Adapting the MPAS Dynamical Core for Geospace Applications

Modifying MPAS to permit a constant pressure upper boundary

Joseph Klemp and William Skamarock

National Center for Atmospheric Research Boulder, Colorado, USA

Average Temperature Profile in the Earth's Atmosphere

Modifications to MPAS Numerics for Deep Atmosphere Applications

- Use actual geocentric distance r instead of the Earth radius r_e in the governing equations and the grid mesh configuration
- Allow gravity to vary with height, $g(z) = g_0 \frac{r_e^2}{(r_e+z)^2}$
- Include Coriolis force terms involving vertical velocity components

Above ~ 150 km

- Include variable atmospheric composition and its coupling to the dynamics
- Include (large) kinematic viscosity and thermal diffusivity terms
- Add appropriate physics and chemistry for the upper atmosphere (solar and Joule heating, ion drag, oxygen disassociation, etc.)
- Modify vertical coordinate to permit a constant pressure upper boundary

 $\Delta x = constant$

 $\Delta \mathbf{x} = \Delta \mathbf{x}_0 \mathbf{r}/\mathbf{r}_0$

Diurnal Heating in the Thermosphere

Vertical cross section along the equator from the WACCM- X 2.0 Model at 00Z on 21 January 2000

Coordinate Transform for Variable Height Model Top

$$z = \left(\frac{\zeta - z_p}{H_0 - z_p}\right)^2 (H - H_0) + \zeta, \quad \text{for} \quad z > z_p$$

Hydrostatic equation:

$$\frac{\partial \phi}{\partial z} = -\frac{g}{R_d T}, \qquad \phi = \ln(p/p_0)$$

Adjustment of model top H to constant pressure surface ϕ_{top} :

$$H = H^* + \frac{R_d T}{g} (\phi^* - \phi_{\text{top}})$$

Material surface at top boundary:

$$\omega = \zeta_z (w - z_x - z_t)$$
$$= 0 \quad \text{at} \quad \zeta = H_0$$

Height of coordinate surfaces with a constant pressure upper boundary.

Diurnal Heating Test Case

Initial (inverse) temperature:

$$T^{-1} = T_b^{-1} - \left(T_b^{-1} - T_t^{-1}\right) \tanh \frac{z - z_b}{z_d}$$

Diurnal temperature variation as $z \rightarrow \infty$:

$$T_t = \overline{T} + \Delta T_d \cdot \sin 2\pi \left(\frac{x}{L_e} + \omega t\right)$$

Physically realistic solutions require dissipation in the horizontal momentum equation.

MPAS and WRF Results at 1 day

Diurnal Heating with Rigid Lid Upper Boundary

Simplified test case configuration to compare with linear analytic solution

• Initial temperature independent of height:

$$T = \bar{T} + \Delta T_d \cdot \sin\left(\frac{2\pi x}{L_e}\right)$$

Heating function independent of height:

$$\frac{\partial T}{\partial t} = 2\pi\Delta T_d \cdot \cos 2\pi \left(\frac{x}{L_e} + \omega t\right)$$

• Linear analytic solution:

$$w = \omega \frac{\Delta T_d}{\bar{T}} \left[z - H_0 \frac{e^{z/H_s} - 1}{e^{H_0/H_s} - 1} \right] \cdot \cos 2\pi \left(\frac{x}{L_e} + \omega t \right)$$
$$T = \bar{T} + \Delta T_d \left[1 + \frac{RH_0}{c_v H_s} e^{-(H_0 - z)/H_s} \right] \cdot \sin 2\pi \left(\frac{x}{L_e} + \omega t \right)$$

Comparison with Rigid Lid Results at 1 day

Summary

- Height-based hybrid terrain-following coordinates seem well suited for deep atmosphere domains.
- For applications extending into the thermosphere, realistic simulations may require an upper boundary that permits vertical expansion/contraction of the atmosphere.
- For a height-based vertical coordinate, the rigid lid upper boundary can be relaxed through a simple coordinate transform that requires only minor modifications to the model numerics.
- Applying a hydrostatic adjustment each time step, the upper boundary can adaptively move to follow a desired constant pressure surface.
- An idealized diurnal heating test case confirms the viability of the technique and emphasizes the importance of relaxing the rigid lid
 constraint

constraint.