

CAR

BRINGING REALISTIC AEROSOL EMISSIONS AND INITIALIZATION TO IMPROVE CLOUD CONDENSATION NUCLEI AND ICE NUCLEI REPRESENTATION IN MPAS FORECASTS

Laura D. Fowler¹, Mary C. Barth^{1,2}, Michael G. Duda¹, and Duseong Jo²

¹Mesoscale and Microscale Meteorological Laboratory ²Atmospheric Chemistry Observations & Modeling National Center for Atmospheric Research, Boulder, Colorado. USA.

2022 JOINT WRF/MPAS USERS' WORKSHOP (6th-9th June 2022), Boulder, Colorado

The aerosol-aware Thompson parameterization of cloud microphysics (Thompson and Eidhammer, 2014)

Cloud microphysics processes follow Thompson et al. (2004, 2008).

> The aerosol-aware option includes the activation of cloud condensate nuclei (CCN) and ice nuclei (IN).

> The aerosol-aware option groups aerosols in two categories: "water-friendly" hygroscopic aerosols for cloud droplet nucleation, and "ice-friendly" non hygroscopic aerosols for cloud ice activation.

- "Water-friendly" aerosols include organic carbon, sulfates, sea salts, and dust mass less than 0.5 μm. Cloud droplet activation follows Saleeby and Cotton (2004, 2008). Parameterized surface emission.
- "Ice-friendly" aerosols includes non hygroscopic dust mass larger than 0.5 μm. Cloud ice activation follows Demott et al. (2010) and Phillips et al. (2008). Dust emission needs to be linked to a dust model.

> Global distributions of monthly-mean "water-friendly" and "ice-friendly" aerosols are based on the 2001-2007 GOCART simulations (Ginoux et al. 2001).

Motivations

1. Implement physically-based aerosols-clouds interactions that includes

- Surface emissions of anthropogenic aerosols from the monthly-mean CAMS inventory.
- Initialization of aerosols using CAM-Chem outputs.
- > Parameterized emissions of natural aerosols (sea-salts, dust) from the GOCART bulk aerosol model.

2.Add links between physics and chemistry.

PHYSICS

SCALE-AWARE GRELL-FREITAS CONVECTIVE SCHEME

 convective transport of aerosols and passive tracers, including wet scavenging.

THOMPSON AEROSOL-AWARE CLOUD MICROPHYSICS SCHEME

- nucleation of "water-friendly" aerosols to cloud water number.
- nucleation of "ice-friendly" aerosols to cloud ice number.

EDMF MYNN PBL SCHEME

PBL and free-atmosphere mixing of aerosols and passive tracers.

PHYSICS

SCALE-AWARE GRELL-FREITAS CONVECTIVE SCHEME

 convective transport of aerosols and passive tracers, including wet scavenging.

THOMPSON AEROSOL-AWARE CLOUD MICROPHYSICS SCHEME

- nucleation of "water-friendly" aerosols to cloud water number.
- nucleation of "ice-friendly" aerosols to cloud ice number

EDMF MYNN PBL SCHEME

PBL and free-atmosphere mixing of aerosols and passive tracers.

11th June 2012 Mesoscale Convective System observed during the DC3 campaign Transect of "water-friendly" aerosols (x10⁹ nb kg⁻¹) at the peak of the MCS (no surface emissions)

CHEMISTRY

GOCART-BASED SCHEME

update anthropogenic, sea-salts, and dust aerosols using realistic surface emissions.

PHYSICS

SCALE-AWARE GRELL-FREITAS CONVECTIVE SCHEME

 convective transport of aerosols and passive tracers, including wet scavenging.

THOMPSON AEROSOL-AWARE CLOUD MICROPHYSICS SCHEME

- nucleation of "water-friendly" aerosols to cloud water number.
- nucleation of "ice-friendly" aerosols to cloud ice number

EDMF MYNN PBL SCHEME

PBL and free-atmosphere mixing of aerosols and passive tracers.

SURFACE EMISSIONS

INITIAL CONDITIONS

CAM-Chem/MAM4

Initialize anthropogenic, sea-salt, and dust aerosols

MAM4: Modal Aerosol Module (v4)

> update anthropogenic organic carbon, and sulfates.

CAMS MONTHLY-MEAN INVENTORY

CAMS: Copernicus Atmosphere **Monitoring Service**

GOCART-BASED SCHEME

update sea-salt, dust aerosols using

the GOCART emission schemes.

GOCART-BASED SCHEME

update anthropogenic, sea-salts, and dust aerosols using realistic surface emissions.

SCALE-AWARE GRELL-FREITAS CONVECTIVE SCHEME

 \triangleright convective transport of aerosols and passive tracers, including wet scavenging.

THOMPSON AEROSOL-AWARE CLOUD MICROPHYSICS SCHEME

PHYSICS

- nucleation of "water-friendly" aerosols to \geq cloud water number.
- \geq nucleation of "ice-friendly" aerosols to cloud ice number

EDMF MYNN PBL SCHEME

PBL and free-atmosphere mixing \geq of aerosols and passive tracers.

Monthly-mean emissions of anthropogenic aerosols (OC, SO2) from the Copernicus Atmosphere Monitoring Service (CAMS) are interpolated to MPAS meshes with the pythonbased ESMF-regridding script developed by Duseong Jo.

- Read as an input stream.
- Interpolation of the monthly-mean surface emissions to the initial start time.

MAPPING OF CAM-Chem/MAM4 AEROSOLS TO THOMPSON AEROSOLS: STEP 1

MAPPING OF CAM-Chem/MAM4 AEROSOLS TO THOMPSON AEROSOLS: STEP 2

WATER-FRIENDLY AEROSOLS IN LAYER ADJACENT TO SURFACE

ICE-FRIENDLY AEROSOLS IN LAYER ADJACENT TO SURFACE

[EQ-10°S] AVERAGED WATER-FRIENDLY AEROSOLS (x 10⁹ nb kg⁻¹)

- 1. We built and tested a novel initialization of aerosols in MPAS:
 - > We mapped CAM-Chem/MAM4 aerosols to the *Thompson* aerosols.
 - > We implemented realistic surface emissions of anthropogenic and natural (primary) aerosols (dust, sea salt).
 - Initial spinup runs are as we expect and encouraging.
- 2. Future work includes
 - > Redo some of the earlier experiments that we did without surface emissions.
 - > Expand our implementation to variable-resolution experiments.