THREE DIMENSIONAL STRUCTURE OF CONVECTIVELY COUPLED EQUATORIAL WAVES IN MPAS-ATMOSPHERE

Rosimar Rios-Berrios,

Mesoscale and Microscale Meteorology Lab | NCAR

2022 WRF/MPAS Users Workshop

With many thanks to George Bryan, Brian Medeiros, Falko Judt, Wei Wang, NCAR MMM, and NCAR CISL

	methods	results	conclusions	
Tropical convection	, inconcriterate water	م م براید به برم دار معرف		

- Tropical rainfall is an important component of the global hydrological cycle
- Many communities in the tropics are incredibly sensitive to tropical rainfall *variability*, which can be critical for their economy or disastrous to their communities

	methods	results	conclusions	
Tropical convection	: important. vet	poorly predicted		

- Tropical rainfall is an important component of the global hydrological cycle
- Many communities in the tropics are incredibly sensitive to tropical rainfall *variability*, which can be critical for their economy or disastrous to their communities

	methods	results	conclusions	
Tropical convection	n important vet r	oorly predicted		

- Tropical rainfall is an important component of the global hydrological cycle
- Many communities in the tropics are incredibly sensitive to tropical rainfall *variability*, which can be critical for their economy or disastrous to their communities

courtesy of EOS

courtesy of SciDevNet

methods

results

"We have **difficulties with reliable representations** of tropical convection in our global weather/climate models, partly because of the **complex hierarchy of interacting scales**, **processes, and phenomena**" Moncrieff et al. 2012, BAMS

courtesy of NASA

	methods	results	conclusions
Tropical convect	ion: modeling challenges		
○ Double ITCZ	problem	🔿 Too mu	ch light rain too frequently
(e.g., Mechoso et	al., 1995; Hwang and Frierson 2020)	(e.g., Step	hens et al. 2010)

- Poor representation of equatorial waves and MJO (e.g., Straub et al. 2010, Dias et al. 2018)
- Lack of convective organization (e.g., Moncrieff et al. 2012)

 $\, \odot \,$ Double ITCZ problem

(e.g., Mechoso et al., 1995; Hwang and Frierson 2020)

 Poor representation of equatorial waves and MJO (e.g., Straub et al. 2010, Dias et al. 2018)

- Too much light rain too frequently (e.g., Stephens et al. 2010)
- Lack of convective organization (e.g., Moncrieff et al. 2012)

	methods	results	conclusions
Tropical convec	tion: modeling challenges		
 Double ITCZ (e.g., Mechoso e 	Z problem t al., 1995; Hwang and Frierson 2020)	○ Too mu (e.g., Step	ch light rain too frequently hens et al. 2010)
O Poor represe	ntation of equatorial waves	\bigcirc Lack of	convective organization

and MJO (e.g., Straub et al. 2010, Dias et al. 2018)

(e.g., Moncrieff et al. 2012)

These issues are believed to stem, at least partially, from:

○ deficiencies in the **convection parameterizations**,

• poor knowledge about multi-scale interactions in the tropics

motivation	results	conclusions

1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

approach

modeling experiments using MPAS-A Rios-Berrios, et al. (2020), JAMES

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

approach

modeling experiments using MPAS-A Rios-Berrios, et al. (2020), JAMES

analysis

comparison of equatorial waves with resolved or parameterized convection

> Judt and Rios-Berrios (2021), Rios-Berrios et al., revised for *JAMES*

motivation		results	conclusions
Equatorial waves i	n a simplified yet reali	istic framework	

motivation	results	conclusions

Equatorial waves in a simplified yet realistic framework

Earth-like aquaplanet

- × land
- × sea-ice
- × seasons
- 🗸 diurnal cycle
- rotation
- \checkmark meridional \triangle SST

Model physics from the real world

WSM6 microphysics | YSU PBL | RRTMG radiation | scale-aware Tiedtke cumulus*

motivation		results	conclusions
A hierarchy of e	xperiments		
120	-km cell spacing		30-km cell spacing
<u>de</u>	222		
		Se Come	
	STORY &	()).	at the start
15-	-km cell spacing	3-km	cell spacing (in the tropics)
a de	2000		792220
0.64	8 1.33 2.73 5.82 11.5 22.7 43.6 99.9 205 421 865	190 195 200 205 210	215 220 225 200 245 240 245 250 255 260 265 270 U.R.W.M.
			rberrios@ucar.edu

motivation		results	conclusions	
A hierarchy of e	experiments			

Analysis based on the **last 100 simulation days**

15-km cell spacing

30-km cell spacing

3-km cell spacing (in the tropics)

190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 OLR (W m⁻⁶)

motivation	methods	conclusions

Resolved deep convection captures more tropical rainfall variability

Rios-Berrios et al., revised for JAMES

Rios-Berrios et al., revised for JAMES

Rios-Berrios et al., revised for JAMES

These results are consistent with real-data forecasts (Judt and Rios-Berrios 2021)

All experiments capture the overall rainfall structure, but the waves are stronger when deep convection is resolved

All experiments capture the overall rainfall structure, but the waves are stronger when deep convection is resolved

Rios-Berrios et al., in prep for J. Climate

motivation	methods	results	conclusions
different	H wave-relative rainfall r structu	ypothesis: ates result from ire of the waves	differences in the vertical

motivation	methods		conclusions		
Hypothesis: different wave-relative rainfall rates result from differences in the vertical structure of the waves					
	rainfall	rate $\approx -\epsilon q_v \omega_{uv}$			

 ϵ : precipitation efficiency q_v : specific humidity ω_{up} : *upward* vertical velocity Doswell (1996)

motivation	methods		conclusions			
Hypothesis: different wave-relative rainfall rates result from differences in the vertical structure of the waves						

rainfall rate $\approx -\epsilon q_v \omega_{up}$

 ϵ : precipitation efficiency q_v : specific humidity ω_{up} : *upward* vertical velocity Doswell (1996)

Analysis:

 \bigcirc compare the wave-relative vertical structure of q_v and ω

○ compare against reanalysis (ERA5) for waves only in the Pacific Ocean

Overall consistent structure between ERA5 and MPAS, but much stronger ascent and descent in the 3-km experiment

motivation	methods	conclusions

motivation	methods		conclusions		
Composite specific humidity (q_v) for Kelvin waves					
	ERA5 (2001-2020)	3-km MPAS	15-km MPAS	1)	
200 -	-		-	♦	
				- 0.45 j	

Overall consistent structure between ERA5 and MPAS, but dry layer present in the 15-km (and 30-km) experiments

Composite temperature for Kelvin waves

Stronger temperature anomalies also present in the 15-km (and 30-km) experiment

Potential explanation: different heating profiles, especially near and below the *melting level*

Potential explanation: different heating profiles, especially near and below the *melting level*

Potential explanation: different heating profiles, especially near and below the *melting level*

Parameterized melting in the *new* Tiedtke scheme affects the vertical structure of heating/cooling

Parameterized melting in the *new* Tiedtke scheme affects the vertical structure of heating/cooling

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

approach

- 1. Can **explicitly resolved deep convection** alleviate some of the modeling issues regarding tropical rainfall?
- 2. What is the sensitivity of **equatorial waves and their structure** to whether convection is explicitly resolved or parameterized?

approach

results

- Resolved deep convection (with WSM6+YSU) captures:
 - more tropical rainfall variability
 - stronger equatorial waves
 - more accurate vertical structure
- Processes around the melting level seem critical

These results are also valid for real-data simulations (i.e., DYAMOND).