Modeling transport of Saharan mineral dust over the Iberian Peninsula: A multi-scheme assessment of size distribution and optical properties

Miguel Pino Carmona¹, Guadalupe Sánchez Hernández², José Antonio Ruiz Arias³

¹University of Granada, ² University of Jaén, ³ University of Málaga

Joint WRF/MPAS Users' Workshop 2022, 8th June 2022

Contact: miguelpino@ugr.es

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ の へ · 2

Study context

- 2 Calibration of dust emission
- 3 AOD comparisons

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)3

Objective **Evaluation** of three of the most usual aerosol schemes available in WRF-chem (**GOCART, MOSAIC and MADE**) under a strong **dust outbreak** in the south of the Iberian Peninsula.

How? We divide the task in two steps:

- **Calibration** of the **amount of dust** predicted with respect to AERONET inversion data;
- Intercomparison of AOD outputs against two AERONET stations.

Study context

AERONET stations:

- Granada (37.164 N,3.605 W), elevation=680 m.
- Cerro Poyos (37.109 N,3.487 W), elevation=1809 m.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Study context

AERONET inversion data, date: 24/07, 07:11

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで ヵ

Study context

2 Calibration of dust emission

3 AOD comparisons

How can we make this calibration?

- The dust flux emission for GOCART, MOSAIC and MADE is modeled using the **GOCART dust emission scheme**.
- The dust emission flux is governed by the equation

$$F_{p} = \mathbf{C}Ss_{p}U^{2}(U - u_{*t}) \quad . \tag{1}$$

▲□▶ ▲圖▶ ▲ ≣▶ ▲ ≣▶ ■ ● のへで

• The C parameter (*ch_dust* in WRF) adjusts the total flux.

Calibration of dust emission

Different dust size distributions:

Approach:

- Simulations with GOCART using **multiple values** for **ch_dust**.
- The total dust volume concentration predicted by WRF is compared against the observed one at the AERONET sites.
- The optimal ch_dust is the one that minimizes the total dust volume concentration mean square differences between GOCART and AERONET.

Calibration of dust emission

* ch_dust values are in $\frac{s^2}{m^2}$.

Calibration of dust emission

Calibration of dust emission: Schemes

• Optimal $ch_{-}dust$ value: 0.655, $\frac{s^2}{m^2}$, WRF recommends 0.65 $\frac{s^2}{m^2}$.

• We use $ch_{-}dust = 0.65 \frac{s^2}{m^2}$ hereinafter.

Key observations:

- The optimal **ch_dust** is **consistent** with the one recommended in WRF.
- **Dust amount** predictions: MADE > MOSAIC > GOCART (however, similar time evolution).
- Same dust emission scheme + different dust size distributions.

Hypothesis: The dust size **redistributions** among models have a **impact** in the **total dust volume concentrations**.

Study context

Approach:

- Simulations with GOCART, MOSAIC and MADE using ch_dust = 0.65 with the optical scheme 1: volume approximation.
- The AOD predicted by WRF is compared against the observed one at the AERONET sites.
- The **AOD** predicted by WRF is studied by its **wavelength dependence**.

AOD time evolution at different wavelengths, Cerro Poyos

- 20

AOD parameters time evolution, Cerro Poyos

 ${}^{*}\tau_{\lambda}=\beta\left(\tfrac{\lambda}{1\,\mu\mathrm{m}}\right)^{-\alpha}$

Study context

- 2 Calibration of dust emission
- 3 AOD comparisons

Summary

- Under the same *ch_dust* (the optimal one for GOCART):
 - Dust predicted: MADE > MOSAIC > GOCART.
 - AOD predicted: MADE < MOSAIC < GOCART.
 - Agreement with AERONET β :
 - GOCART MOSAIC: 🙂;
 - MADE: 😕.
 - Agreement with AERONET $\alpha :$

• GOCART: 🙂:

- MOSAIC MADE: 😕.
- Same optical module for GOCART, MADE and MOSAIC except for a redistribution pre-routine: