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Background
Channel Model

- Channel models are zonally 
global but meridionally 
confined

- Tropical channel models 
(TCMs) have been in use for 
a while (Ray et al 2009, JAS)

- The main advantages are:
(i) higher resolution than GCMs
(ii) fewer lateral boundary
conditions than regional model, 
(iii) controlling the influence 
from low or high latitude 
through meridional boundaries

Tropical channel model

Midlatitude channel model

- Performance of channel models against GCMs is not known 
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Motivation
- To explore whether a mid-latitude channel model (MCM) 

can outperform contemporary GCMs
- To explore the geographical regions where tropical (MJO) 

forcings are most effective in modulating mid-latitude 
circulation
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Model, Data, and Method

Model: WRF 3.8 forced by ERA-Interim
Mercator projection (0–360E, 26N-60N)

Horizontal Resolution: ~0.33°Vertical Layers: 40
1 December 1999 to 31 December 2003; output: 6 hourly

MCM simulations
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Model, Data, and Method

Observed/Reanalysis data 

ERA-Interim reanalysis (~ 79 km; 60 layers)
GPCP and TRMM

Atmospheric GCMs 
20 Atmospheric Model Intercomparison Project (AMIP5) models 

horizontal resolution range: 0.19×0.19° to 2.8×2.8°
vertical layers: 18 to 60

Method 
All data interpolated to 2.5×2.5°and 17 vertical layers

Monthly data
Multi-model ensemble (MME) based on 20 AMIP5 models
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Results
- Performance of a midlatitude channel model (MCM) 

compared to AGCMs
- Comparison with observation/reanalysis and multi-model 

ensemble (MME) based on 20 AMIP5 models
- Possible reasons for MCM’s superior/inferior performance 

- Exploring the role of MJO on midlatitude circulation
- Geographical regions where the MJO influence is 

predominant
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Performance of MCM

- Realistic spatial structure 
- Differences in observations over 

western oceans

MCM AMIP
Precipitation 
(mm day-1)

Bias 0.2 0.5
RMSE 0.5 1.0

CC 0.81 0.71
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Performance of MCM

- Biases are larger over land 
- AMIP models consistently underestimate T2
- MCM outperforms AMIP for climatology and seasonal cycle
- What about eddies? 
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Heat Transport by Eddies 
• Zonally averaged meridional heat 

transport:
𝑣𝑇 = �̅� %𝑇 + �̅�∗ %𝑇∗ + 𝑣(𝑇(

• v=meridional velocity
• T=temperature
• [ ]= zonal averaging
• * =time averaging 
• ∗ =departure from zonal averaging
• ( =departure from time mean
• Mean circulations

- Peak in transport by stationary 
eddies displaced southward and 
downward in AMIP 

- Weaker heat transport by 
transients in AMIP 

TransientStationary
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Possible reasons behind MCM’s superior performance

- Higher resolution in MCM than most AMIP models: 18 out of 20 
AMIP models had coarser resolution than MCM. Only 2 models (GFDL-

HIRAM and MRI-AGCM3) had higher resolution
- Use of observed (reanalysis) boundary conditions

- A new MCM simulation with coarser resolution (1.0×1.0) was 
compared against 5 AMIP models with higher resolution (0.5×0.5)

To test resolution dependence: 

- This coarse resolution MCM outperforms ensemble based on 5 
higher-resolution AMIP

- MCM also performs better than GFDL-HIRAM 
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Results
- Performance of a midlatitude channel model (MCM) 

compared to AGCMs
- Comparison with observation/reanalysis and multi-model 

ensemble (MME) based on 20 AMIP5 models
- Possible reasons for MCM’s superior performance 

- Exploring the role of MJO on midlatitude circulation
- Geographical regions where the MJO influence is 

predominant
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Role of MJO on midlatitude 

Control: December 1999 to  February 2000

MJO_removal: Same as control, but lateral boundary conditions 
based on annual cycle from reanalysis.
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Anomalous T2 at different MJO phases (Dec 1999- Feb 2000)

- Most GCMs struggle to capture the magnitude of anomalies likely due to erroneous 
MJO (Stan et al. 2022, BAMS) 

- MCM simulation was realistic; 



14

Control vs MJO_Removal (Dec 1999- Feb 2000)

- Magnitude of anomalies weakened during MJO active phases over North America
- Significant difference in MJO inactive phases is possibly due to higher frequency events 
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Summary

•A midlatitude channel model (MCM) based on WRF
outperforms an ensemble of 20 contemporary AGCMs.

•A coarse resolution (1x1) MCM outperforms an ensemble of
higher resolution (~0.5x0.5) AMIP models.

• The MCM captures the midlatitude circulation at different
MJO phases, and points to geographical regions where MJO
impact may be predominant.
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Extra Slides
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• Kain-Fritsch scheme for cumulus parameterization
• Noah land surface model for surface layer 

parameterization
• Rapid radiative transfer model scheme for 

longwave radiation
• Goddard scheme for shortwave radiation
• Yonsei scheme for planetary boundary layer
• WRF Single Moment 6 for microphysics

Parameterizations
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Performance of MCM
Seasons

Variables
Annual DJF JJA

MCM AMIP MCM AMIP MCM AMIP

Over Land
Precipitation 
(mm day-1)

Bias 0.2 0

RMSE 0.4 0.2
CC

T2
(K)

Bias

RMSE

CC

W10 
(m s-1)

Bias

RMSE
CC

Wind850hPa (m 
s-1)

Bias

RMSE
CC

Wind200hPa (m 
s-1)

Bias
RMSE

CC

- What about eddies? 
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Performance of MCM
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Performance of MCM

Seasons
Variables

Annual DJF JJA
MCM AMIP MCM AMIP MCM AMIP

Over Land
Precipitation 
(mm day-1)

Bias 0.3(0.3) 0.6(0.5) 0.2(0.2) 0(-0.1) 0.2(0.2) 0.7(0.7)

RMSE 0.5(0.5) 1.1(1.0) 0.4(0.5) 0.2(0.2) 0.6(0.6) 1.5(1.3)
CC 0.81(0.80) 0.7(0.72) 0.75(0.75) 0.63(0.66) 0.85(0.84) 0.7(0.71)

T2
(K)

Bias -0.1(-0.1) -0.4(-0.3) -0.1(-0.1) -0.3(0.2) -0.2(-0.2) -0.5(-0.4)

RMSE 0.4(0.4) 0.8(0.6) 0.3(0.3) 0.6(0.4) 0.6(0.6) 1.0(0.8)

CC 0.87(0.86) 0.85(0.88) 0.82(0.82) 0.80(0.81) 0.93(0.93) 0.87(0.89)

W10 
(m s-1)

Bias -0.3(-0.3) -0.5(-0.4) -0.5(-0.5) -0.7(-0.6) -0.2(-0.2) -0.4(-0.4)

RMSE 1.1(1.1) 1.6(1.4) 1.5(1.5) 1.9(1.7) 0.8(0.8) 1.3(1.2)
CC 0.92(0.92) 0.90(0.91) 0.91(0.90) 0.87(0.89) 0.93(0.92) 0.91(0.91)

Wind850hPa (m 
s-1)

Bias -0.2(-0.3) -0.4(-0.4) -0.4(-0.5) -0.7(-0.6) 0.1(0.1) 0.2(0.2)

RMSE 1.2(1.4) 2.9(2.7) 1.5(1.7) 3.7(3.4) 0.8(0.9) 2.1(1.9)
CC 0.94(0.93) 0.93(0.94) 0.93(0.93) 0.92(0.92) 0.92(0.91) 0.9(0.9)

Wind200hPa (m 
s-1)

Bias 0.7(0.7) 1.3(1.1) 0.9(0.9) 1.4(1.2) 0.5(0.5) 1.1(0.9)
RMSE 2.5(2.6) 4.7(4.3) 3.1(3.2) 4.9(4.4) 1.9(2.1) 4.1(3.5)

CC 0.77(0.76) 0.76(0.76) 0.81(0.80) 0.78(0.79) 0.76(0.76) 0.75(0.77)
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Possible reasons behind MCM’s superior performance

MCM versus GFDL-HIRAM 

MCM

AMIP



MJO Active 
Region
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Background

Channel Model

- Channel models are zonally 
global but meridionally 
confined.

- Tropical channel models 
(TCMs) have been in use for 
a while (Ray et al 2009, JAS; 
Ray et al. 2011, Clim Dyn).

- Performance of TCMs 
against GCMs is not known. 
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Possible reasons behind MCM’s superior performance

Coarse-resolution MCM versus higher-resolution AMIP models 

MCM
(1°res)

AMIP
(~0.5°

res)

- MCM outperforms ensemble based on 5 higher-resolution AMIP
- Also performs better than GFDL-HIRAM 
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Role of MJO on midlatitude (MJO_Removal – Control) 


