A Cold-Bias Problem over Lowland Snow Using the Noah-MP LSM: Demonstration of the Problem and Possible Solutions

David Ovens and Cliff Mass

University of Washington

Unrealistic extreme cold for Western Washington Lowlands

WRF 2m Temperature Forecast

12-hr Fcst valid 12 UTC 28 Dec 2021

Below 12°F Forecast Observed low 20s BARB VECTORS: FULL BARB = 10 kts 16 24 32 48 56 64 72 ٥F 8 4Ω

Joint WRF/MPAS Users' Workshop 2022

-8

Observed 12 UTC 28 December 2021

Verification

2m Temp Bias (Model minus Obs)

- Domain average bias = -5.65°F
- Many sites more than 10°F too cold

Looking at Sea-Tac, many ensembles also over 10°F too cold!

- 00Z 28 Dec 2021 WRF Ensemble Forecasts (lines) Obs (orange circles)
- One or two relatively realistic

The unrealistic Extreme Cold Forecast in WRF in this and other events have two things in common:

Snow Cover

Noah-MP LSM

Direct Soil

vaporation

Evaporation from Open Water

Gravitational Flow

Joint WRF/MPAS Users' Workshop 2022

Deposition/

Sublimation

to/from

snowpack

Snowmelt

 $\Delta Z = 10 \text{ cm}$

 $\Delta Z = 30 \text{ cm}$

 $\Delta Z = 60 \text{ cm}$

 $\Delta Z = 100 \text{ cm}$

Soil Heat Flux

Internal Soil

Heat Flux

Some Questions

• Why the extreme cold bias when using Noah-MP LSM during winter periods with snow cover?

• Are other LSMs better?

• Can Noah-MP performance be improved with the right settings or physics options?

Noah is Better than Noah-MP in Such Situations

Joint WRF/MPAS Users' Workshop 2022

Noah is Better than Noah-MP in Such Situations

Joint WRF/MPAS Users' Workshop 2022

2m Temperature Bias Comparisons

Noah-MP Domain average bias = -5.65°F Noah Domain average bias = -2.66°F

Next Steps

- Noah better for this snow cover case
- Noah-MP better for other times of year
- Can we somehow keep Noah-MP for winter?
- Experiment with Physics and Noah-MP Options to Lessen the Cold Bias Problem

Use Ensembles as Starting Point

- Attempt to address rapid cooling
- Use 12-km Domain

00Z 28 Dec 2021 WRF Ensemble Forecasts

Experiments to improve cold bias over snow

Physics	Real-time Configuration	Test Configurations
Code	WRF-ARW 4.1.3	WRF-ARW 4.3.2
Land Surface Model	Noah-MP, default namelist options	Noah, RUC, Noah-MP plus various Noah-MP namelist options
Shortwave Radiation	RRTMG	RRTMG and Goddard
Longwave Radiation	RRTMG	RRTMG and Goddard
Surface Layer	Revised MM5 Monin-Obukhov	Revised MM5 Monin-Obukhov, old MM5 (sf_sfclay_physics =91), and MYNN
Microphysics	Thompson	Thompson and Thompson aerosol-aware
PBL	YSU	YSU and MYNN Level 2.5 TKE
Other		Various Noah-MP code mods to limit effects of snow
Noah-MP Namelist Options	Default	Tried all other values for opt_snf and opt_stc

Experiments led to TSNO "Tuned Snow":

Physics options, code mods, and preprocessing for use with Noah-MP

Physics

► MYNN level 2.5 TKE PBL

➢Goddard SW paired with RRTMG LW

>Old MM5 surface layer (option 91)

> Thompson aerosol-aware microphysics

Noah-MP code mods – attempt to limit effects from shallow snow

➤Use Verseghy (1991) snow thermal conductivity and limit to <= 0.25</p>

- Require deeper SNOWH (0.15 vs 0.05) in snow surface temperature and ground snow cover fraction calculations
- Set snow depth and snow water equivalent to 0 for larger SNOWH values (1e-3 vs 1e-6) and SNEQV (1 vs 1e-3)

•Preprocessing – limit effects of fresh snow on warm ground

Set SNOWH, SNOW, SNOWC = 0 when top soil layer temperature exceeds 0°C

Results for 1 Dec 2021 – 31 Jan 2022 Select Cases 12-km Domain

- TSNO and other LSMs improve skill
- TSNO better for combination of 00Z and 12Z

Joint WRF/MPAS Users' Workshop 2022

TSNO and Other LSMs vs 28 December 2021 Ensemble Runs

TSNO and other LSMs mitigate rapid cooling problem

Sea-Tac 00 UTC 28 – 29 Dec 2021

- Ensemble Forecasts (lines)
- Observations (circles)

Summary

- Noah-MP exhibits cold bias over snow cover
- Other LSMs better at predicting 2m temperatures over snow especially the overnight low temperatures
- Noah-MP 2m Temperatures can be improved by:
 - Choosing different Physics
 - Using some Noah-MP code mods
 - Removing snow inputs when top soil level temperature exceeds 0°C

Questions or suggestions?

Experiments led to TSNO "Tuned Snow":

Physics options, code mods, and preprocessing for use with Noah-MP

Physics

► MYNN level 2.5 TKE PBL

➢Goddard SW paired with RRTMG LW

>Old MM5 surface layer (option 91)

> Thompson aerosol-aware microphysics

Noah-MP code mods – attempt to limit effects from shallow snow

➤Use Verseghy (1991) snow thermal conductivity and limit to <= 0.25</p>

- Require deeper SNOWH (0.15 vs 0.05) in snow surface temperature and ground snow cover fraction calculations
- Set snow depth and snow water equivalent to 0 for larger SNOWH values (1e-3 vs 1e-6) and SNEQV (1 vs 1e-3)

•Preprocessing – limit effects of fresh snow on warm ground

Set SNOWH, SNOW, SNOWC = 0 when top soil layer temperature exceeds 0°C

Extra Slides

Examining statistics from Dec 1, 2021 through Jan 31, 2022.

Examining statistics from Dec 1, 2021 through Jan 31, 2022.

Snow Cover from NOAA's Hydrologic Remote Sensing Center

