10-day predictions of SSW Jan 1 2019
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® Left plate: FV3GFS (c) monthly averaged T-predictions vs MERRA-2 (a), GEOS-5 (b), and MLS data (d)
®  Right plate: Predicting (30-day run) the SSW Jan 1 2020 by FV3GFS ( 10 days before the SSW onset) and GEOS-5 analyses
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Fourier series representation of 2D ridges

Deplaned topography in vicinity of

Mt. Hood, Oregon
~ 45 km

~ 45 km

meters meters
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