
Mesoscale and Microscale Meteorology Laboratory
National Center for Atmospheric Research 

Version 3 Modeling System User’s Guide
January 2018

ARW
W

ea
th

er
 R

es
ea

rc
h
 a

nd
 F

or
ec

as
ti

ng



!



Foreword 
  
  
This User’s Guide describes the Advanced Research WRF (ARW) Version 3.9 modeling 
system, released in April 2017. As the ARW is developed further, this document will be 
continuously enhanced and updated. Please send feedback to wrfhelp@ucar.edu. 
 
This document is complementary to the ARW Tech Note 
(http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf), which describes the equations, 
numerics, boundary conditions, and nesting etc. in greater detail.  
  
Highlights of updates to WRFV3.9 include: 

 
• WRF model: 

Vertical coordinate: 
o Hybrid sigma-pressure vertical coordinate: terrain-following near the surface, 

and gradually transitions to constant pressure at higher levels. 
Physics: 
o P3 microphysics (contributed by Morrison and Milbrandt); 
o Three urban models are added to NoahMP (Salamanca of Arizona State, 

Yizhou Zhang of IUM/CMA, China, and Barlage of NCAR); 
o Physics suite specification via namelist; 
o Improvement to RAP/HRRR and other physics; 
o Stochastically perturbed parameter scheme and stochastically perturbed 

physics tendencies (Judith Berner of NCAR) 
o Introduction of physics suites. 

• WPS: 
o Capability to drive WRF from MPAS native grid data; 
o 30-seconds BNU soil category dataset (Barlage of NCAR) 

• WRF-DA updates: 
o New assimilation capability: 4DEnVar (Nils Gustafsson of Swedish 

Meteorological and Hydrological Institute and Feng Gao of NCAR) 
o Cloudy radiance assimilation capability for AMSR-2 (Chun Yang of Nanjing 

University of Information Science & Technology) 
o Radar “null-echo” assimilation (Ki-Hong Min and Yu-Shin Kim; Kyungpook 

National University, Daegu, South Korea) 
• WRF-Chemistry 

o Tropospheric Ultraviolet and Visible (TUV) photolysis option (S. Walters, A. 
Hodzic, and S. Madronich of NCAR); 

o Coupled WSM6 microphysics with MOZART gas wet scavenging (Megan 
Bela of NOAA); 

o Modified GOGART dust scheme for SORGAM and MOSAIC chemistry; 
o A new trajectory option that monitors meteorological and chemical properties 

along air trajectories (ACOM/NCAR). 
 



For the latest version of this document, please visit the ARW Users’ Web site at 
http://www2.mmm.ucar.edu/wrf/users/.  
  
Contributors to this guide: 
Wei Wang, Cindy Bruyère, Michael Duda, Jimy Dudhia, Dave Gill, Michael Kavulich, 
Kelly Keene, Ming Chen, Hui-Chuan Lin, John Michalakes, Syed Rizvi, Xin Zhang, 
Judith Berner, Soyoung Ha and Kate Fossell 
Contributors to WRF-Fire chapter:   
Jonathan D. Beezley, Janice L. Coen, and Jan Mandel 
 
Special Acknowledgment: 
We gratefully acknowledge the late Dr. Thomas T. Warner for his years of research, 
development, instruction, leadership, and motivation in the field of NWP modeling. 
 



CONTENTS 
 

 
WRF-ARW V3: User’s Guide i 

1. Overview 
- Introduction  .................................................................................. 1-1 
- The WRF Modeling System Program Components ..................... 1-2 

 
2. Software Installation 

- Introduction ................................................................................... 2-1 
- Required Compilers and Scripting Languages ............................. 2-2 
- Required/Optional Libraries to Download ..................................... 2-3 
- Post-Processing Utilities ............................................................... 2-4 
- UNIX Environment Settings .......................................................... 2-4 
- Building the WRF Code ................................................................ 2-5 
- Building the WPS Code ................................................................ 2-6 
- Building the WRFDA Code (for 3DVAR) ...................................... 2-7 
- Building the WRFDA Code (for 4DVAR) …………………………...2-9 

 
3. The WRF Preprocessing System (WPS)  

- Introduction .................................................................................. 3-1 
- Function of Each WPS Program .................................................. 3-2 
- Installing the WPS ....................................................................... 3-5 
- Running the WPS ........................................................................ 3-8 
- Creating Nested Domains with the WPS ................................... 3-20 
- Selecting Between USGS and MODIS-based  

Land Use Data ........................................................................... 3-22 
- Selecting Static Data for the Gravity Wave Drag Scheme ........ 3-23 
- Using Multiple Meteorological Data Sources ............................. 3-24 
- Using Non-isobaric Meteorological Datasets .............................3-26 
- Alternative Initialization of Lake SSTs…………………………… 3-27 
- Parallelism in the WPS .............................................................. 3-29 
- Checking WPS Output ............................................................... 3-29 
- WPS Utility Programs ................................................................ 3-30 
- Writing Meteorological Data to the Intermediate Format ........... 3-34 
- Required Meteorological Fields for Running WRF.....................3-36 
- Using MPAS Output for WRF Initial and Boundary Conditions..3-37 
- Creating and Editing Vtables ..................................................... 3-40 
- Writing Static Data to the Geogrid Binary Format ..................... 3-42 
- Creating an Urban Fraction Field from NLCD Data .................. 3-45 
- Description of Namelist Variables .............................................. 3-47 
- Description of GEOGRID.TBL Options ...................................... 3-53 
- Description of index Options ...................................................... 3-56 
- Description of METGRID.TBL Options ...................................... 3-59 
- Available Interpolation Options in Geogrid and Metgrid ............ 3-62 
- Land Use and Soil Categories in the Static Data ...................... 3-65 
- WPS Output Fields .................................................................... 3-67 

 



CONTENTS 
 

 
WRF-ARW V3: User’s Guide ii 

 
4. WRF Initialization 

- Introduction .................................................................................. 4-1 
- Initialization for Ideal Cases ......................................................... 4-3 
- Initialization for Real Data Cases ................................................ 4-6 

 
5. WRF Model 

- Introduction  ................................................................................. 5-1 
- Installing WRF  ............................................................................ 5-2 
- Running WRF  ............................................................................. 5-8 
- Examples of namelists for various applications ......................... 5-37 
- Check Output  ............................................................................ 5-39 
- Trouble Shooting ....................................................................... 5-40 
- Physics and Dynamics Options ................................................. 5-40 
- Summary of PBL Physics Options……………………………….  5-56 
- Summary of Microphysics Options………………………………. 5-58 
- Summary of Cumulus Parameterization Options………………. 5-60 
- Summary of Radiation Physics Options.................................... 5-61 
- Description of Namelist Variables .............................................. 5-64 
- WRF Output Fields .................................................................. 5-126 
- Special WRF Output Variables.................................................5-133 

 
6. WRF Data Assimilation 

- Introduction .................................................................................. 6-2 
- Installing WRFDA for 3DVAR Run…. .......................................... 6-4 
- Installing WRFPLUS and WRFDA for 4DVAR Run ..................... 6-9 
- Running Observation Preprocessor (OBSPROC)  .................... 6-10 
- Running WRFDA ....................................................................... 6-14 
- Radiance Data Assimilations in WRFDA ................................... 6-23 
- Radar Data Assimilation in WRFDA...........................................6-34 
- Precipitation Data Assimilation in WRFDA 4D-Var…………….. 6-36 
- Updating WRF boundary conditions ......................................... .6-39 
- Background Error and Running GEN_BE...................................6-43 
- WRFDA Diagnostics .................................................................. 6-51 
- Generating Ensembles with RANDOMCV..................................6-55 
- Hybrid Data Assimilation in WRFDA ......................................... 6-56 
- ETKF Data Assimilation............................................................. 6-62 
- Additional WRFDA Options ....................................................... 6-66 
- Description of Namelist Variables .............................................. 6-69 

 
7. Objective Analysis (OBSGRID)  

- Introduction .................................................................................. 7-1 



CONTENTS 
 

 
WRF-ARW V3: User’s Guide iii 

- Program Flow .............................................................................. 7-2 
- Source of Observations ............................................................... 7-3 
- Objective Analysis techniques in OBSGRID ............................... 7-4 
- Quality Control for Observations ................................................. 7-6 
- Additional Observations ............................................................... 7-7 
- Surface FDDA option ................................................................... 7-7 
- Objective Analysis on Model Nests ............................................. 7-8 
- How to run OBSGRID .................................................................. 7-8 
- Output Files ............................................................................... 7-10 
- Plot Utilities ................................................................................ 7-13 
- Observations Format ................................................................. 7-15 
- OBSGRID Namelist ................................................................... 7-19 

 
8. WRF Software 

- WRF Build Mechanism ................................................................ 8-1 
- Registry ....................................................................................... 8-5 
- I/O Applications Program Interface (I/O API) ............................. 8-14 
- Timekeeping .............................................................................. 8-14 
- Software Documentation ........................................................... 8-15 
- Performance .............................................................................. 8-15 

 
9. Post-Processing Programs 

- Introduction .................................................................................. 9-1 
- NCL .  ........................................................................................... 9-2 
- RIP4 .  ......................................................................................... 9-21 
- ARWpost ................................................................................... 9-30 
- UPP   ......................................................................................... 9-37 
- VAPOR ...................................................................................... 9-39 

 
10. Utilities and Tools 

- Introduction ................................................................................ 10-1 
- read_wrf_nc ............................................................................... 10-1 
- iowrf .  ......................................................................................... 10-5 
- p_interp ...................................................................................... 10-6 
- TC Bogus Scheme .................................................................... 10-9 
- v_interp .................................................................................... 10-11 
- proc_oml.f ................................................................................ 10-13 
- Tools  ....................................................................................... 10-14 

 
Appendix A: WRF-Fire  

- Introduction .................................................................................. A-1 
- WRF_Fire in idealized cases ....................................................... A-3 



CONTENTS 
 

 
WRF-ARW V3: User’s Guide iv 

- Fire variables in namelist.input  ................................................... A-4 
- namelist.fire ................................................................................. A-5 
- Running WRF_Fire on real data .................................................. A-6 
- Fire state variables .................................................................... A-12 
- WRF-Fire software  ................................................................... A-13 

 
 
 
 
 
 
 
 
 
 
 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-1 

 
Chapter 1: Overview 

 

Table of Contents 

• Introduction  
• The WRF ARW Modeling System Program Components  

  

Introduction 

The Advanced Research WRF (ARW) modeling system has been in development for the 
past few years. The current release is Version 3, available since April 2008. The ARW is 
designed to be a flexible, state-of-the-art atmospheric simulation system that is portable 
and efficient on available parallel computing platforms. The ARW is suitable for use in a 
broad range of applications across scales ranging from meters to thousands of kilometers, 
including: 

• Idealized simulations (e.g. LES, convection, baroclinic waves)  
• Parameterization research  
• Data assimilation research  
• Forecast research 
• Real-time NWP 
• Hurricane research 
• Regional climate research 
• Coupled-model applications 
• Teaching 

The Mesoscale and Microscale Meteorology Division of NCAR is currently maintaining 
and supporting a subset of the overall WRF code (Version 3) that includes: 

• WRF Software Framework (WSF) 
• Advanced Research WRF (ARW) dynamic solver, including one-way, two-way 

nesting and moving nest. 
• The WRF Preprocessing System (WPS) 
• WRF Data Assimilation (WRF-DA) system which currently supports 3DVAR 

4DVAR, and hybrid data assimilation capabilities 
• Numerous physics packages contributed by WRF partners and the research 

community 
• Several graphics programs and conversion programs for other graphics tools 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-2 

And these are the subjects of this document. 

The WRF modeling system software is in the public domain and is freely available for 
community use.  

The WRF Modeling System Program Components  

The following figure shows the flowchart for the WRF Modeling System Version 3.  

 

As shown in the diagram, the WRF Modeling System consists of these major programs:  

• The WRF Preprocessing System (WPS) 
• WRF-DA 
• ARW solver 
• Post-processing & Visualization tools 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-3 

WPS 

This program is used primarily for real-data simulations. Its functions include 1) defining 
simulation domains; 2) interpolating terrestrial data (such as terrain, landuse, and soil 
types) to the simulation domain; and 3) degribbing and interpolating meteorological data 
from another model to this simulation domain. Its main features include: 

• GRIB 1/2 meteorological data from various centers around the world 
• USGS 24 category and MODIS 20 category land datasets; USGS GTOPO30 

elevation dataset; Global 5-minutes United Nation FAO, and North-America 
STATSGO 30 sec soil category dataset; 10-min greenness fraction data based on 
AVHRR and 30-sec greenness fraction data based on 10 years MODIS; MODIS-
based leaf-area index; 0.15 degree monthly albedo and snow albedo data; and 1-
degree deep soil temperature data; plus a few specialized datasets 

• Map projections for 1) polar stereographic, 2) Lambert-Conformal, 3) Mercator and 
4) latitude-longitude 

• Nesting 
• User-interfaces to input other static data as well as met data 

WRF-DA 

This program is optional, but can be used to ingest observations into the interpolated 
analyses created by WPS. It can also be used to update WRF model's initial conditions 
when the WRF model is run in cycling mode. Its main features are as follows: 

• It is based on an incremental variational data assimilation technique, and has both 3D-
Var and 4D-Var capabilities 

• It also includes the capability of hybrid data assimilation (Variational + Ensemble) 
• The conjugate gradient method is utilized to minimize the cost function in the 

analysis control variable space 
• Analysis is performed on an un-staggered Arakawa A-grid 
• Analysis increments are interpolated to staggered Arakawa C-grid and it gets added to 

the background (first guess) to get the final analysis of the WRF-model grid 
• Conventional observation data input may be supplied either in ASCII format via the 

“obsproc” utility or “PREPBUFR” format. 
• Multiple satellite observation data input may be supplied in BUFR format 
• Multiple radar data (reflectivity & radial velocity) input is supplied through ASCII 

format 
• Multiple outer loop to address the nonlinearity  
• Capability to compute adjoint sensitivity 
• Horizontal component of the background (first guess) error is represented via a 

recursive filter (for regional) or power spectrum (for global). The vertical component 
is applied through projections on climatologically generated averaged eigenvectors 
and its corresponding Eigen values 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-4 

• Horizontal and vertical background errors are non-separable. Each eigenvector has its 
own horizontal climatologically-determined length scale 

• Preconditioning of the background part of the cost function is done via the control 
variable transform U defined as B= UUT 

• It includes the “gen_be” utility to generate the climatological background error 
covariance estimate via the NMC-method or ensemble perturbations 

• A utility program to update WRF boundary condition file after WRF-DA   

ARW Solver 

This is the key component of the modeling system, which is composed of several 
initialization programs for idealized, and real-data simulations, and the numerical 
integration program. The key features of the WRF model include: 

• Fully compressible nonhydrostatic equations with hydrostatic option 
• Regional and global applications 
• Complete Coriolis and curvature terms  
• Two-way nesting with multiple nests and nest levels 
• Concurrent one-way nesting with multiple nests and nest levels 
• Offline one-way nesting with vertical nesting 
• Moving nests (prescribed moves and vortex tracking) 
• Mass-based terrain-following coordinate and optional hybrid sigma-pressure vertical 

coordinate 
• Vertical grid-spacing can vary with height  
• Map-scale factors for these projections:  

o polar stereographic (conformal) 
o Lambert-conformal 
o Mercator (conformal) 
o Latitude and longitude, which can be rotated 

• Arakawa C-grid staggering  
• Runge-Kutta 2nd and 3rd order time integration options  
• Scalar-conserving flux form for prognostic variables  
• 2nd to 6th order advection options (horizontal and vertical) 
• Monotonic transport and positive-definite advection option for moisture, scalar, 

tracer, and TKE 
• Weighted Essentially Non-Oscillatory (WENO) advection option 
• Time-split small step for acoustic and gravity-wave modes:  

o small step horizontally explicit, vertically implicit  
o divergence damping option and vertical time off-centering  
o external-mode filtering option 

• Upper boundary absorption and Rayleigh damping 
• Lateral boundary conditions  

o idealized cases: periodic, symmetric, and open radiative 
o real cases: specified with relaxation zone 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-5 

• Full physics options for land-surface, planetary boundary layer, atmospheric and 
surface radiation, microphysics and cumulus convection 

• Ocean models 
• Grid analysis nudging using separate upper-air and surface data, and observation 

nudging 
• Spectral nudging 
• Digital filter initialization 
• Adaptive time stepping 
• Orographic gravity wave drag 
• Stochastic parameterization schemes 
• A number of idealized examples 

Graphics and Verification Tools 

Several programs are supported, including RIP4 (based on NCAR Graphics), NCAR 
Graphics Command Language (NCL), and conversion programs for other readily 
available graphics packages like GrADS. 

Program VAPOR, Visualization and Analysis Platform for Ocean, Atmosphere, and 
Solar Researchers (http://www.vapor.ucar.edu/), is a 3-dimensional data visualization 
tool, and it is developed and supported by the VAPOR team at NCAR (vapor@ucar.edu). 

Program MET, Model Evaluation Tools (http://www.dtcenter.org/met/users/), is 
developed and supported by the Developmental Testbed Center at NCAR 
(met_help@ucar.edu). 

The details of these programs (with the exception of the MET program) are described 
more in the later chapters of this user's guide.  See the above link for information about 
MET. 

 

 

 

 

 

 

 

 



OVERVIEW 
 

 
WRF-ARW V3: User’s Guide 1-6 

 

 

 

 

 

 

 

 

 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-1 

 
 
  

Chapter 2: Software Installation  
 

Table of Contents 

• Introduction  
• Required Compilers and Scripting Languages  
• Required/Optional Libraries to Download  
• Post-Processing Utilities  
• UNIX Environment Settings  
• Building the WRF Code  
• Building the WPS Code 
• Building the WRFDA Code (for 3DVAR) 
• Building the WRFDA Code (for 4DVAR) 

_Building_the_WRF-VarIntroduction 

The WRF modeling system software installation is fairly straightforward on the ported 
platforms listed below. The model-component portion of the package is mostly self-
contained.  The WRF model does contain the source code to a Fortran interface to ESMF 
and the source to FFTPACK . Contained within the WRF system is the WRFDA 
component, which has several external libraries that the user must install (for various 
observation types and linear algebra solvers).  Similarly, the WPS package, separate from 
the WRF source code, has additional external libraries that must be built (in support of 
Grib2 processing).  The one external package that all of the systems require is the 
netCDF library, which is one of the supported I/O API packages. The netCDF libraries 
and source code are available from the Unidata homepage at http://www.unidata.ucar.edu 
(select DOWNLOADS, registration required).  

There are three tar files for the WRF code.  The first is the WRF model (including the 
real and ideal pre-processors).  The second is the WRFDA code. The third tar file is for 
WRF chemistry.  In order to run the WRF chemistry code, both the WRF model and the 
chemistry tar file must be combined. 

The WRF model has been successfully ported to a number of Unix-based machines. We 
do not have access to all of them and must rely on outside users and vendors to supply the 
required configuration information for the compiler and loader options. Below is a list of 
the supported combinations of hardware and software for WRF.  

    



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-2 

Vendor Hardware OS Compiler 

Cray  XC30 Intel  Linux  Intel 

Cray  XE AMD Linux  Intel 

IBM  Power Series  AIX  vendor  

IBM Intel Linux Intel / PGI / gfortran 

SGI  IA64 / Opteron  Linux  Intel  

COTS*  IA32  Linux  
Intel / PGI / 
gfortran / g95 / 
PathScale 

COTS  IA64 / Opteron  Linux  
Intel / PGI /  
gfortran /  
PathScale 

Mac Power Series Darwin xlf / g95 / PGI / Intel  

Mac Intel Darwin gfortran / PGI / Intel 
 

NEC NEC Linux vendor 

Fujitsu FX10 Intel Linux vendor 

* Commercial Off-The-Shelf systems 

The WRF model may be built to run on a single-processor machine, a shared-memory 
machine (that uses the OpenMP API), a distributed memory machine (with the 
appropriate MPI libraries), or on a distributed cluster (utilizing both OpenMP and MPI). 
The WRFDA and WPS packages run on the above-listed systems.  

Required Compilers and Scripting Languages 

The majority of the WRF model, WPS, and WRFDA codes are written in Fortran (what 
many refer to as Fortran 90). The software layer, RSL, which sits between WRF and 
WRFDA, and the MPI interface is written in C. WPS makes direct calls to the MPI 
libraries for distributed memory message passing.  There are also ancillary programs that 
are written in C to perform file parsing and file construction, which are required for 
default building of the WRF modeling code. Additionally, the WRF build mechanism 
uses several scripting languages: including perl, Cshell and Bourne shell. The traditional 
UNIX text/file processing utilities are used: make, m4, sed, and awk. See Chapter 8:  
WRF Software (Required Software) for a more detailed listing of the necessary pieces for 
the WRF build. 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-3 

Required/Optional Libraries to Download 

The only library that is always required is the netCDF package from Unidata (login > 
Downloads > NetCDF). Most of the WRF post-processing packages assume that the data 
from the WRF model, the WPS package, or the WRFDA program are using the netCDF 
libraries. One may also need to add ‘/path-to-netcdf/netcdf/bin’ to their path so that they 
may execute netCDF utility commands, such as ncdump. Use a netCDF version that is 
3.6.1 or later.  To utilize the compression capabilities, use netCDF 4.0 or later.  Note that 
compression will require the use of HDF5. 
  
 
Note 1: If one wants to compile WRF system components on a Linux or Darwin system 
that has access to multiple compilers, link the correct external libraries.  For example, do 
not link the libraries built with PathScale when compiling the WRF components with 
gfortran.  Even more, the same options when building the netCDF libraries must be used 
when building the WRF code (32 vs 64 bit, assumptions about underscores in the symbol 
names, etc.). 
 
Note 2: If netCDF-4 is used, be sure that it is installed without activating parallel I/O 
based on HDF5. The WRF modeling system is able to use either the classic data model 
from netCDF-3 or the compression options supported in netCDF-4.  

If you are going to be running distributed memory WRF jobs, you need a version of MPI. 
You can pick up a version of mpich, but you might want your system group to install the 
code. A working installation of MPI is required prior to a build of WRF using distributed 
memory. Either MPI-1 or MPI-2 are acceptable.  Do you already have an MPI lying 
around? Try  

 which mpif90 
 which mpicc 
 which mpirun 
  
If these are all defined executables in your path, you are probably OK. Make sure your 
paths are set up to point to the MPI lib, include, and bin directories.  As with the 
netCDF libraries, you must build MPI consistently with the WRF source code. 
  
Note that to output WRF model data in Grib1 format, Todd Hutchinson (WSI) has 
provided a complete source library that is included with the software release.  However, 
when trying to link the WPS, the WRF model, and the WRFDA data streams together, 
always use the netCDF format. 
 
Note 3: The entire step-by-step recipe for building the WRF and WPS packages is 
available at: http://www2.mmm.ucar.edu/wrf/OnLineTutorial/compilation_tutorial.php 
This page includes complete turn-key directions, from tests of your machines’s utilities 
all the way up through where to download real-time data. 
 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-4 

Post-Processing Utilities 

The more widely used (and therefore supported) WRF post-processing utilities are:  

• NCL (homepage and WRF download) 
o NCAR Command Language written by NCAR’s Computer Information 

Systems Laboratory (formerly the Scientific Computing Division) 
o NCL scripts written and maintained by WRF support  
o many template scripts are provided that are tailored for specific real-data 

and ideal-data cases 
(http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm)   

o raw WRF output can be input with the NCL scripts  
o interactive or command-file driven 

 
• GrADS (homepage and WRF download)  

o download GrADS executable, build format converter  
o programs (ARWpost) are available to convert the WRF output into an 

input format suitable for GrADS  
o simple to generate publication quality  
o interactive or command-file driven 

 
• RIP4 (homepage and WRF download)  

o RIP4 written and maintained by Mark Stoelinga, UW  
o interpolation to various surfaces, trajectories, hundreds of diagnostic 

calculations  
o Fortran source provided  
o based on the NCAR Graphics package  
o pre-processor converts WRF, WPS, and WRFDA data to RIP input format  
o table driven  

UNIX Environment Settings 

There are only a few environmental settings that are WRF system related. Most of these 
are not required, but when things start acting badly, test some out. In Cshell syntax:  

• setenv WRF_EM_CORE 1 
o explicitly defines which model core to build 

• setenv WRF_NMM_CORE 0 
o explicitly defines which model core NOT to build  

• setenv WRF_DA_CORE 0 
o explicitly defines no data assimilation 

• setenv NETCDF /usr/local/netcdf (or wherever you have it stored) 
o all of the WRF components want both the lib and the include directories 

• setenv OMP_NUM_THREADS n (where n is the number of procs to use) 
o if you have OpenMP on your system, this is how to specify the number of 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-5 

threads 
• setenv MP_STACK_SIZE 64000000 

o OpenMP blows through the stack size, set it large 
o However, if the model still crashes, it may be a problem of over- 
specifying stack size. Set stack size sufficiently large, but not unlimited. 
o On some systems, the equivalent parameter could be KMP_STACKSIZE, 
or OMP_STACKSIZE 

• unlimit 
o especially if you are on a small system 

 

Building the WRF Code 

The WRF code has a fairly complicated build mechanism. It tries to determine the 
architecture that you are on, and then presents you with options to allow you to select the 
preferred build method. For example, if you are on a Linux machine, it determines 
whether this is a 32 or 64 bit machine, and then prompts you for the desired usage of 
processors (such as serial, shared memory, or distributed memory).  You select from 
among the available compiling options in the build mechanism.  For example, do not 
choose a PGI build if you do not have PGI compilers installed on your system. 

An instructional web site describes the sequence of steps required to build the WRF and 
WPS codes (though the instructions are specifically given for tcsh and GNU compilers). 

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/compilation_tutorial.php 

• Get the WRF zipped tar file for WRFV3 from  
o http://www2.mmm.ucar.edu/wrf/users/download/get_source.html 

o Always get the latest version if you are not trying to continue a long 
project, or duplicate previous work 

• unzip and untar the file  
o gzip -cd WRFV3.TAR.gz | tar -xf –  
o Alternatively tar –xzf WRFV3.TAR.gz on some systems 

• cd WRFV3  
• ./configure  

o serial means single processor 
o smpar means Symmetric Multi-Processing/Shared Memory Parallel 

(OpenMP) – this does not reliably work on most non-IBM machines 
o dmpar means Distributed Memory Parallel (MPI) 
o dm+sm means Distributed Memory with Shared Memory (for example, 

MPI across nodes with OpenMP within a node) – usually better 
performance is through dmpar only 

o The second option is for nesting: 0 = no nesting, 1 = standard static 
nesting, 2 = nesting with a prescribed set of moves, 3 = nesting that allows 
a domain to follow a vortex (typhoon tracking) 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-6 

o A typical option that may be included on the ./configure command is 
the flag “-d” (for debug).  This option removes optimization, which is 
useful when running a debugger (such as gdb or dbx) 

o For bounds checking and some additional exception handling, the 
debugging flag “-D” may be selected.  Only PGI, Intel, and gfortran have 
been set up to use this option. 

• ./compile em_real (or any of the directory names in ./WRFV3/test 
directory)  

• ls -ls main/*.exe  
o If you built a real-data case, you should see ndown.exe, real.exe, and 

wrf.exe  
o If you built an ideal-data case, you should see ideal.exe and wrf.exe  

 

The WRF code supports a parallel build option, an option that compiles separate source 
code files in the WRF directories at the same time on separate processors (though those 
processors need to share memory) via a parallel make.  The purpose of the parallel build 
option is to be able to speed-up the time required to construct executables.  In practice, 
users typically see approximately a 2x speed-up, a limit imposed by the various 
dependencies in the code due to modules and USE association.  To enable the parallel 
build option, the user sets an environment variable, J.  In csh, to utilize two processors, 
before the ./compile command, issue the following: 
setenv J “-j 2” 
Users may wish to only use a single processor for the build.  In which case: 
setenv J “-j 1” 

Users wishing to run the WRF chemistry code must first download the WRF model tar 
file, and untar it.  Then the chemistry code is untar’ed in the WRFV3 directory (this is the 
chem directory structure).  Once the source code from the tar files is combined, then 
users may proceed with the WRF chemistry build. 
 
Building the WPS Code 

Building WPS requires that WRFV3 be already built. 

If you plan to use Grib2 data, additional libraries for zlib, png, and jasper are 
required.  Please see details in Chapter 3. 

• Get the WPS zipped tar file WPSV3.TAR.gz from   
o http://www2.mmm.ucar.edu/wrf/users/download/get_source.html 

• Also download the geographical datasets from the same page. There are new data 
sets for land cover for North America (NLCD), and high-resolution urban data 
sets for select North American cities. 

• Unzip and untar the source code file  
o gzip -cd WPSV3.TAR.gz | tar -xf -  

• cd WPS 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-7 

• ./configure  
o Choose one of the options  
o Usually, serial builds are the best for an initial test. Most large domains 

work with a single processor for WPS 
o WPS requires that you build for the appropriate Grib decoding. Select an 

option that is suitable for the data you will use with the ungrib program 
(the Grib2 option will work for either Grib1 or Grib2 data) 

o If you select a Grib2 option, you must have those libraries prepared and 
built in advance (see the chapter on WPS for the location of these 
compression libraries).  Add the paths to these libraries and include files 
using variables COMPRESSION_LIBS and COMPRESSION_INC in 
configure.wps. Also inside the configure.wps file is the 
location of the built WRFV3 directory, which needs to be modified.  This 
is how the WPS picks up all of the required IO pieces to build the 
geogrid.exe and metgrid.exe files. 

• ./compile 
• ls -ls *.exe  

o You should see geogrid.exe, ungrib.exe, and metgrid.exe (if 
you are missing both geogrid.exe and metgrid.exe, you probably 
need to fix where the path to WRF is pointing in the configure.wps 
file; if you are missing ungrib.exe, try a Grib1-only build to further 
isolate the problem) 

 
• ls -ls util/*.exe  

o You should see a number of utility executables: avg_tsfc.exe, 
calc_ecmwf_p.exe, g1print.exe, g2print.exe, 
height_ukmo.exe, mod_levs.exe, plotfmt.exe, 
plotgrids.exe, and rd_intermediate.exe (files requiring 
NCAR Graphics are plotfmt.exe and plotgrids.exe) 

• If geogrid.exe and metgrid.exe executables are missing, the path to the 
built WRFV3 directory structure is probably incorrect (found inside the 
configure.wps file) 

• If the ungrib.exe is missing, the Grib2 libraries are probably not linked or 
built correctly 

• If  the plotfmt.exe or the plotgrids.exe programs is missing, the NCAR 
Graphics path is probably set incorrectly 

Building the WRFDA Code (for 3DVAR) 

WRFDA uses the same build mechanism as WRF; thus, this mechanism must be 
instructed to configure and build the code for WRFDA rather than WRF. Additionally, 
the paths to libraries needed by WRFDA code must be set, as described in the steps 
below. 

• Get the WRFDA zipped tar file, WRFDA_V3.7.TAR.gz, from 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-8 

http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html 
• Unzip and untar the WRFDA code 

o tar -xf WRFDA_V3.7.TAR.gz 
o This will create a directory, WRFDA 

• cd WRFDA 
o In addition to netCDF, set up environmental variables 

pointing to additional libraries required by WRFDA, such as 
RTTOV 

o Please note: only the netCDF library is mandatory to 
compile the basic WRFDA system; all other libraries are 
optional  

o If you intend to use satellite radiance data, an RTM 
(Radiative Transfer Model) is required. The current RTM 
versions that WRFDA uses are CRTM v2.1.3 and RTTOV v11. 
WRFDA can compile with CRTM only, or RTTOV only, or both 
CRTM and RTTOV together  

To compile WRFDA with CRTM: setenv CRTM 1 

(Note: the latest available CRTM, version 2.1.3, is 
included in this release version and it will be compiled 
automatically when the appropriate environmental variable 
is set. Users do not need to download and install CRTM). 

To compile WRFDA with RTTOV: RTTOV still must be downloaded    
(https://nwpsaf.eu/deliverables/rtm/rtm_rttov11.html) and  
installed using the same compiler that will be used to 
build WRFDA, since the library produced by one compiler may 
not be compatible with code compiled with another. Then, 
the necessary environment variable should be set with 

setenv RTTOV ${path_for_RTTOV}   

• ./configure wrfda 
o serial means single processor 
o dmpar means Distributed Memory Parallel (MPI) 
o smpar and dm+sm are not recommended for use with WRFDA 

• WRFDA also supports parallel build. 
• ./compile all_wrfvar 
• ls -ls var/build/*.exe  

o If the compilation was successful, da_wrfvar.exe, 
da_update_bc.exe, and other executables should be found in the 
var/build directory. Their links are in the var/da directory; 
obsproc.exe should be found in the var/obsproc/src directory 
 

Building the WRFDA Code (for 4DVAR) 

Building WRFDA 4DVAR requires that WRFPLUSV3.7 be already built. 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-9 

• Get the WRFPLUSV3.7 zipped tar file WRFPLUS_V3.7.tar.gz from   
o http://www2.mmm.ucar.edu/wrf/users/wrfda/download/wrfplus.h

tml 
• unzip and untar the source code file  

o tar -xf WRFPLUS_V3.7.tar.gz  
• cd WRFPLUSV3 
• ./configure wrfplus 

o serial means single processor 
o dmpar means Distributed Memory Parallel (MPI) 

o (Note: WRFPLUS does not support Shared Memory Parallel and 
WRFPLUS is compiled as realsize=8) 

• WRFPLUS also supports parallel build. 
• ./compile em_real 
• ls -ls main/*.exe  

o you should see ndown.exe, real.exe, and wrf.exe  
 

• Set up the environmental variable pointing to WRFPLUS_DIR. 

o setenv WRFPLUS_DIR ${path_of _wrfplusv3.7}  (csh) 
o export WRFPLUS_DIR=${path_of _wrfplusv3.7} (bash) 

 
• Please refer to above section “Building WRFDA code (for 3DVAR)” to download 

code and set up necessary environmental variables. 

• ./configure 4dvar 
o serial means single processor 
o dmpar means Distributed Memory Parallel (MPI) 
 

• ./compile all_wrfvar 
• ls -ls var/build/*.exe  

o If the compilation was successful, da_wrfvar.exe, 
da_update_bc.exe, and other executables should be found in the 
var/build directory. Their links are in the var/da directory; 
obsproc.exe should be found in the var/obsproc/src directory 
 

 

 

 

 



SOFTWARE INSTALLATION 
 

 

 
WRF-ARW V3: User’s Guide 2-10 

 

 

 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-1 

 

Chapter 3: WRF Preprocessing System (WPS)  

 

Table of Contents 

• Introduction 
• Function of Each WPS Program 
• Installing the WPS 
• Running the WPS 
• Creating Nested Domains with the WPS 
• Selecting Between USGS and MODIS-based Land Use Data 
• Selecting Static Data for the Gravity Wave Drag 

Scheme_Creating_Nested_Domains 
• Using Multiple Meteorological Data Sources 
• Using Non-isobaric Meteorological Datasets 
• Alternative Initialization of Lake SSTs 
• Parallelism in the WPS 
• Checking WPS Output 
• WPS Utility Programs 
• Writing Meteorological Data to the Intermediate Format 
• Required Meteorological Fields for Running WRF 
• Using MPAS Output for WRF Initial and Boundary Conditions 
• Creating and Editing Vtables 
• Writing Static Data to the Geogrid Binary Format 
• Creating an Urban Fraction Field from NLCD Data  
• Description of Namelist Variables 
• Description of GEOGRID.TBL Options 
• Description of index Options 
• Description of METGRID.TBL Options 
• Available Interpolation Options in Geogrid and Metgrid 
• Land Use and Soil Categories in the Static Data 
• WPS Output Fields 

 

Introduction 

The WRF Preprocessing System (WPS) is a set of three programs whose collective role is 
to prepare input to the real program for real-data simulations. Each of the programs 
performs one stage of the preparation: geogrid defines model domains and interpolates 
static geographical data to the grids; ungrib extracts meteorological fields from GRIB-



WPS 
 

 
WRF-ARW V3: User’s Guide 3-2 

formatted files; and metgrid horizontally interpolates the meteorological fields extracted 
by ungrib to the model grids defined by geogrid. The work of vertically interpolating 
meteorological fields to WRF eta levels is performed within the real program.  

 

 

 

The data flow between the programs of the WPS is shown in the figure above. Each of 
the WPS programs reads parameters from a common namelist file, as shown in the figure. 
This namelist file has separate namelist records for each of the programs and a shared 
namelist record, which defines parameters that are used by more than one WPS program. 
Not shown in the figure are additional table files that are used by individual programs. 
These tables provide additional control over the programs’ operations, though they 
generally do not need to be changed by the user. The GEOGRID.TBL, METGRID.TBL, 
and Vtable files are explained later in this document, though for now, the user need not 
be concerned with them. 

The build mechanism for the WPS, which is very similar to the build mechanism used by 
the WRF model, provides options for compiling the WPS on a variety of platforms. 
When MPI libraries and suitable compilers are available, the metgrid and geogrid 
programs may be compiled for distributed memory execution, which allows large model 
domains to be processed in less time. The work performed by the ungrib program is not 
amenable to parallelization, so ungrib may only be run on a single processor. 

 

Function of Each WPS Program 

The WPS consists of three independent programs: geogrid, ungrib, and metgrid. Also 
included in the WPS are several utility programs, which are described in the section on 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-3 

utility programs. A brief description of each of the three main programs is given below, 
with further details presented in subsequent sections. 

 

Program geogrid 

The purpose of geogrid is to define the simulation domains, and interpolate various 
terrestrial data sets to the model grids. The simulation domains are defined using 
information specified by the user in the “geogrid” namelist record of the WPS namelist 
file, namelist.wps. In addition to computing the latitude, longitude, and map scale factors 
at every grid point, geogrid will interpolate soil categories, land use category, terrain 
height, annual mean deep soil temperature, monthly vegetation fraction, monthly albedo, 
maximum snow albedo, and slope category to the model grids by default. Global data sets 
for each of these fields are provided through the WRF download page, and, because these 
data are time-invariant, they only need to be downloaded once. Several of the data sets 
are available in only one resolution, but others are made available in resolutions of 30", 
2', 5', and 10'; here, " denotes arc seconds and ' denotes arc minutes. The user need not 
download all available resolutions for a data set, although the interpolated fields will 
generally be more representative if a resolution of data near to that of the simulation 
domain is used. However, users who expect to work with domains having grid spacings 
that cover a large range may wish to eventually download all available resolutions of the 
static terrestrial data. 

Besides interpolating the default terrestrial fields, the geogrid program is general enough 
to be able to interpolate most continuous and categorical fields to the simulation domains. 
New or additional data sets may be interpolated to the simulation domain through the use 
of the table file, GEOGRID.TBL. The GEOGRID.TBL file defines each of the fields that 
will be produced by geogrid; it describes the interpolation methods to be used for a field, 
as well as the location on the file system where the data set for that field is located. 

Output from geogrid is written in the WRF I/O API format, and thus, by selecting the 
NetCDF I/O format, geogrid can be made to write its output in NetCDF for easy 
visualization using external software packages, including ncview, NCL, and RIP4. 

Program ungrib 

The ungrib program reads GRIB files, "degribs" the data, and writes the data in a simple 
format called the intermediate format (see the section on writing data to the intermediate 
format for details on the format). The GRIB files contain time-varying meteorological 
fields and are typically from another regional or global model, such as NCEP's NAM or 
GFS models. The ungrib program can read GRIB Edition 1 and, if compiled with a 
"GRIB2" option, GRIB Edition 2 files. 

GRIB files typically contain more fields than are needed to initialize WRF. Both versions 
of the GRIB format use various codes to identify the variables and levels in the GRIB 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-4 

file. Ungrib uses tables of these codes – called Vtables, for "variable tables" – to define 
which fields to extract from the GRIB file and write to the intermediate format. Details 
about the codes can be found in the WMO GRIB documentation and in documentation 
from the originating center. Vtables for common GRIB model output files are provided 
with the ungrib software. 

Vtables are provided for NAM 104 and 212 grids, the NAM AWIP format, GFS, the 
NCEP/NCAR Reanalysis archived at NCAR, RUC (pressure level data and hybrid 
coordinate data), AFWA's AGRMET land surface model output, ECMWF, and other data 
sets. Users can create their own Vtable for other model output using any of the Vtables as 
a template; further details on the meaning of fields in a Vtable are provided in the section 
on creating and editing Vtables. 

Ungrib can write intermediate data files in any one of three user-selectable formats: WPS 
– a new format containing additional information useful for the downstream programs; SI 
– the previous intermediate format of the WRF system; and MM5 format, which is 
included here so that ungrib can be used to provide GRIB2 input to the MM5 modeling 
system. Any of these formats may be used by WPS to initialize WRF, although the WPS 
format is recommended. 

Program metgrid 

The metgrid program horizontally interpolates the intermediate-format meteorological 
data that are extracted by the ungrib program onto the simulation domains defined by the 
geogrid program. The interpolated metgrid output can then be ingested by the WRF real 
program. The range of dates that will be interpolated by metgrid are defined in the 
“share” namelist record of the WPS namelist file, and date ranges must be specified 
individually in the namelist for each simulation domain. Since the work of the metgrid 
program, like that of the ungrib program, is time-dependent, metgrid is run every time a 
new simulation is initialized. 

Control over how each meteorological field is interpolated is provided by the 
METGRID.TBL file. The METGRID.TBL file provides one section for each field, and 
within a section, it is possible to specify options such as the interpolation methods to be 
used for the field, the field that acts as the mask for masked interpolations, and the grid 
staggering (e.g., U, V in ARW; H, V in NMM) to which a field is interpolated. 

Output from metgrid is written in the WRF I/O API format, and thus, by selecting the 
NetCDF I/O format, metgrid can be made to write its output in NetCDF for easy 
visualization using external software packages, including the new version of RIP4.  

 

 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-5 

Installing the WPS  

The WRF Preprocessing System uses a build mechanism similar to that used by the WRF 
model. External libraries for geogrid and metgrid are limited to those required by the 
WRF model, since the WPS uses the WRF model's implementations of the WRF I/O 
API; consequently, WRF must be compiled prior to installation of the WPS so that the I/O 
API libraries in the WRF external directory will be available to WPS programs. 
Additionally, the ungrib program requires three compression libraries for GRIB Edition 2 
support; however, if support for GRIB2 data is not needed, ungrib can be compiled 
without these compression libraries. 

Required Libraries 

The only library that is required to build the WRF model is NetCDF.  The user can find 
the source code, precompiled binaries, and documentation at the UNIDATA home page 
(http://www.unidata.ucar.edu/software/netcdf/). Most users will select the NetCDF I/O 
option for WPS due to the easy access to utility programs that support the NetCDF data 
format, and before configuring the WPS, users should ensure that the environment 
variable NETCDF is set to the path of the NetCDF installation. 

Where WRF adds a software layer between the model and the communications package, 
the WPS programs geogrid and metgrid make MPI calls directly. Most multi-processor 
machines come preconfigured with a version of MPI, so it is unlikely that users will need 
to install this package by themselves. 

Three libraries are required by the ungrib program for GRIB Edition 2 compression 
support. Users are encouraged to engage their system administrators for the installation of 
these packages so that traditional library paths and include paths are maintained. Paths to 
user-installed compression libraries are handled in the configure.wps file by the 
COMPRESSION_LIBS and COMPRESSION_INC variables. As an alternative to manually 
editing the COMPRESSION_LIBS and COMPRESSION_INC variables in the configure.wps 
file, users may set the environment variables JASPERLIB and JASPERINC to the 
directories holding the JasPer library and include files before configuring the WPS; for 
example, if the JasPer libraries were installed in /usr/local/jasper-1.900.1, one 
might use the following commands (in csh or tcsh): 
 
 > setenv JASPERLIB /usr/local/jasper-1.900.1/lib 
 > setenv JASPERINC /usr/local/jasper-1.900.1/include 
 
If the zlib and PNG libraries are not in a standard path that will be checked automatically 
by the compiler, the paths to these libraries can be added on to the JasPer environment 
variables; for example, if the PNG libraries were installed in /usr/local/libpng-
1.2.29 and the zlib libraries were installed in /usr/local/zlib-1.2.3, one might use 
 
 > setenv JASPERLIB “${JASPERLIB} -L/usr/local/libpng-1.2.29/lib -
L/usr/local/zlib-1.2.3/lib” 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-6 

 > setenv JASPERINC “${JASPERINC} -I/usr/local/libpng-
1.2.29/include -I/usr/local/zlib-1.2.3/include” 
 
after having previously set JASPERLIB and JASPERINC. 
 
1) JasPer (an implementation of the JPEG2000 standard for "lossy" compression) 
http://www.ece.uvic.ca/~mdadams/jasper/ 
Go down to “JasPer software”, one of the "click here" parts is the source. 
 
 > ./configure 
 > make 
 > make install 
 
Note: The GRIB2 libraries expect to find include files in "jasper/jasper.h", so it may be 
necessary to manually create a "jasper" subdirectory in the "include" directory created by 
the JasPer installation, and manually link header files there. 
  
2) PNG (compression library for "lossless" compression) 
http://www.libpng.org/pub/png/libpng.html 
Scroll down to "Source code" and choose a mirror site. 
 
 > ./configure 
 > make check 
 > make install 
 
3) zlib (a compression library used by the PNG library) 
http://www.zlib.net/ 
Go to "The current release is publicly available here" section and download. 
  
 > ./configure 
 > make 
 > make install 
  
To get around portability issues, the NCEP GRIB libraries, w3 and g2, have been 
included in the WPS distribution. The original versions of these libraries are available for 
download from NCEP at http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/. The specific 
tar files to download are g2lib and w3lib. Because the ungrib program requires modules 
from these files, they are not suitable for usage with a traditional library option during the 
link stage of the build. 

Required Compilers and Scripting Languages 

The WPS requires the same Fortran and C compilers as were used to build the WRF 
model, since the WPS executables link to WRF's I/O API libraries. After executing the 
./configure command in the WPS directory, a list of supported compilers on the 
current system architecture are presented. 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-7 

WPS Installation Steps 

• Download the WPSV3.TAR.gz file and unpack it at the same directory level as 
WRFV3, as shown below. 

 > ls 
 -rw-r--r--  1  563863 WPS.TAR.gz 
 drwxr-xr-x 18    4096 WRFV3 
 
 > gzip -d WPSV3.TAR.gz 
 
 > tar xf WPSV3.TAR  
 
 > ls 
 drwxr-xr-x  7     4096 WPS 
 -rw-r--r--  1  3491840 WPSV3.TAR 
 drwxr-xr-x 18     4096 WRFV3 
 

• At this point, a listing of the current working directory should at least include the 
directories WRFV3 and WPS. First, compile WRF (see the instructions for 
installing WRF in Chapter 2). Then, after the WRF executables are generated, 
change to the WPS directory and issue the configure command followed by the 
compile command as below. 

 > cd WPS 
 
 > ./configure 

o Choose one of the configure options 

 > ./compile >& compile.output 

• After issuing the compile command, a listing of the current working directory 
should reveal symbolic links to executables for each of the three WPS programs: 
geogrid.exe, ungrib.exe, and metgrid.exe. If any of these links do not exist, check 
the compilation output in compile.output to see what went wrong.  

 > ls 
 drwxr-xr-x 2   4096 arch 
 -rwxr-xr-x 1   1672 clean 
 -rwxr-xr-x 1   3510 compile 
 -rw-r--r-- 1  85973 compile.output 
 -rwxr-xr-x 1   4257 configure 
 -rw-r--r-- 1   2486 configure.wps 
 drwxr-xr-x 4   4096 geogrid 
 lrwxrwxrwx 1     23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rwxr-xr-x 1   1328 link_grib.csh 
 drwxr-xr-x 3   4096 metgrid 
 lrwxrwxrwx 1     23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1   1101 namelist.wps 
 -rw-r--r-- 1   1987 namelist.wps.all_options 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-8 

 -rw-r--r-- 1   1075 namelist.wps.global 
 -rw-r--r-- 1    652 namelist.wps.nmm 
 -rw-r--r-- 1   4786 README 
 drwxr-xr-x 4   4096 ungrib 
 lrwxrwxrwx 1     21 ungrib.exe -> ungrib/src/ungrib.exe 
 drwxr-xr-x 3   4096 util 
 

 

Running the WPS 

There are essentially three main steps to running the WRF Preprocessing System:  

1. Define a model coarse domain and any nested domains with geogrid. 
2. Extract meteorological fields from GRIB data sets for the simulation period with 

ungrib. 
3. Horizontally interpolate meteorological fields to the model domains with metgrid. 

When multiple simulations are to be run for the same model domains, it is only necessary 
to perform the first step once; thereafter, only time-varying data need to be processed for 
each simulation using steps two and three. Similarly, if several model domains are being 
run for the same time period using the same meteorological data source, it is not 
necessary to run ungrib separately for each simulation. Below, the details of each of the 
three steps are explained.  

Step 1: Define model domains with geogrid 

In the root of the WPS directory structure, symbolic links to the programs geogrid.exe, 
ungrib.exe, and metgrid.exe should exist if the WPS software was successfully installed. 
In addition to these three links, a namelist.wps file should exist. Thus, a listing in the 
WPS root directory should look something like: 

 > ls 
 drwxr-xr-x 2   4096 arch 
 -rwxr-xr-x 1   1672 clean 
 -rwxr-xr-x 1   3510 compile 
 -rw-r--r-- 1  85973 compile.output 
 -rwxr-xr-x 1   4257 configure 
 -rw-r--r-- 1   2486 configure.wps 
 drwxr-xr-x 4   4096 geogrid 
 lrwxrwxrwx 1     23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rwxr-xr-x 1   1328 link_grib.csh 
 drwxr-xr-x 3   4096 metgrid 
 lrwxrwxrwx 1     23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1   1101 namelist.wps 
 -rw-r--r-- 1   1987 namelist.wps.all_options 
 -rw-r--r-- 1   1075 namelist.wps.global 
 -rw-r--r-- 1    652 namelist.wps.nmm 
 -rw-r--r-- 1   4786 README 
 drwxr-xr-x 4   4096 ungrib 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-9 

 lrwxrwxrwx 1     21 ungrib.exe -> ungrib/src/ungrib.exe 
 drwxr-xr-x 3   4096 util 

 
 
The model coarse domain and any nested domains are defined in the “geogrid” namelist 
record of the namelist.wps file, and, additionally, parameters in the “share” namelist 
record need to be set. An example of these two namelist records is given below, and the 
user is referred to the description of namelist variables for more 
information on the purpose and possible values of each variable. 
 
&share 
 wrf_core = 'ARW', 
 max_dom = 2, 
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00', 
 end_date   = '2008-03-24_18:00:00','2008-03-24_12:00:00', 
 interval_seconds = 21600, 
 io_form_geogrid = 2 
/ 
 
&geogrid 
 parent_id         =   1,   1, 
 parent_grid_ratio =   1,   3, 
 i_parent_start    =   1,  31, 
 j_parent_start    =   1,  17, 
 e_we              =  74, 112, 
 e_sn              =  61,  97, 
 geog_data_res     = 'default','default', 
 dx = 30000, 
 dy = 30000, 
 map_proj = 'lambert', 
 ref_lat   = 34.83, 
 ref_lon   = -81.03, 
 truelat1  =  30.0, 
 truelat2  =  60.0, 
 stand_lon = -98., 
 geog_data_path = '/mmm/users/wrfhelp/WPS_GEOG/' 
/ 
 
To summarize a set of typical changes to the “share” namelist record relevant to geogrid, 
the WRF dynamical core must first be selected with wrf_core. If WPS is being run for 
an ARW simulation, wrf_core should be set to 'ARW', and if running for an NMM 
simulation, it should be set to 'NMM'. After selecting the dynamical core, the total number 
of domains (in the case of ARW) or nesting levels (in the case of NMM) must be chosen 
with max_dom. Since geogrid produces only time-independent data, the start_date, 
end_date, and interval_seconds variables are ignored by geogrid. Optionally, a 
location (if not the default, which is the current working directory) where domain files 
should be written to may be indicated with the opt_output_from_geogrid_path 
variable, and the format of these domain files may be changed with io_form_geogrid. 
 
In the “geogrid” namelist record, the projection of the simulation domain is defined, as 
are the size and location of all model grids. The map projection to be used for the model 
domains is specified with the map_proj variable. Each of the four possible map 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-10 

projections in the ARW are shown graphically in the full-page figure below, and the 
namelist variables used to set the parameters of the projection are summarized in the 
following table. 
 

Map projection / value of map_proj Projection parameters 
Lambert Conformal / 'lambert' truelat1 

truelat2 (optional) 
stand_lon 

Mercator / 'mercator'  truelat1 

Polar stereographic / 'polar'  truelat1 
stand_lon 

Regular latitude-longitude, or cylindrical 
equidistant / 'lat-lon'  

pole_lat 
pole_lon 
stand_lon 

 
In the illustrations of the Lambert conformal, polar stereographic, and Mercator 
projections, it may be seen that the so-called true latitude (or true latitudes, in the case of 
the Lambert conformal), is the latitude at which the surface of projection intersects or is 
tangent to the surface of the earth. At this latitude, there is no distortion in the distances 
in the map projection, while at other latitudes, the distance on the surface of the earth is 
related to the distance on the surface of projection by a map scale factor. Ideally, the map 
projection and its accompanying parameters should be chosen to minimize the maximum 
distortion within the area covered by the model grids, since a high amount of distortion, 
evidenced by map scale factors significantly different from unity, can restrict the model 
time step more than necessary. As a general guideline, the polar stereographic projection 
is best suited for high-latitude WRF domains, the Lambert conformal projection is well-
suited for mid-latitude domains, and the Mercator projection is good for low-latitude 
domains or domains with predominantly west-east extent. The cylindrical equidistant 
projection is required for global ARW simulations, although in its rotated aspect (i.e., 
when pole_lat, pole_lon, and stand_lon are changed from their default values) it can 
also be well-suited for regional domains anywhere on the earth’s surface. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-11 

 
 

 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-12 

When configuring a rotated latitude-longitude grid, the namelist parameters pole_lat, 
pole_lon, and stand_lon are changed from their default values. The parameters 
pole_lat and pole_lon specify the latitude and longitude of the geographic north pole 
within the model’s computational grid, and stand_lon gives the rotation about the 
earth’s axis. In the context of the ARW, the computational grid refers to the regular 
latitude-longitude grid on which model computation is done, and on whose latitude 
circles Fourier filters are applied at high latitudes; users interested in the details of this 
filtering are referred to the WRF Version 3 Technical Note, and here, it suffices to note 
that the computational latitude-longitude grid is always represented with computational 
latitude lines running parallel to the x-axis of the model grid and computational longitude 
lines running parallel to the y-axis of the grid.  
 
If the earth’s geographic latitude-longitude grid coincides with the computational grid, a 
global ARW domain shows the earth’s surface as it is normally visualized on a regular 
latitude-longitude grid. If instead the geographic grid does not coincide with the model 
computational grid, geographical meridians and parallels appear as complex curves. The 
difference is most easily illustrated by way of example. In top half of the figure below, 
the earth is shown with the geographical latitude-longitude grid coinciding with the 
computational latitude-longitude grid. In the bottom half, the geographic grid (not shown) 
has been rotated so that the geographic poles of the earth are no longer located at the 
poles of the computational grid. 
 
 

 
 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-13 

When WRF is to be run for a regional domain configuration, the location of the coarse 
domain is determined using the ref_lat and ref_lon variables, which specify the 
latitude and longitude, respectively, of the center of the coarse domain. If nested domains 
are to be processed, their locations with respect to the parent domain are specified with 
the i_parent_start and j_parent_start variables; further details of setting up nested 
domains are provided in the section on nested domains. Next, the dimensions of the 
coarse domain are determined by the variables dx and dy, which specify the nominal grid 
distance in the x-direction and y-direction, and e_we and e_sn, which give the number of 
velocity points (i.e., u-staggered or v-staggered points) in the x- and y-directions; for the 
'lambert', 'mercator', and 'polar' projections, dx and dy are given in meters, and 
for the 'lat-lon' projection, dx and dy are given in degrees. For nested domains, only 
the variables e_we and e_sn are used to determine the dimensions of the grid, and dx and 
dy should not be specified for nests, since their values are determined recursively based 
on the values of the parent_grid_ratio and parent_id variables, which specify the 
ratio of a nest's parent grid distance to the nest's grid distance and the grid number of the 
nest's parent, respectively. 
 
If the regular latitude-longitude projection will be used for a regional domain, care must 
be taken to ensure that the map scale factors in the region covered by the domain do not 
deviate significantly from unity. This can be accomplished by rotating the projection such 
that the area covered by the domain is located near the equator of the projection, since, 
for the regular latitude-longitude projection, the map scale factors in the x-direction are 
given by the cosine of the computational latitude. For example, in the figure above 
showing the unrotated and rotated earth, it can be seen that, in the rotated aspect, New 
Zealand is located along the computational equator, and thus, the rotation used there 
would be suitable for a domain covering New Zealand. As a general guideline for 
rotating the latitude-longitude projection for regional domains, the namelist parameters 
pole_lat, pole_lon, and stand_lon may be chosen according to the formulas in the 
following table. 
 

 (ref_lat, ref_lon) in N.H. (ref_lat, ref_lon) in S.H. 
pole_lat 90.0 - ref_lat 90.0 + ref_lat 
pole_lon 180.0 0.0 
stand_lon -ref_lon 180.0 - ref_lon 

 
For global WRF simulations, the coverage of the coarse domain is, of course, global, so 
ref_lat and ref_lon do not apply, and dx and dy should not be specified, since the 
nominal grid distance is computed automatically based on the number of grid points. 
Also, it should be noted that the latitude-longitude, or cylindrical equidistant, projection 
(map_proj = 'lat-lon') is the only projection in WRF that can support a global 
domain. Nested domains within a global domain must not cover any area north of 
computational latitude +45 or south of computational latitude -45, since polar filters are 
applied poleward of these latitudes (although the cutoff latitude can be changed in the 
WRF namelist). 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-14 

Besides setting variables related to the projection, location, and coverage of model 
domains, the path to the static geographical data sets must be correctly specified with the 
geog_data_path variable. Also, the user may select which resolution of static data 
geogrid will interpolate from using the geog_data_res variable, whose value should 
match one of the resolutions of data in the GEOGRID.TBL. If the complete set of static 
data are downloaded from the WRF download page, possible resolutions include 
'30s', '2m', '5m', and '10m', corresponding to 30-arc-second data, 2-, 5-, and 10-arc-
minute data. 
 
Depending on the value of the wrf_core namelist variable, the appropriate 
GEOGRID.TBL file must be used with geogrid, since the grid staggerings that WPS 
interpolates to differ between dynamical cores. For the ARW, the GEOGRID.TBL.ARW 
file should be used, and for the NMM, the GEOGRID.TBL.NMM file should be used. 
Selection of the appropriate GEOGRID.TBL is accomplished by linking the correct file 
to GEOGRID.TBL in the geogrid directory (or in the directory specified by 
opt_geogrid_tbl_path, if this variable is set in the namelist). 
 
 > ls geogrid/GEOGRID.TBL 
 
 lrwxrwxrwx 1      15 GEOGRID.TBL -> GEOGRID.TBL.ARW 
 
For more details on the meaning and possible values for each variable, the user is referred 
to a description of the namelist variables. 
 
Having suitably defined the simulation coarse domain and nested domains in the 
namelist.wps file, the geogrid.exe executable may be run to produce domain files. In the 
case of ARW domains, the domain files are named geo_em.d0N.nc, where N is the 
number of the nest defined in each file. When run for NMM domains, geogrid produces 
the file geo_nmm.d01.nc for the coarse domain, and geo_nmm_nest.l0N.nc files for 
each nesting level N. Also, note that the file suffix will vary depending on the 
io_form_geogrid that is selected. To run geogrid, issue the following command: 
 
 > ./geogrid.exe 
 
When geogrid.exe has finished running, the message 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!  Successful completion of geogrid.        ! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 
should be printed, and a listing of the WPS root directory (or the directory specified by 
opt_output_from_geogrid_path, if this variable was set) should show the domain files. 
If not, the geogrid.log file may be consulted in an attempt to determine the possible cause 
of failure. For more information on checking the output of geogrid, the user is referred to 
the section on checking WPS output. 
 
 > ls 
 drwxr-xr-x 2     4096 arch 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-15 

 -rwxr-xr-x 1     1672 clean 
 -rwxr-xr-x 1     3510 compile 
 -rw-r--r-- 1    85973 compile.output 
 -rwxr-xr-x 1     4257 configure 
 -rw-r--r-- 1     2486 configure.wps 
 -rw-r--r-- 1  1957004 geo_em.d01.nc 
 -rw-r--r-- 1  4745324 geo_em.d02.nc 
 drwxr-xr-x 4     4096 geogrid 
 lrwxrwxrwx 1       23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rw-r--r-- 1    11169 geogrid.log 
 -rwxr-xr-x 1     1328 link_grib.csh 
 drwxr-xr-x 3     4096 metgrid 
 lrwxrwxrwx 1       23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1     1094 namelist.wps 
 -rw-r--r-- 1     1987 namelist.wps.all_options 
 -rw-r--r-- 1     1075 namelist.wps.global 
 -rw-r--r-- 1      652 namelist.wps.nmm 
 -rw-r--r-- 1     4786 README 
 drwxr-xr-x 4     4096 ungrib 
 lrwxrwxrwx 1       21 ungrib.exe -> ungrib/src/ungrib.exe 
 drwxr-xr-x 3     4096 util 

 
 

Step 2: Extracting meteorological fields from GRIB files with ungrib 

Having already downloaded meteorological data in GRIB format, the first step in 
extracting fields to the intermediate format involves editing the “share” and “ungrib” 
namelist records of the namelist.wps file – the same file that was edited to define the 
simulation domains. An example of the two namelist records is given below. 

&share 
 wrf_core = 'ARW', 
 max_dom = 2, 
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00', 
 end_date   = '2008-03-24_18:00:00','2008-03-24_12:00:00', 
 interval_seconds = 21600, 
 io_form_geogrid = 2 
/ 
 
&ungrib 
 out_format = 'WPS', 
 prefix     = 'FILE' 
/ 
 
In the “share” namelist record, the variables that are of relevance to ungrib are the 
starting and ending times of the coarse domain (start_date and end_date; alternatively, 
start_year, start_month, start_day, start_hour, end_year, end_month, end_day, 
and end_hour) and the interval between meteorological data files (interval_seconds). 
In the “ungrib” namelist record, the variable out_format is used to select the format of 
the intermediate data to be written by ungrib; the metgrid program can read any of the 
formats supported by ungrib, and thus, any of 'WPS', 'SI', and 'MM5' may be specified 
for out_format, although 'WPS' is recommended. Also in the "ungrib" namelist, the user 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-16 

may specify a path and prefix for the intermediate files with the prefix variable. For 
example, if prefix were set to 'ARGRMET', then the intermediate files created by ungrib 
would be named according to AGRMET:YYYY-MM-DD_HH, where YYYY-MM-DD_HH 
is the valid time of the data in the file. 
 
After suitably modifying the namelist.wps file, a Vtable must be supplied, and the GRIB 
files must be linked (or copied) to the filenames that are expected by ungrib. The WPS is 
supplied with Vtable files for many sources of meteorological data, and the appropriate 
Vtable may simply be symbolically linked to the file Vtable, which is the Vtable name 
expected by ungrib. For example, if the GRIB data are from the GFS model, this could be 
accomplished with 
 
 > ln -s ungrib/Variable_Tables/Vtable.GFS Vtable 
 
The ungrib program will try to read GRIB files named GRIBFILE.AAA, 
GRIBFILE.AAB, …, GRIBFILE.ZZZ. In order to simplify the work of linking the GRIB 
files to these filenames, a shell script, link_grib.csh, is provided. The link_grib.csh script 
takes as a command-line argument a list of the GRIB files to be linked. For example, if 
the GRIB data were downloaded to the directory /data/gfs, the files could be linked with 
link_grib.csh as follows: 
 
 > ls /data/gfs 
 -rw-r--r-- 1  42728372 gfs_080324_12_00 
 -rw-r--r-- 1  48218303 gfs_080324_12_06 
 
 > ./link_grib.csh /data/gfs/gfs* 
 
After linking the GRIB files and Vtable, a listing of the WPS directory should look 
something like the following: 
 
 > ls 
 drwxr-xr-x 2     4096 arch 
 -rwxr-xr-x 1     1672 clean 
 -rwxr-xr-x 1     3510 compile 
 -rw-r--r-- 1    85973 compile.output 
 -rwxr-xr-x 1     4257 configure 
 -rw-r--r-- 1     2486 configure.wps 
 -rw-r--r-- 1  1957004 geo_em.d01.nc 
 -rw-r--r-- 1  4745324 geo_em.d02.nc 
 drwxr-xr-x 4     4096 geogrid 
 lrwxrwxrwx 1       23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rw-r--r-- 1    11169 geogrid.log 
 lrwxrwxrwx 1       38 GRIBFILE.AAA -> /data/gfs/gfs_080324_12_00 
 lrwxrwxrwx 1       38 GRIBFILE.AAB -> /data/gfs/gfs_080324_12_06 
 -rwxr-xr-x 1     1328 link_grib.csh 
 drwxr-xr-x 3     4096 metgrid 
 lrwxrwxrwx 1       23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1     1094 namelist.wps 
 -rw-r--r-- 1     1987 namelist.wps.all_options 
 -rw-r--r-- 1     1075 namelist.wps.global 
 -rw-r--r-- 1      652 namelist.wps.nmm 
 -rw-r--r-- 1     4786 README 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-17 

 drwxr-xr-x 4     4096 ungrib 
 lrwxrwxrwx 1       21 ungrib.exe -> ungrib/src/ungrib.exe 
 drwxr-xr-x 3     4096 util 
 lrwxrwxrwx 1       33 Vtable -> ungrib/Variable_Tables/Vtable.GFS 

 
 
After editing the namelist.wps file and linking the appropriate Vtable and GRIB files, the 
ungrib.exe executable may be run to produce files of meteorological data in the 
intermediate format. Ungrib may be run by simply typing the following: 
 
 > ./ungrib.exe >& ungrib.output 
 
Since the ungrib program may produce a significant volume of output, it is recommended 
that ungrib output be redirected to a file, as in the command above. If ungrib.exe runs 
successfully, the message 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!  Successful completion of ungrib.         ! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 
will be written to the end of the ungrib.output file, and the intermediate files should 
appear in the current working directory. The intermediate files written by ungrib will 
have names of the form FILE:YYYY-MM-DD_HH (unless, of course, the prefix variable 
was set to a prefix other than 'FILE'). 
 
 > ls 
 drwxr-xr-x 2       4096 arch 
 -rwxr-xr-x 1       1672 clean 
 -rwxr-xr-x 1       3510 compile 
 -rw-r--r-- 1      85973 compile.output 
 -rwxr-xr-x 1       4257 configure 
 -rw-r--r-- 1       2486 configure.wps 
 -rw-r--r-- 1  154946888 FILE:2008-03-24_12 
 -rw-r--r-- 1  154946888 FILE:2008-03-24_18 
 -rw-r--r-- 1    1957004 geo_em.d01.nc 
 -rw-r--r-- 1    4745324 geo_em.d02.nc 
 drwxr-xr-x 4       4096 geogrid 
 lrwxrwxrwx 1         23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rw-r--r-- 1      11169 geogrid.log 
 lrwxrwxrwx 1         38 GRIBFILE.AAA -> 
/data/gfs/gfs_080324_12_00 
 lrwxrwxrwx 1         38 GRIBFILE.AAB -> 
/data/gfs/gfs_080324_12_06 
 -rwxr-xr-x 1       1328 link_grib.csh 
 drwxr-xr-x 3       4096 metgrid 
 lrwxrwxrwx 1         23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1       1094 namelist.wps 
 -rw-r--r-- 1       1987 namelist.wps.all_options 
 -rw-r--r-- 1       1075 namelist.wps.global 
 -rw-r--r-- 1        652 namelist.wps.nmm 
 -rw-r--r-- 1       4786 README 
 drwxr-xr-x 4       4096 ungrib 
 lrwxrwxrwx 1         21 ungrib.exe -> ungrib/src/ungrib.exe 
 -rw-r--r-- 1       1418 ungrib.log 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-18 

 -rw-r--r-- 1      27787 ungrib.output 
 drwxr-xr-x 3       4096 util 
 lrwxrwxrwx 1         33 Vtable -> 
ungrib/Variable_Tables/Vtable.GFS 
 
 

Step 3: Horizontally interpolating meteorological data with metgrid 

In the final step of running the WPS, meteorological data extracted by ungrib are 
horizontally interpolated to the simulation grids defined by geogrid. In order to run 
metgrid, the namelist.wps file must be edited. In particular, the “share” and “metgrid” 
namelist records are of relevance to the metgrid program. Examples of these records are 
shown below. 

&share 
 wrf_core = 'ARW', 
 max_dom = 2, 
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00', 
 end_date   = '2008-03-24_18:00:00','2008-03-24_12:00:00', 
 interval_seconds = 21600, 
 io_form_geogrid = 2 
/ 
 
&metgrid 
 fg_name                      = 'FILE', 
 io_form_metgrid              = 2,  
/ 

By this point, there is generally no need to change any of the variables in the “share” 
namelist record, since those variables should have been suitably set in previous steps. If 
the "share" namelist was not edited while running geogrid and ungrib, however, the WRF 
dynamical core, number of domains, starting and ending times, interval between 
meteorological data, and path to the static domain files must be set in the “share” 
namelist record, as described in the steps to run geogrid and ungrib.  

In the “metgrid” namelist record, the path and prefix of the intermediate meteorological 
data files must be given with fg_name, the full path and file names of any intermediate 
files containing constant fields may be specified with the constants_name variable, and 
the output format for the horizontally interpolated files may be specified with the 
io_form_metgrid variable. Other variables in the “metgrid” namelist record, namely, 
opt_output_from_metgrid_path and opt_metgrid_tbl_path, allow the user to 
specify where interpolated data files should be written by metgrid and where the 
METGRID.TBL file may be found. 

As with geogrid and the GEOGRID.TBL file, a METGRID.TBL file appropriate for the 
WRF core must be linked in the metgrid directory (or in the directory specified by 
opt_metgrid_tbl_path, if this variable is set).  
 
 > ls metgrid/METGRID.TBL 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-19 

 
 lrwxrwxrwx 1      15 METGRID.TBL -> METGRID.TBL.ARW 

After suitably editing the namelist.wps file and verifying that the correct METGRID.TBL 
will be used, metgrid may be run by issuing the command 

 > ./metgrid.exe 

If metgrid successfully ran, the message  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!  Successful completion of metgrid.        ! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

will be printed. After successfully running, metgrid output files should appear in the WPS 
root directory (or in the directory specified by opt_output_from_metgrid_path, if this 
variable was set). These files will be named met_em.d0N.YYYY-MM-DD_HH:mm:ss.nc in 
the case of ARW domains, where N is the number of the nest whose data reside in the file, 
or met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc in the case of NMM domains. Here, YYYY-
MM-DD_HH:mm:ss refers to the date of the interpolated data in each file. If these files do 
not exist for each of the times in the range given in the “share” namelist record, the 
metgrid.log file may be consulted to help in determining the problem in running metgrid. 

 
 > ls 
 drwxr-xr-x 2       4096 arch 
 -rwxr-xr-x 1       1672 clean 
 -rwxr-xr-x 1       3510 compile 
 -rw-r--r-- 1      85973 compile.output 
 -rwxr-xr-x 1       4257 configure 
 -rw-r--r-- 1       2486 configure.wps 
 -rw-r--r-- 1  154946888 FILE:2008-03-24_12 
 -rw-r--r-- 1  154946888 FILE:2008-03-24_18 
 -rw-r--r-- 1    1957004 geo_em.d01.nc 
 -rw-r--r-- 1    4745324 geo_em.d02.nc 
 drwxr-xr-x 4       4096 geogrid 
 lrwxrwxrwx 1         23 geogrid.exe -> geogrid/src/geogrid.exe 
 -rw-r--r-- 1      11169 geogrid.log 
 lrwxrwxrwx 1         38 GRIBFILE.AAA -> 
/data/gfs/gfs_080324_12_00 
 lrwxrwxrwx 1         38 GRIBFILE.AAB -> 
/data/gfs/gfs_080324_12_06 
 -rwxr-xr-x 1       1328 link_grib.csh 
 -rw-r--r-- 1    5217648 met_em.d01.2008-03-24_12:00:00.nc 
 -rw-r--r-- 1    5217648 met_em.d01.2008-03-24_18:00:00.nc 
 -rw-r--r-- 1   12658200 met_em.d02.2008-03-24_12:00:00.nc 
 drwxr-xr-x 3       4096 metgrid 
 lrwxrwxrwx 1         23 metgrid.exe -> metgrid/src/metgrid.exe 
 -rw-r--r-- 1      65970 metgrid.log 
 -rw-r--r-- 1       1094 namelist.wps 
 -rw-r--r-- 1       1987 namelist.wps.all_options 
 -rw-r--r-- 1       1075 namelist.wps.global 
 -rw-r--r-- 1        652 namelist.wps.nmm 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-20 

 -rw-r--r-- 1       4786 README 
 drwxr-xr-x 4       4096 ungrib 
 lrwxrwxrwx 1         21 ungrib.exe -> ungrib/src/ungrib.exe 
 -rw-r--r-- 1       1418 ungrib.log 
 -rw-r--r-- 1      27787 ungrib.output 
 drwxr-xr-x 3       4096 util 
 lrwxrwxrwx 1         33 Vtable -> 
ungrib/Variable_Tables/Vtable.GFS 
 

 

Creating Nested Domains with the WPS 

To run the WPS for nested-domain simulations is essentially no more difficult than 
running for a single-domain case; the difference with nested-domain simulations is that 
the geogrid and metgrid programs process more than one grid when they are run, rather 
than a single grid for the simulation. In order to specify the size and location of nests, a 
number of variables in the namelist.wps file must be given lists of values, one value per 
nest. 

&share 
 wrf_core = 'ARW', 
 max_dom = 2, 
 start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00', 
 end_date   = '2008-03-24_18:00:00','2008-03-24_12:00:00',   
 interval_seconds = 21600, 
 io_form_geogrid = 2 
/ 
 
&geogrid 
 parent_id         =   1,   1, 
 parent_grid_ratio =   1,   3, 
 i_parent_start    =   1,  31, 
 j_parent_start    =   1,  17, 
 e_we              =  74, 112, 
 e_sn              =  61,  97, 
 geog_data_res     = 'default','default', 
 dx = 30000, 
 dy = 30000, 
 map_proj = 'lambert', 
 ref_lat   = 34.83, 
 ref_lon   = -81.03, 
 truelat1  =  30.0, 
 truelat2  =  60.0, 
 stand_lon = -98. 
 geog_data_path = '/mmm/users/wrfhelp/WPS_GEOG/' 
/ 

The namelist variables that are affected by nests are shown in the (partial) namelist 
records above. The example shows namelist variables for a two-domain run (the coarse 
domain plus a single nest), and the effect on the namelist variables generalize to multiple 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-21 

nests in the obvious way: rather than specifying lists of two values, lists of N values must 
be specified, where N is the total number of model grids. 

In the above example, the first change to the “share” namelist record is to the max_dom 
variable, which must be set to the total number of nests in the simulation, including the 
coarse domain. Having determined the number of nests, all of the other affected namelist 
variables must be given a list of N values, one for each grid. The only other change to the 
“share” namelist record is to the starting and ending times. Here, a starting and ending 
time must be given for each nest, with the restriction that a nest cannot begin before its 
parent domain or end after its parent domain; also, it is suggested that nests be given 
starting and ending times that are identical to the desired starting times of the nest when 
running WPS. This is because the nests get their lateral boundary conditions from their 
parent domain, and thus, only the initial time for a nest needs to be processed by WPS, 
except when grid nudging, also called analysis nudging, is used in WRF. It is important 
to note that, when running WRF, the actual starting and ending times for all nests must be 
given in the WRF namelist.input file. 

The remaining changes are to the “geogrid” namelist record. In this record, the parent of 
each nest must be specified with the parent_id variable. Every nest must be a child of 
exactly one other nest, with the coarse domain being its own parent. Related to the 
identity of a nest's parent is the nest refinement ratio with respect to its parent, which is 
given by the parent_grid_ratio variable; this ratio determines the nominal grid 
spacing for a nest in relation to the grid spacing of the its parent. 

 

Next, the lower-left corner of a nest is specified as an (i, j) location in the nest’s parent 
domain; this is done through the i_parent_start and j_parent_start variables, and 
the specified location is given with respect to the unstaggered grid. Finally, the 
dimensions of each nest, in grid points, are given for each nest using the s_we, e_we, 
s_sn, and e_sn variables. The nesting setup in our example namelist is illustrated in the 
figure above, where it may be seen how each of the above-mentioned variables is 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-22 

determined. Currently, the starting grid point values in the south-north (s_sn) and west-
east (s_we) directions must be specified as 1, and the ending grid point values (e_sn and 
e_we) determine, essentially, the full dimensions of the nest; to ensure that the upper-
right corner of the nest's grid is coincident with an unstaggered grid point in the parent 
domain, both e_we and e_sn must be one greater than some integer multiple of the 
nesting ratio. Also, for each nest, the resolution (or list or resolutions; see the description 
of namelist variables) of source data to interpolate from is specified with the 
geog_data_res variable. For a complete description of these namelist variables, the user 
is referred to the description of namelist variables. 

 

Selecting Between USGS and MODIS-based Land Use Classifications 

By default, the geogrid program will interpolate land use categories from MODIS IGBP 
21-category data. However, the user may select an alternative set of land use categories 
based on the USGS land-cover classification. Although the MODIS-based data contain 
21 categories of land use, these categories are not a subset of the 24 USGS categories; 
users interested in the specific categories in either data set can find a listing of the land 
use classes in the section on land use and soil categories. 

The 24-category USGS-based land use data may be selected instead of the MODIS data 
at run-time through the geog_data_res variable in the &geogrid namelist record. This is 
accomplished by prefixing each resolution of static data with the string “usgs_30s+”. For 
example, in a two-domain configuration, where the geog_data_res variable would 
ordinarily be specified as 

 geog_data_res = ‘default’, ‘default’, 

the user should instead specify 

 geog_data_res = ‘usgs_30s+default’, ‘usgs_30s+default’, 

The effect of this change is to instruct the geogrid program to look, in each entry of the 
GEOGRID.TBL file, for a resolution of static data with a resolution denoted by 
‘usgs_30s’, and if such a resolution is not available, to instead look for a resolution 
denoted by the string following the ‘+’. Thus, for the GEOGRID.TBL entry for the 
LANDUSEF field, the USGS-based land use data, which is identified with the string 
‘usgs_30s’, would be used instead of the ‘default’, resolutions (or source) of land-use 
data in the example above; for all other fields, the ‘default’ resolutions would be used for 
the first and second. As an aside, when none of the resolutions specified for a domain in 
geog_data_res are found in a GEOGRID.TBL entry, the resolution denoted by ‘default’ 
will be used. 

When changing from the default 21-class MODIS land-use data, the user must also 
ensure that the num_land_cat namelist variable is set correctly in &physics namelist 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-23 

record in the WRF namelist.input file. For 24-class USGS data, num_land_cat should be 
set to 24. 

 

Selecting Static Data for the Gravity Wave Drag Scheme 

The gravity wave drag by orography (GWDO) scheme in the ARW requires ten static 
fields from the WPS. In fact, these fields will be interpolated by the geogrid program 
regardless of whether the GWDO scheme will be used in the model. When the GWDO 
scheme will not be used, the fields will simply be ignored in WRF, and the user need not 
be concerned with the resolution of data from which the fields are interpolated. However, 
it is recommended that these fields be interpolated from a resolution of source data that is 
slightly lower (i.e., coarser) in resolution than the model grid; consequently, if the 
GWDO scheme will be used, care should be taken to select an appropriate resolution of 
GWDO static data. Currently, five resolutions of GWDO static data are available: 2-
degree, 1-degree, 30-minute, 20-minute, and 10-minute, denoted by the strings ‘2deg’, 
‘1deg’, ‘30m’, ‘20m’, and ‘10m’, respectively. To select the resolution to interpolate 
from, the user should prefix the resolution specified for the geog_data_res variable in 
the “geogrid” namelist record by the string “XXX+”, where XXX is one of the five 
available resolutions of GWDO static data. For example, in a model configuration with a 
48-km grid spacing, the geog_data_res variable might typically be specified as 

 geog_data_res = ‘10m’, 

However, if the GWDO scheme were employed, the finest resolution of GWDO static 
data that is still lower in resolution than the model grid would be the 30-minute data, in 
which case the user should specify 

 geog_data_res = ‘30m+10m’, 

If none of ‘2deg’, ‘1deg’, ‘30m’, or ‘20m’ are specified in combination with other 
resolutions of static data in the geog_data_res variable, the ‘10m’ GWDO static data 
will be used, since it is also designated as the ‘default’ resolution in the GEOGRID.TBL 
file. It is worth noting that, if 10-minute resolution GWDO data are to be used, but a 
different resolution is desired for other static fields (e.g., topography height), the user 
should simply omit ‘10m’ from the value given to the geog_data_res variable, since 
specifying  

geog_data_res = ‘10m+30s’, 

for example, would cause geogrid to use the 10-mintute data in preference to the 30-
second data for the non-GWDO fields, such as topography height and land use category, 
as well as for the GWDO fields. 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-24 

Using Multiple Meteorological Data Sources 

The metgrid program is capable of interpolating time-invariant fields, and it can also 
interpolate from multiple sources of meteorological data. The first of these capabilities 
uses the constants_name variable in the &metgrid namelist record. This variable may 
be set to a list of filenames – including path information where necessary – of 
intermediate-formatted files which contains time-invariant fields, and which should be 
used in the output for every time period processed by metgrid. For example, short 
simulations may use a constant SST field; this field need only be available at a single 
time, and may be used by setting the constants_name variable to the path and filename 
of the SST intermediate file. Typical uses of constants_name might look like 

&metgrid 
 constants_name = '/data/ungribbed/constants/SST_FILE:2006-08-16_12' 
/ 
 
or 
 
&metgrid 
 constants_name = 'LANDSEA', 'SOILHGT' 
/ 

The second metgrid capability – that of interpolating data from multiple sources – may be 
useful in situations where two or more complementary data sets need to be combined to 
produce the full input data needed by real.exe. To interpolate from multiple sources of 
time-varying, meteorological data, the fg_name variable in the &metgrid namelist record 
should be set to a list of prefixes of intermediate files, including path information when 
necessary. When multiple path-prefixes are given, and the same meteorological field is 
available from more than one of the sources, data from the last-specified source will take 
priority over all preceding sources. Thus, data sources may be prioritized by the order in 
which the sources are given.  

As an example of this capability, if surface fields are given in one data source and upper-
air data are given in another, the values assigned to the fg_name variable may look 
something like: 

&metgrid 
 fg_name = '/data/ungribbed/SFC', '/data/ungribbed/UPPER_AIR' 
/ 
 
To simplify the process of extracting fields from GRIB files, the prefix namelist 
variable in the &ungrib record may be employed. This variable allows the user to control 
the names of (and paths to) the intermediate files that are created by ungrib. The utility of 
this namelist variable is most easily illustrated by way of an example. Suppose we wish 
to work with the North American Regional Reanalysis (NARR) data set, which is split 
into separate GRIB files for 3-dimensional atmospheric data, surface data, and fixed-field 
data. We may begin by linking all of the "3D" GRIB files using the link_grib.csh 
script, and by linking the NARR Vtable to the filename Vtable. Then, we may suitably 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-25 

edit the &ungrib namelist record before running ungrib.exe so that the resulting 
intermediate files have an appropriate prefix: 
 
&ungrib 
 out_format = 'WPS', 
 prefix = 'NARR_3D', 
/ 
 
After running ungrib.exe, the following files should exist (with a suitable substitution for 
the appropriate dates): 
 
NARR_3D:2008-08-16_12 
NARR_3D:2008-08-16_15 
NARR_3D:2008-08-16_18 
... 
 
Given intermediate files for the 3-dimensional fields, we may process the surface fields 
by linking the surface GRIB files and changing the prefix variable in the namelist: 
 
&ungrib 
 out_format = 'WPS', 
 prefix = 'NARR_SFC', 
/ 
 
Again running ungrib.exe, the following should exist in addition to the NARR_3D files: 
 
NARR_SFC:2008-08-16_12 
NARR_SFC:2008-08-16_15 
NARR_SFC:2008-08-16_18 
... 
 
Finally, the fixed file is linked with the link_grib.csh script, and the prefix variable in 
the namelist is again set: 
 
&ungrib 
 out_format = 'WPS', 
 prefix = 'NARR_FIXED', 
/ 
 
Having run ungrib.exe for the third time, the fixed fields should be available in addition 
to the surface and "3D" fields: 
 
NARR_FIXED:1979-11-08_00 
 
For the sake of clarity, the fixed file may be renamed to remove any date information, for 
example, by renaming it to simply NARR_FIXED, since the fields in the file are static. In 
this example, we note that the NARR fixed data are only available at a specific time, 
1979 November 08 at 0000 UTC, and thus, the user would need to set the correct starting 
and ending time for the data in the &share namelist record before running ungrib on the 
NARR fixed file; of course, the times should be re-set before metgrid is run.  



WPS 
 

 
WRF-ARW V3: User’s Guide 3-26 

 
Given intermediate files for all three parts of the NARR data set, metgrid.exe may be run 
after the constants_name and fg_name variables in the &metgrid namelist record are 
set: 
 
&metgrid 
 constants_name = 'NARR_FIXED', 
 fg_name = 'NARR_3D', 'NARR_SFC' 
/ 

Although less common, another situation where multiple data sources would be required 
is when a source of meteorological data from a regional model is insufficient to cover the 
entire simulation domain, and data from a larger regional model, or a global model, must 
be used when interpolating to the remaining points of the simulation grid.  

For example, to use NAM data wherever possible, and GFS data elsewhere, the following 
values might be assigned in the namelist: 

&metgrid 
 fg_name = '/data/ungribbed/GFS', '/data/ungribbed/NAM' 
/ 

Then the resulting model domain would use data as shown in the figure below. 

 

 

If no field is found in more than one source, then no prioritization need be applied by 
metgrid, and each field will simply be interpolated as usual; of course, each source should 
cover the entire simulation domain to avoid areas of missing data. 

 

Using Non-isobaric Meteorological Datasets 

When using non-isobaric meteorological datasets to initialize a WRF simulation, it is 
important that such datasets are supplied to the metgrid.exe program with 3-d pressure 
and geopotential height fields on the same levels as other 3-d atmospheric variables, such 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-27 

as temperature and humidity. These fields are used by the WRF real.exe pre-processor for 
vertical interpolation to WRF model levels, for surface pressure computation, and for 
other purposes.  

For some data sources, namely ECMWF model-level data and UK Met Office model 
data, the 3-d pressure and/or geopotential height fields can be derived from the surface 
pressure and/or surface height fields using an array of coefficients, and the WPS provides 
utility programs for performing this derivation; see the section on WPS Utility Programs 
for more information on the calc_ecmwf_p.exe and height_ukmo.exe programs.  

Other meteorological datasets explicitly provide 3-d pressure and geopotential height 
fields, and the user must only ensure that these fields exist in the set of intermediate files 
provided to the metgrid.exe program. 

 

Alternative Initialization of Lake SSTs 

The default treatment of sea-surface temperatures – both for oceans and lakes – in the 
metgrid program involves simply interpolating the SST field from the intermediate files 
to all water points in the WRF domain. However, if the lakes that are resolved in the 
WRF domain are not resolved in the GRIB data, and especially if those lakes are 
geographically distant from resolved water bodies, the SST field over lakes will most 
likely be extrapolated from the nearest resolved water bodies in the GRIB data; this 
situation can lead to lake SST values that are either unrealistically warm or unrealistically 
cold. 

Without a higher-resolution SST field for metgrid to use, one alternative to extrapolating 
SST values for lakes is to manufacture a “best guess” at the SST for lakes. In the metgrid 
and real programs, this can be done using a combination of a special land use data set that 
distinguishes between lakes and oceans, and a field to be used as a proxy for SST over 
lakes. A special land use data set is necessary, since WRF’s real pre-processing program 
needs to know where the manufactured SST field should be used instead of the 
interpolated SST field from the GRIB data. 

 

The alternative procedure for initializing lake SSTs is summarized in the following steps: 

1. If they have not already been downloaded (either as a separate tar file or as part of 
the ‘full’ geographical data tar file), obtain the special land use data sets that 
distinguish between lakes and oceans. Two such data sets – based on USGS and 
MODIS land use categories – may be downloaded through the WRF download page. 
For simplicity, it is recommended to place the two directories in the same directory as 
the other static geographical data sets (e.g., topo_30s, soiltype_top_30s, etc.) used by 
geogrid, since doing so will eliminate the need to modify the GEOGRID.TBL file. If 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-28 

the landuse_30s_with_lakes and modis_landuse_21class_30s directories are placed in 
a location different from the other static data sets, it will be necessary to change the 
paths to these directories from relative paths to absolute paths in the GEOGRID.TBL 
file. 

2. Before running geogrid, change the specification of geog_data_res in the &geogrid 
namelist record to specify either the USGS-based or the MODIS-based land use data 
with inland water bodies. For example, in a two-domain configuration, setting 

   geog_data_res = 'usgs_lakes+10m', 'usgs_lakes+2m', 

would tell geogrid to use the USGS-based land use data for both domains, and to use 
the 10-minute resolution data for other static fields in domain 1 and the 2-minute 
resolution data for other static fields in domain 2; for MODIS-based data, 
usgs_lakes should be replaced by modis_lakes.  

Running geogrid should result in output files that use a separate category for inland 
water bodies instead of the general water category used for oceans and seas. The lake 
category is identified by the global attribute ISLAKE in the geogrid output files; this 
attribute should be set to either 28 (in the case of USGS-based data) or 21 (in the case 
of the MODIS-based data). See, e.g., the list of WPS output fields, where a value of   
-1 for ISLAKE indicates that there is no separate lake category. 

3. After running the ungrib program, use the avg_tsfc.exe utility program to create an 
intermediate file containing a daily-average surface air temperature field, which will 
be substituted for the SST field only over lakes by the real program; for more 
information on the avg_tsfc.exe utility, see the section on WPS utility programs. 

4. Before running the metgrid program, add the TAVGSFC file created in the previous 
step to the specification of constants_name in the &metgrid record of the 
namelist.wps file. 

5. Run WRF’s real.exe program as usual after setting the number of land categories 
(num_land_cat) in the &physics record of the namelist.input file so that it matches 
the value of the global attribute NUM_LAND_CAT in the metgrid files. If the global 
attribute ISLAKE in the metgrid files indicates that there is a special land use 
category for lakes, the real program will substitute the TAVGSFC field for the SST 
field only over those grid points whose category matches the lake category; 
additionally, the real program will change the land use category of lakes back to the 
general water category (the category used for oceans), since neither the 
LANDUSE.TBL nor the VEGPARM.TBL files contain an entry for a lake category. 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-29 

Parallelism in the WPS 

If the dimensions of the domains to be processed by the WPS become too large to fit in 
the memory of a single CPU, it is possible to run the geogrid and metgrid programs in a 
distributed memory configuration. In order to compile geogrid and metgrid for distributed 
memory execution, the user must have MPI libraries installed on the target machine, and 
must have compiled WPS using one of the "DM parallel" configuration options. Upon 
successful compilation, the geogrid and metgrid programs may be run with the mpirun or 
mpiexec commands, or through a batch queuing system, depending on the machine.  

As mentioned earlier, the work of the ungrib program is not amenable to parallelization, 
and, further, the memory requirements for ungrib's processing are independent of the 
memory requirements of geogrid and metgrid; thus, ungrib is always compiled for a 
single processor and run on a single CPU, regardless of whether a "DM parallel" 
configuration option was selected during configuration. 

Each of the standard WRF I/O API formats (NetCDF, GRIB1, binary) has a 
corresponding parallel format, whose number is given by adding 100 to the io_form value 
(i.e., the value of io_form_geogrid and io_form_metgrid) for the standard format. It is 
not necessary to use a parallel io_form, but when one is used, each CPU will read/write 
its input/output to a separate file, whose name is simply the name that would be used 
during serial execution, but with a four-digit processor ID appended to the name. For 
example, running geogrid on four processors with io_form_geogrid=102 would create 
output files named geo_em.d01.nc.0000, geo_em.d01.nc.0001, geo_em.d01.nc.0002,  and 
geo_em.d01.nc.0003 for the coarse domain.  

During distributed-memory execution, model domains are decomposed into rectangular 
patches, with each processor working on a single patch. When reading/writing from/to 
the WRF I/O API format, each processor reads/writes only its patch. Consequently, if a 
parallel io_form is chosen for the output of geogrid, metgrid must be run using the same 
number of processors as were used to run geogrid. Similarly, if a parallel io_form is 
chosen for the metgrid output files, the real program must be run using the same number 
of processors. Of course, it is still possible to use a standard io_form when running on 
multiple processors, in which case all data for the model domain will be 
distributed/collected upon input/output. As a final note, when geogrid or metgrid are run 
on multiple processors, each processor will write its own log file, with the log file names 
being appended with the same four-digit processor ID numbers that are used for the I/O 
API files.  

 

Checking WPS Output 

When running the WPS, it may be helpful to examine the output produced by the 
programs. For example, when determining the location of nests, it may be helpful to see 
the interpolated static geographical data and latitude/longitude fields. As another 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-30 

example, when importing a new source of data into WPS – either static data or 
meteorological data – it can often be helpful to check the resulting interpolated fields in 
order to make adjustments the interpolation methods used by geogrid or metgrid.  

By using the NetCDF format for the geogrid and metgrid I/O forms, a variety of 
visualization tools that read NetCDF data may be used to check the domain files 
processed by geogrid or the horizontally interpolated meteorological fields produced by 
metgrid. In order to set the file format for geogrid and metgrid to NetCDF, the user 
should specify 2 as the io_form_geogrid and io_form_metgrid in the WPS namelist 
file (Note: 2 is the default setting for these options): 

&share 
 io_form_geogrid = 2, 
/ 
 
&metgrid 
 io_form_metgrid = 2,  
/ 

Among the available tools, the ncdump, ncview, and new RIP4 programs may be of 
interest. The ncdump program is a compact utility distributed with the NetCDF libraries 
that lists the variables and attributes in a NetCDF file. This can be useful, in particular, 
for checking the domain parameters (e.g., west-east dimension, south-north dimension, or 
domain center point) in geogrid domain files, or for listing the fields in a file. The ncview 
program provides an interactive way to view fields in NetCDF files. Also, for users 
wishing to produce plots of fields suitable for use in publications, the new release of the 
RIP4 program may be of interest. The new RIP4 is capable of plotting horizontal 
contours, map backgrounds, and overlaying multiple fields within the same plot. 

Output from the ungrib program is always written in a simple binary format (either 
‘WPS’, ‘SI’, or ‘MM5’), so software for viewing NetCDF files will almost certainly be of 
no use. However, an NCAR Graphics-based utility, plotfmt, is supplied with the WPS 
source code. This utility produces contour plots of the fields found in an intermediate-
format file. If the NCAR Graphics libraries are properly installed, the plotfmt program is 
automatically compiled, along with other utility programs, when WPS is built.  

 

WPS Utility Programs 

Besides the three main WPS programs – geogrid, ungrib, and metgrid – there are a 
number of utility programs that come with the WPS, and which are compiled in the util 
directory. These utilities may be used to examine data files, visualize the location of 
nested domains, compute pressure fields, and compute average surface temperature 
fields. 

A. avg_tsfc.exe 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-31 

The avg_tsfc.exe program computes a daily mean surface temperature given input files in 
the intermediate format. Based on the range of dates specified in the "share" namelist 
section of the namelist.wps file, and also considering the interval between intermediate 
files, avg_tsfc.exe will use as many complete days' worth of data as possible in 
computing the average, beginning at the starting date specified in the namelist. If a 
complete day's worth of data is not available, no output file will be written, and the 
program will halt as soon as this can be determined. Similarly, any intermediate files for 
dates that cannot be used as part of a complete 24-hour period are ignored; for example, 
if there are five intermediate files available at a six-hour interval, the last file would be 
ignored. The computed average field is written to a new file named TAVGSFC using the 
same intermediate format version as the input files. This daily mean surface temperature 
field can then be ingested by metgrid by specifying 'TAVGSFC' for the constants_name 
variable in the "metgrid" namelist section. 

B. mod_levs.exe 

The mod_levs.exe program is used to remove levels of data from intermediate format 
files. The levels which are to be kept are specified in a new namelist record in the 
namelist.wps file: 

&mod_levs 
 press_pa = 201300 , 200100 , 100000 ,  
             95000 ,  90000 ,  
             85000 ,  80000 ,  
             75000 ,  70000 ,  
             65000 ,  60000 ,  
             55000 ,  50000 ,  
             45000 ,  40000 ,  
             35000 ,  30000 ,  
             25000 ,  20000 ,  
             15000 ,  10000 ,  
              5000 ,   1000 
/ 
 
Within the &mod_levs namelist record, the variable press_pa is used to specify a list of 
levels to keep; the specified levels should match values of xlvl in the intermediate 
format files (see the discussion of the WPS intermediate format for more 
information on the fields of the intermediate files). The mod_levs program takes two 
command-line arguments as its input. The first argument is the name of the intermediate 
file to operate on, and the second argument is the name of the output file to be written. 
 
Removing all but a specified subset of levels from meteorological data sets is particularly 
useful, for example, when one data set is to be used for the model initial conditions and a 
second data set is to be used for the lateral boundary conditions. This can be done by 
providing the initial conditions data set at the first time period to be interpolated by 
metgrid, and the boundary conditions data set for all other times. If the both data sets 
have the same number of vertical levels, then no work needs to be done; however, when 
these two data sets have a different number of levels, it will be necessary, at a minimum, 
to remove (m – n) levels, where m > n and m and n are the number of levels in each of the 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-32 

two data sets, from the data set with m levels. The necessity of having the same number 
of vertical levels in all files is due to a limitation in real.exe, which requires a constant 
number of vertical levels to interpolate from. 
 
The mod_levs utility is something of a temporary solution to the problem of 
accommodating two or more data sets with differing numbers of vertical levels. Should a 
user choose to use mod_levs, it should be noted that, although the vertical locations of the 
levels need not match between data sets, all data sets should have a surface level of data, 
and, when running real.exe and wrf.exe, the value of p_top must be chosen to be below 
the lowest top among the data sets.  

C. calc_ecmwf_p.exe 

In the course of vertically interpolating meteorological fields, the real program requires 
3-d pressure and geopotential height fields on the same levels as the other atmospheric 
fields. The calc_ecmwf_p.exe utility may be used to create these fields for use with 
ECMWF sigma-level data sets. Given a surface pressure field (or log of surface pressure 
field) and a list of coefficients A and B, calc_ecmwf_p.exe computes the pressure at an 
ECMWF sigma level k at grid point (i,j) as Pijk = Ak + Bk*Psfcij. The list of coefficients 
used in the pressure computation can be copied from a table appropriate to the number of 
sigma levels in the data set from one of the following links: 

http://www.ecmwf.int/en/forecasts/documentation-and-support/16-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/19-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/31-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/40-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/50-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/62-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/91-model-levels 

http://www.ecmwf.int/en/forecasts/documentation-and-support/137-model-levels  

This table should be written in plain text to a file, ecmwf_coeffs, in the current working 
directory; for example, with 16 sigma levels, the file emcwf_coeffs would contain 
something like: 

    0         0.000000      0.000000000 
    1      5000.000000      0.000000000 
    2      9890.519531      0.001720764 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-33 

    3     14166.304688      0.013197623 
    4     17346.066406      0.042217135 
    5     19121.152344      0.093761623 
    6     19371.250000      0.169571340 
    7     18164.472656      0.268015683 
    8     15742.183594      0.384274483 
    9     12488.050781      0.510830879 
   10      8881.824219      0.638268471 
   11      5437.539063      0.756384850 
   12      2626.257813      0.855612755 
   13       783.296631      0.928746223 
   14         0.000000      0.972985268 
   15         0.000000      0.992281914 
   16         0.000000      1.000000000 
 
Additionally, if soil height (or soil geopotential), 3-d temperature, and 3-d specific 
humidity fields are available, calc_ecmwf_p.exe computes a 3-d geopotential height 
field, which is required to obtain an accurate vertical interpolation in the real program.  
 
Given a set of intermediate files produced by ungrib and the file ecmwf_coeffs, 
calc_ecmwf_p loops over all time periods in namelist.wps, and produces an additional 
intermediate file, PRES:YYYY-MM-DD_HH, for each time, which contains pressure and 
geopotential height data for each full sigma level, as well as a 3-d relative humidity field. 
This intermediate file should be specified to metgrid, along with the intermediate data 
produced by ungrib, by adding 'PRES' to the list of prefixes in the fg_name namelist 
variable. 
 
 

D. height_ukmo.exe 

The real program requires 3-d pressure and geopotential height fields to vertically 
interpolate the output of the metgrid program; however, data sets from the UKMO 
Unified Model contain a 3-d pressure field, but do not contain a geopotential height field. 
Accordingly, the height_ukmo.exe program may be used to compute a geopotential 
height field for data sets from the UKMO Unified Model. The height_ukmo.exe program 
requires no command-line arguments, but reads the &metgrid namelist record to get the 
prefix of the intermediate files created by ungrib.exe; the intermediate files indicated by 
the first prefix in the fg_name variable of the &metgrid namelist record are expected to 
contain a SOILHGT field, from which the height_ukmo.exe program computes, with the 
aid of an auxiliary table, the 3-d geopotential height field. The computed height field is 
written to a new intermediate file with the prefix HGT, and the prefix ‘HGT’ should then 
be added to the fg_name namelist variable in the &metgrid namelist record before 
running metgrid.exe. The name of the file containing the auxiliary table is currently hard-
wired in the source code of the height_ukmo.exe program, and it is the responsibility of 
the user to change this file name in WPS/util/src/height_ukmo.F to the name of the table 
with the same number of levels as the GRIB data processed by ungrib.exe; tables for data 
with 38, 50, and 70 levels are provided in the WPS/util directory with file names 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-34 

vertical_grid_38_20m_G3.txt, vertical_grid_50_20m_63km.txt , and 
vertical_grid_70_20m_80km.txt, respectively. 

E. plotgrids.ncl 

The plotgrids.ncl program is an NCAR Graphics-based utility whose purpose is to plot 
the locations of all nests defined in the namelist.wps file. The program operates on the 
namelist.wps file, and thus, may be run without having run any of the three main WPS 
programs. Upon successful completion, plotgrids produces an Graphics file in the chosen 
format (see inside the plotgrids.ncl script for making changes to the output format),  The 
coarse domain is drawn to fill the plot frame, a map outline with political boundaries is 
drawn over the coarse domain, and any nested domains are drawn as rectangles outlining 
the extent of each nest. This utility may be useful particularly during initial placement of 
domains, at which time the user can iteratively adjust the locations of nests by editing the 
namelist.wps file, running plotgrids.ncl, and determining a set of adjustments to the nest 
locations. To run this program, simply type 'ncl util/plotgrids.ncl' in the command line 
from inside the WPS/ directory.  Currently, this utility does not work for ARW domains 
that use the latitude-longitude projection (i.e., when map_proj = 'lat-lon').  

F. g1print.exe 

The g1print.exe program takes as its only command-line argument the name of a GRIB 
Edition 1 file. The program prints a listing of the fields, levels, and dates of the data in 
the file. 

G. g2print.exe 

Similar to g1print.exe, the g2print.exe program takes as its only command-line argument 
the name of a GRIB Edition 2 file. The program prints a listing of the fields, levels, and 
dates of the data in the file. 

H. rd_intermediate.exe 

Given the name of a singe intermediate format file on the command line, the 
rd_intermediate.exe program prints information about the fields contained in the file. 

 

Writing Meteorological Data to the Intermediate Format 

The role of the ungrib program is to decode GRIB data sets into a simple intermediate 
format that is understood by metgrid. If meteorological data are not available in GRIB 
Edition 1 or GRIB Edition 2 formats, the user is responsible for writing such data into the 
intermediate file format. Fortunately, the intermediate format is relatively simple, 
consisting of a sequence of unformatted Fortran writes. It is important to note that these 
unformatted writes use big-endian byte order, which can typically be specified with 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-35 

compiler flags. Below, we describe the WPS intermediate format; users interested in the 
SI or MM5 intermediate formats can first gain familiarity with the WPS format, which is 
very similar, and later examine the Fortran subroutines that read and write all three 
intermediate formats (metgrid/src/read_met_module.F and 
metgrid/src/write_met_module.F, respectively). 

When writing data to the WPS intermediate format, 2-dimensional fields are written as a 
rectangular array of real values. 3-dimensional arrays must be split across the vertical 
dimension into 2-dimensional arrays, which are written independently. It should also be 
noted that, for global data sets, either a Gaussian or cylindrical equidistant projection 
must be used, and for regional data sets, either a Mercator, Lambert conformal, polar 
stereographic, or cylindrical equidistant may be used. The sequence of writes used to 
write a single 2-dimensional array in the WPS intermediate format is as follows (note that 
not all of the variables declared below are used for a given projection of the data). 

integer :: version  ! Format version (must =5 for WPS format) 
integer :: nx, ny  ! x- and y-dimensions of 2-d array 
integer :: iproj  ! Code for projection of data in array: 
    !  0 = cylindrical equidistant 
    !  1 = Mercator 
    !  3 = Lambert conformal conic 
    !  4 = Gaussian (global only!) 
    !  5 = Polar stereographic 
real :: nlats   ! Number of latitudes north of equator  
    !  (for Gaussian grids) 
real :: xfcst   ! Forecast hour of data 
real :: xlvl   ! Vertical level of data in 2-d array 
real :: startlat, startlon ! Lat/lon of point in array indicated by  
    !  startloc string 
real :: deltalat, deltalon ! Grid spacing, degrees 
real :: dx, dy   ! Grid spacing, km 
real :: xlonc   ! Standard longitude of projection 
real :: truelat1, truelat2 ! True latitudes of projection 
real :: earth_radius  ! Earth radius, km 
real, dimension(nx,ny) :: slab ! The 2-d array holding the data 
logical :: is_wind_grid_rel ! Flag indicating whether winds are 
       
    !  relative to source grid (TRUE) or  
    !  relative to earth (FALSE) 
character (len=8)  :: startloc ! Which point in array is given by  
    !  startlat/startlon; set either 
       
    !  to 'SWCORNER' or 'CENTER  ' 
character (len=9)  :: field ! Name of the field 
character (len=24) :: hdate ! Valid date for data YYYY:MM:DD_HH:00:00 
character (len=25) :: units ! Units of data 
character (len=32) :: map_source  !  Source model / originating center 
character (len=46) :: desc ! Short description of data 
   
     
!  1) WRITE FORMAT VERSION 
write(unit=ounit) version 
 
!  2) WRITE METADATA 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-36 

! Cylindrical equidistant 
if (iproj == 0) then 
      write(unit=ounit) hdate, xfcst, map_source, field, & 
                        units, desc, xlvl, nx, ny, iproj 
      write(unit=ounit) startloc, startlat, startlon, & 
                        deltalat, deltalon, earth_radius 
 
! Mercator 
else if (iproj == 1) then 
      write(unit=ounit) hdate, xfcst, map_source, field, & 
                        units, desc, xlvl, nx, ny, iproj 
      write(unit=ounit) startloc, startlat, startlon, dx, dy, & 
                        truelat1, earth_radius 
 
! Lambert conformal 
else if (iproj == 3) then 
      write(unit=ounit) hdate, xfcst, map_source, field, & 
                        units, desc, xlvl, nx, ny, iproj 
      write(unit=ounit) startloc, startlat, startlon, dx, dy, & 
                        xlonc, truelat1, truelat2, earth_radius 
 
! Gaussian 
else if (iproj == 4) then 
      write(unit=ounit) hdate, xfcst, map_source, field, & 
                        units, desc, xlvl, nx, ny, iproj 
      write(unit=ounit) startloc, startlat, startlon, & 
    nlats, deltalon, earth_radius 
 
! Polar stereographic 
else if (iproj == 5) then 
      write(unit=ounit) hdate, xfcst, map_source, field, & 
                        units, desc, xlvl, nx, ny, iproj 
      write(unit=ounit) startloc, startlat, startlon, dx, dy, & 
                        xlonc, truelat1, earth_radius 
      
end if 
   
!  3) WRITE WIND ROTATION FLAG  
write(unit=ounit) is_wind_grid_rel 
 
!  4) WRITE 2-D ARRAY OF DATA 
write(unit=ounit) slab 

 

Required Meteorological Fields for Running WRF 

In order to successfully initialize a WRF simulation, the real.exe pre-processor requires a 
minimum set of meteorological and land-surface fields to be present in the output from 
the metgrid.exe program. Accordingly, these required fields must be available in the 
intermediate files processed by metgrid.exe. The set of required fields is described in the 
table, below. 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-37 

 

Field name in 
intermediate file Units Description Notes 
TT K 3-d air temperature  
RH % 3-d relative humidity Not needed if 

SPECHUMD is 
available 

SPECHUMD kg kg-1 3-d specific humidity Not needed if RH is 
available 

UU m s-1 3-d wind u-component  
VV m s-1 3-d wind v-component  
GHT m 3-d geopotential height  
PRESSURE Pa 3-d pressure Only needed for non-

isobaric datasets 
PSFC Pa Surface pressure  
PMSL Pa Mean sea-level pressure  
SKINTEMP K Skin temperature  
SOILHGT m Soil height  
TT K 2-meter air temperature  
RH % 2-meter relative humidity Not needed if 

SPECHUMD is 
available 

SPECHUMD kg kg-1 2-meter specific humidity Not needed if RH is 
available 

UU m s-1 2-meter wind u-component  
VV m s-1 2-meter wind v-component  
LANDSEA fraction Land-sea mask (0=water, 

1=land) 
 

SMtttbbb m3 m-3 Soil moisture 'ttt' is the layer top 
depth in cm, and 'bbb' 
is the layer bottom 
depth in cm 

STtttbbb K Soil temperature 

SOILMmmm kg m-3 Soil moisture 'mmm' is the level 
depth in cm, not 
needed if SMtttbbb 
available 

SOILTmmm K Soil temperature 

 

Using MPAS Output for WRF Initial and Lateral Boundary Conditions 

Beginning with the v3.9 release of the WPS, the metgrid.exe program is capable of 
reading native, unstructured mesh output in netCDF format from the Model for 
Prediction Across Scales (MPAS; https://mpas-dev.github.io/); the metgrid.exe program 
can then horizontally interpolate the MPAS fields directly to any domain defined by the 
geogrid.exe program to produce output files that are usable by the WRF real.exe program 
in exatly the same way as metgrid output interpolated from intermediate files. In this 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-38 

way, output from MPAS may be used to provide initial and lateral boundary conditions 
for WRF. 

When running an MPAS simulation, an output stream must be set up to contain the 
minimum set of fields necessary to initialize a WRF simulation. The following output 
stream should be sufficient with the MPAS v5.x code. 

<stream name="wrf_ic_bc" 
        type="output" 
        filename_template="MPAS.$Y-$M-$D_$h.nc" 
        output_interval="3:00:00" > 
  
 <var name="xtime"/> 
 <var_array name="scalars"/> 
 <var name="pressure"/> 
 <var name="zgrid"/> 
 <var name="theta"/> 
 <var name="uReconstructZonal"/> 
 <var name="uReconstructMeridional"/> 
 <var name="u10"/> 
 <var name="v10"/> 
 <var name="q2"/> 
 <var name="t2m"/> 
 <var name="skintemp"/> 
 <var name="surface_pressure"/> 
 <var name="mslp"/> 
 <var name="tslb"/> 
 <var name="smois"/> 
 
</stream> 
 
After having run MPAS with a suitable output stream defined, a set of netCDF files 
containing fields on the native MPAS mesh will have been produced. Because these files 
do not contain fields describing the locations, geometry, and connectivity of the MPAS 
grid cells, this information must be provided to the metgrid program with a “static” file 
from the MPAS simulation. Therefore, it is necessary to specify MPAS netCDF files 
(prefixed with ‘mpas:’) in the &metgrid namelist record with both the constants_name 
and fg_name variables, e.g., 
 
&metgrid 
 constants_name = ‘mpas:static.nc’ 
 fg_name = ‘mpas:MPAS’ 
/ 
 
In the above example, the metgrid.exe program would first read the MPAS ‘static.nc’ file 
to read mesh information and compute remapping weights from the MPAS mesh to the 
WRF domain defined by the geogrid.exe program, then all time periods of the MPAS 
files with a prefix of ‘MPAS’ (and a suffix of YYYY-MM-DD_HH.nc) would be processed. 
The real.exe program can then be run as usual. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-39 

Data from intermediate files created by the ungrib.exe program can be combined with 
MPAS data by the metgrid program. This may be useful, e.g., to use SST, sea ice, or 
land-surface fields from another source. An example of combining MPAS data with 
ERA-Interim intermediate files with soil data (with the prefix ‘ERAI_SOIL’) is shown 
below. 
 
&metgrid 
  constants_name = ‘mpas:static.nc’ 
  fg_name = ‘mpas:MPAS’, ‘ERAI_SOIL’ 
/ 
 
Because the MPAS ‘zgrid’ field does not change in time, it can be omitted from the 
MPAS periodic output stream; in this case, however, the ‘zgrid’ field must be placed in 
its own netCDF file that must also define the dimension ‘Time’ as a netCDF unlimited 
dimension. Then, this file (say, ‘zgrid.nc’) can be supplied to the metgrid program using 
the constants_name namelist variable, e.g., 
 
&metgrid 
 constants_name = ‘mpas:static.nc’, ‘mpas:zgrid.nc’ 
 fg_name = ‘mpas:MPAS’ 
/ 
 
Placing the ‘zgrid’ field in its own file can save considerable space when long MPAS 
simulations are run, or when the output stream to be used as WRF initial and boundary 
conditions is written out at high temporal frequency. The python script, below, may serve 
as an example of how to extract the ‘zgrid’ field to its own netCDF file. 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-40 

from netCDF4 import Dataset 
 
fin = Dataset('init.nc') 
fout = Dataset('zgrid.nc','w',format='NETCDF3_64BIT') 
 
nCells = fin.dimensions['nCells'].size 
nVertLevelsP1 = fin.dimensions['nVertLevelsP1'].size 
 
fout.createDimension(dimname='Time',size=None) 
fout.createDimension(dimname='nCells',size=nCells) 
fout.createDimension(dimname='nVertLevelsP1',size=nVertLevelsP1) 
fout.createVariable(varname='zgrid',datatype='f',dimensions=('nCells', 
'nVertLevelsP1')) 
fout.variables['zgrid'][:] = fin.variables['zgrid'][:] 
fout.close() 
fin.close() 
 
It is worth noting that the use of native MPAS output with metgrid.exe has not been 
thoroughly tested for parallel (i.e., “dmpar”) builds of the WPS; as of the WPS v3.9.1 
release, it is therefore recommended to run metgrid.exe in serial when processing MPAS 
datasets. 
 
Also, in cases of large MPAS meshes, it may be necessary to increase the value of two 
constants in the metgrid code that are used to statically allocate several datastructures 
used in the computation of remapping weights from the MPAS mesh to the WRF domain. 
These two constants, shown below, are located in the WPS/src/metgrid/remapper.F file. 
 
! should be at least (earth circumference / minimum grid distance) 
integer, parameter :: max_queue_length    = 2700 
 
! should be at least (nCells/32) 
integer, parameter :: max_dictionary_size = 82000    
 
After changing the value of these constants, metgrid must be recompiled. 
 

Creating and Editing Vtables 

Although Vtables are provided for many common data sets, it would be impossible for 
ungrib to anticipate every possible source of meteorological data in GRIB format. When 
a new source of data is to be processed by ungrib.exe, the user may create a new Vtable 
either from scratch, or by using an existing Vtable as an example. In either case, a basic 
knowledge of the meaning and use of the various fields of the Vtable will be helpful. 

Each Vtable contains either seven or eleven fields, depending on whether the Vtable is 
for a GRIB Edition 1 data source or a GRIB Edition 2 data source, respectively. The 
fields of a Vtable fall into one of three categories: fields that describe how the data are 
identified within the GRIB file, fields that describe how the data are identified by the 
ungrib and metgrid programs, and fields specific to GRIB Edition 2. Each variable to be 
extracted by ungrib.exe will have one or more lines in the Vtable, with multiple lines for 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-41 

data that are split among different level types – for example, a surface level and upper-air 
levels. The fields that must be specified for a line, or entry, in the Vtable depends on the 
specifics of the field and level. 

The first group of fields – those that describe how the data are identified within the GRIB 
file – are given under the column headings of the Vtable shown below. 

GRIB1| Level| From |  To  | 
Param| Type |Level1|Level2| 
-----+------+------+------+ 
 
The "GRIB1 Param" field specifies the GRIB code for the meteorological field, which is 
a number unique to that field within the data set. However, different data sets may use 
different GRIB codes for the same field – for example, temperature at upper-air levels 
has GRIB code 11 in GFS data, but GRIB code 130 in ECMWF data. To find the GRIB 
code for a field, the g1print.exe and g2print.exe utility program may be used. 

Given a GRIB code, the "Level Type", "From Level1", and "From Level2" fields are 
used to specify which levels a field may be found at. As with the "GRIB1 Param" field, 
the g1print.exe and g2print.exe programs may be used to find values for the level fields. 
The meanings of the level fields are dependent on the "Level Type" field, and are 
summarized in the following table. 

 

Level Level Type From Level1 To Level2 
Upper-air 100 * (blank) 
Surface 1 0 (blank) 

Sea-level 102 0 (blank) 
Levels at a specified 

height AGL 
105 Height, in meters, of 

the level above ground 
(blank) 

Fields given as layers 112 Starting level for the 
layer 

Ending level for 
the layer 

 

When layer fields (Level Type 112) are specified, the starting and ending points for the 
layer have units that are dependent on the field itself; appropriate values may be found 
with the g1print.exe and g2print.exe utility programs. 

The second group of fields in a Vtable, those that describe how the data are identified 
within the metgrid and real programs, fall under the column headings shown below. 

| metgrid  | metgrid | metgrid                                 | 
| Name     |  Units  | Description                             | 
+----------+---------+-----------------------------------------+ 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-42 

 
The most important of these three fields is the "metgrid Name" field, which determines 
the variable name that will be assigned to a meteorological field when it is written to the 
intermediate files by ungrib. This name should also match an entry in the 
METGRID.TBL file, so that the metgrid program can determine how the field is to be 
horizontally interpolated. The "metgrid Units" and "metgrid Description" fields specify 
the units and a short description for the field, respectively; here, it is important to note 
that if no description is given for a field, then ungrib will not write that field out to the 
intermediate files. 

The final group of fields, which provide GRIB2-specific information, are found under the 
column headings below. 

|GRIB2|GRIB2|GRIB2|GRIB2| 
|Discp|Catgy|Param|Level| 
+-----------------------+ 

The GRIB2 fields are only needed in a Vtable that is to be used for GRIB Edition 2 data 
sets, although having these fields in a Vtable does not prevent that Vtable from also being 
used for GRIB Edition 1 data. For example, the Vtable.GFS file contains GRIB2 Vtable 
fields, but is used for both 1-degree (GRIB1) GFS and 0.5-degree (GRIB2) GFS data 
sets. Since Vtables are provided for most known GRIB Edition 2 data sets, the 
corresponding Vtable fields are not described here at present. 

 

Writing Static Data to the Geogrid Binary Format 

The static geographical data sets that are interpolated by the geogrid program are stored 
as regular 2-d and 3-d arrays written in a simple binary raster format. Users with a new 
source for a given static field can ingest their data with WPS by writing the data set into 
this binary format. The geogrid format is capable of supporting single-level and multi-
level continuous fields, categorical fields represented as dominant categories, and 
categorical fields given as fractional fields for each category. The most simple of these 
field types in terms of representation in the binary format is a categorical field given as a 
dominant category at each source grid point, an example of which is the 30-second USGS 
land use data set. 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-43 

 

For a categorical field given as dominant categories, the data must first be stored in a 
regular 2-d array of integers, with each integer giving the dominant category at the 
corresponding source grid point. Given this array, the data are written to a file, row-by-
row, beginning at the bottom, or southern-most, row. For example, in the figure above, 
the elements of the n ´ m array would be written in the order x11, x12, ..., x1m, x21, ..., x2m, 
..., xn1, ..., xnm. When written to the file, every element is stored as a 1-, 2-, 3-, or 4-byte 
integer in big-endian byte order (i.e., for the 4-byte integer ABCD, byte A is stored at the 
lowest address and byte D at the highest), although little-endian files may be used by 
setting endian=little in the "index" file for the data set. Every element in a file must 
use the same number of bytes for its storage, and, of course, it is advantageous to use the 
fewest number of bytes needed to represent the complete range of values in the array. 

When writing the binary data to a file, no header, record marker, or additional bytes 
should be written. For example, a 2-byte 1000 ´ 1000 array should result in a file whose 
size is exactly 2,000,000 bytes. Since Fortran unformatted writes add record markers, it is 
not possible to write a geogrid binary-formatted file directly from Fortran; instead, it is 
recommended that the C routines in read_geogrid.c and write_geogrid.c (in the 
geogrid/src directory) be called when writing data, either from C or Fortran code. 

Similar in format to a field of dominant categories is the case of a field of continuous, or 
real, values. Like dominant-category fields, single-level continuous fields are first 
organized as a regular 2-d array, then written, row-by-row, to a binary file. However, 
because a continuous field may contain non-integral or negative values, the storage 
representation of each element within the file is slightly more complex. All elements in 
the array must first be converted to integral values. This is done by first scaling all 
elements by a constant, chosen to maintain the required precision, and then removing any 
remaining fractional part through rounding. For example, if three decimal places of 
precision are required, the value -2.71828 would need to be divided by 0.001 and 
rounded to -2718. Following conversion of all array elements to integral values, if any 
negative values are found in the array, a second conversion must be applied: if elements 
are stored using 1 byte each, then 28 is added to each negative element; for storage using 
2 bytes, 216 is added to each negative element; for storage using 3 bytes, 224 is added to 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-44 

each negative element; and for storage using 4 bytes, a value of 232 is added to each 
negative element. It is important to note that no conversion is applied to positive 
elements. Finally, the resulting positive, integral array is written as in the case of a 
dominant-category field. 

Multi-level continuous fields are handled much the same as single-level continuous 
fields. For an n ´ m ´ r array, conversion to a positive, integral field is first performed as 
described above. Then, each n ´ m sub-array is written contiguously to the binary file as 
before, beginning with the smallest r-index. Categorical fields that are given as fractional 
fields for each possible category can be thought of as multi-level continuous fields, where 
each level k, 1 ≤ k ≤ r, is the fractional field for category k. 

When writing a field to a file in the geogrid binary format, the user should adhere to the 
naming convention used by the geogrid program, which expects data files to have names 
of the form xstart-xend.ystart-yend, where xstart, xend, ystart, and yend are five-digit 
positive integers specifying, respectively, the starting x-index of the array contained in 
the file, the ending x-index of the array, the starting y-index of the array, and the ending 
y-index of the array; here, indexing begins at 1, rather than 0. So, for example, an 800 ´ 
1200 array (i.e., 800 rows and 1200 columns) might be named 00001-01200.00001-
00800.  

When a data set is given in several pieces, each of the pieces may be formed as a regular 
rectangular array, and each array may be written to a separate file. In this case, the 
relative locations of the arrays are determined by the range of x- and y-indices in the file 
names for each of the arrays. It is important to note, however, that every tile in a data set 
must have the same x- and y-dimensions, and that tiles of data within a data set must not 
overlap; furthermore, all tiles must start and end on multiples of the index ranges. For 
example, the global 30-second USGS topography data set is divided into arrays of 
dimension 1200 ´ 1200, with each array containing a 10-degree ´ 10-degree piece of the 
data set; the file whose south-west corner is located at (90S, 180W) is named 00001-
01200.00001-01200, and the file whose north-east corner is located at (90N, 180E) is 
named 42001-43200.20401-21600.  

If a data set is to be split into multiple tiles, and the number of grid points in, say, the x-
direction is not evenly divided by the number of tiles in the x-direction, then the last 
column of tiles must be padded with a flag value (specified in the index file using the 
missing_value keyword) so that all tiles have the same dimensions. For example, if a 
data set has 2456 points in the x-direction, and three tiles in the x-direction will be used, 
the range of x-coordinates of the tiles might be 1 – 820, 821 – 1640, and 1641 – 2460, 
with columns 2457 through 2460 being filled with a flag value.  

Clearly, since the starting and ending indices must have five digits, a field cannot have 
more than 99999 data points in either of the x- or y-directions. In case a field has more 
than 99999 data points in either dimension, the user can simply split the data set into 
several smaller data sets which will be identified separately to geogrid. For example, a 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-45 

very large global data set may be split into data sets for the Eastern and Western 
hemispheres. 

Besides the binary data files, geogrid requires one extra metadata file per data set. This 
metadata file is always named 'index', and thus, two data sets cannot reside in the same 
directory. Essentially, this metadata file is the first file that geogrid looks for when 
processing a data set, and the contents of the file provide geogrid with all of the 
information necessary for constructing names of possible data files. The contents of an 
example index file are given below. 

 type = continuous 
 signed = yes 
 projection = regular_ll 
 dx = 0.00833333 
 dy = 0.00833333 
 known_x = 1.0 
 known_y = 1.0 
 known_lat = -89.99583 
 known_lon = -179.99583 
 wordsize = 2 
 tile_x = 1200 
 tile_y = 1200 
 tile_z = 1 
 tile_bdr=3 
 units="meters MSL" 
 description="Topography height" 
 

For a complete listing of keywords that may appear in an index file, along with the 
meaning of each keyword, the user is referred to the section on index file options.  

 

Creating an Urban Fraction Field from NLCD Data 

In order to create a more inhomogeneous and detailed urban fraction field for use with 
NUDAPT, users may obtain high-resolution land cover information from the National 
Land Cover Database (NLCD) through the Multi-Resolution Land Characteristics 
Consortium. Generation of the urban fraction field, called FRC_URB2D in WRF, 
involves first downloading the NLCD data over the region covered by the WRF domain, 
converting the data into the binary format used by geogrid, and finally extracting only the 
urban categories to a new urban fraction field. The following steps can serve as a guide 
through this process. 

1. Download NLCD data from http://gisdata.usgs.net/website/MRLC/viewer.php. 
Either of the 1992, 2001, or 2006 datasets may be used. After selecting an area to 
download, make sure to select GeoTIFF format in the "Request Summary Page" 
by clicking on "Modify Data Request". If available, data may instead be 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-46 

downloaded in BIL format, in which case the format conversion described in the 
next step can be skipped. 
 

2. After downloading the data, unpacking the archive should yield a directory with a 
.tif file and a .tfw file, among others. In order for the information in the GeoTIFF 
file to be useful, the .tif image must be converted into the binary format used by 
the WPS. This conversion can be accomplished using the GDAL translation tool, 
gdal_translate, (http://gdal.org) by running the command 
 
         > gdal_translate -of ENVI foo.tif data.bil           
 
where foo.tif is the name of the GeoTIFF image that was downloaded in Step 1. 
The output format "ENVI" is a simple binary raster format that matches the 
format used by geogrid. After converting the GeoTIFF to a binary file, the 
resulting data.bil file must be renamed to 00001-ncols.00001-nrows, where ncols 
is the number of columns (in i5.5 format) and nrows is the number of rows (also 
in i5.5 format) in the image; these values should have been printed to the screen 
when the gdal_translate program was run. 
 

3. Use the converter program available from 
http://www2.mmm.ucar.edu/people/duda/uf/ to extract the urban categories from 
the binary tile and write a new tile of data containing urban fraction. The output 
file of this converter should be copied over the original land use tile, i.e., the 
urban fraction file should be renamed to 00001-ncols.00001-nrows, where ncols is 
the number of columns (in i5.5 format) and nrows is the number of rows (also in 
i5.5 format) in the tile, as in Step 2. 
 

4. Create an index metadata file for the urban fraction data. In the directory created 
by unpacking the land use data, a .tfw file should also exist. The last two lines in 
this file give the location of the north-west corner of the data tile, which is used in 
the index file for variables known_lat and known_lon. If this location is given as 
(x,y) coordinates, in meters, then the coordinate converter utility available from 
http://www2.mmm.ucar.edu/people/duda/uf/ may be used to convert to (latitude, 
longitude), which is required by the index file. The basic index file should contain 
the following elements: 

 
type=continuous 
projection=albers_nad83 
dx=30.0 
dy=30.0 
known_x=1.0 
known_y=2351.0            # <- edit 
known_lat =   40.096571   # <- edit 
known_lon = -105.405615   # <- edit 
truelat1=29.5 
truelat2=45.5 
stdlon=-96.0 
wordsize=1 
scale_factor=0.01 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-47 

row_order=top_bottom 
tile_x=2407               # <- edit 
tile_y=2351               # <- edit 
tile_z=1 
units="unitless" 
description="urban fraction" 
 

5. Add the following entry to the GEOGRID.TBL file before re-running the 
geogrid.exe program:  
 
===============================  
name=FRC_URB2D  
        priority=1  
        dest_type=continuous  
        fill_missing = 0.  
        interp_option=default: average_gcell(1.0)+four_pt 
        abs_path=default:/path/to/dataset/ 
=============================== 
 
The path to the dataset and index files created in Step 3 and Step 4, respectively, 
should be substituted for ‘/path/to/dataset/’ in the entry above. 

Description of the Namelist Variables 

A. SHARE section 

This section describes variables that are used by more than one WPS program. For 
example, the wrf_core variable specifies whether the WPS is to produce data for the 
ARW or the NMM core – information which is needed by both the geogrid and 
metgrid programs. 

 
1. WRF_CORE : A character string set to either 'ARW' or 'NMM' that tells the WPS which 
dynamical core the input data are being prepared for. Default value is 'ARW'. 

2. MAX_DOM : An integer specifying the total number of domains/nests, including the 
parent domain, in the simulation. Default value is 1. 
 
3. START_YEAR : A list of MAX_DOM 4-digit integers specifying the starting UTC 
year of the simulation for each nest. No default value. 
 
4. START_MONTH : A list of MAX_DOM 2-digit integers specifying the starting UTC 
month of the simulation for each nest. No default value. 
 
5. START_DAY : A list of MAX_DOM 2-digit integers specifying the starting UTC day 
of the simulation for each nest. No default value. 
 
6. START_HOUR : A list of MAX_DOM 2-digit integers specifying the starting UTC 
hour of the simulation for each nest. No default value. 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-48 

 
7. END_YEAR : A list of MAX_DOM 4-digit integers specifying the ending UTC year 
of the simulation for each nest. No default value. 
 
8. END_MONTH : A list of MAX_DOM 2-digit integers specifying the ending UTC 
month of the simulation for each nest. No default value. 
 
9. END_DAY : A list of MAX_DOM 2-digit integers specifying the ending UTC day of 
the simulation for each nest. No default value. 
 
10. END_HOUR : A list of MAX_DOM 2-digit integers specifying the ending UTC hour 
of the simulation for each nest. No default value. 
 
11. START_DATE : A list of MAX_DOM character strings of the form 'YYYY-MM-
DD_HH:mm:ss' specifying the starting UTC date of the simulation for each nest. The 
start_date variable is an alternate to specifying start_year, start_month, 
start_day, and start_hour, and if both methods are used for specifying the starting 
time, the start_date variable will take precedence. No default value. 
 
12. END_DATE : A list of MAX_DOM character strings of the form 'YYYY-MM-
DD_HH:mm:ss' specifying the ending UTC date of the simulation for each nest. The 
end_date variable is an alternate to specifying end_year, end_month, end_day, and 
end_hour, and if both methods are used for specifying the ending time, the end_date 
variable will take precedence. No default value. 
 
13. INTERVAL_SECONDS : The integer number of seconds between time-varying 
meteorological input files. No default value. 
 
14. ACTIVE_GRID : A list of MAX_DOM logical values specifying, for each grid, 
whether that grid should be processed by geogrid and metgrid. Default value is .TRUE.. 
 
15. IO_FORM_GEOGRID : The WRF I/O API format that the domain files created by 
the geogrid program will be written in. Possible options are: 1 for binary; 2 for NetCDF; 
3 for GRIB1. When option 1 is given, domain files will have a suffix of .int; when option 
2 is given, domain files will have a suffix of .nc; when option 3 is given, domain files 
will have a suffix of .gr1. Default value is 2 (NetCDF). 
 
16. OPT_OUTPUT_FROM_GEOGRID_PATH : A character string giving the path, 
either relative or absolute, to the location where output files from geogrid should be 
written to and read from. Default value is './'. 
 
17. DEBUG_LEVEL : An integer value indicating the extent to which different types of 
messages should be sent to standard output. When debug_level is set to 0, only 
generally useful messages and warning messages will be written to standard output. 
When debug_level is greater than 100, informational messages that provide further 
runtime details are also written to standard output. Debugging messages and messages 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-49 

specifically intended for log files are never written to standard output, but are always 
written to the log files. Default value is 0. 
 

B. GEOGRID section 

This section specifies variables that are specific to the geogrid program. Variables in the 
geogrid section primarily define the size and location of all model domains, and where 
the static geographical data are found.  

 
1. PARENT_ID :  A list of MAX_DOM integers specifying, for each nest, the domain 
number of the nest’s parent; for the coarsest domain, this variable should be set to 1. 
Default value is 1. 
 
2. PARENT_GRID_RATIO : A list of MAX_DOM integers specifying, for each nest, 
the nesting ratio relative to the domain’s parent. No default value. 
 
3. I_PARENT_START : A list of MAX_DOM integers specifying, for each nest, the x-
coordinate of the lower-left corner of the nest in the parent unstaggered grid. For the 
coarsest domain, a value of 1 should be specified. No default value. 
 
4. J_PARENT_START : A list of MAX_DOM integers specifying, for each nest, the y-
coordinate of the lower-left corner of the nest in the parent unstaggered grid. For the 
coarsest domain, a value of 1 should be specified. No default value. 
 
5. S_WE : A list of MAX_DOM integers which should all be set to 1. Default value is 1. 
 
6. E_WE : A list of MAX_DOM integers specifying, for each nest, the nest’s full west-
east dimension. For nested domains, e_we must be one greater than an integer multiple of 
the nest's parent_grid_ratio (i.e., e_we = n*parent_grid_ratio+1 for some positive 
integer n). No default value. 
 
7. S_SN : A list of MAX_DOM integers which should all be set to 1. Default value is 1. 
 
8. E_SN : A list of MAX_DOM integers specifying, for each nest, the nest’s full south-
north dimension. For nested domains, e_sn must be one greater than an integer multiple 
of the nest's parent_grid_ratio (i.e., e_sn = n*parent_grid_ratio+1 for some 
positive integer n). No default value. 
 
9. GEOG_DATA_RES : A list of MAX_DOM character strings specifying, for each nest, 
a corresponding resolution or list of resolutions separated by + symbols of source data to 
be used when interpolating static terrestrial data to the nest’s grid. For each nest, this 
string should contain a resolution matching a string preceding a colon in a rel_path or 
abs_path specification (see the description of GEOGRID.TBL options) in 
the GEOGRID.TBL file for each field. If a resolution in the string does not match any 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-50 

such string in a rel_path or abs_path specification for a field in GEOGRID.TBL, a 
default resolution of data for that field, if one is specified, will be used. If multiple 
resolutions match, the first resolution to match a string in a rel_path or abs_path 
specification in the GEOGRID.TBL file will be used. Default value is 'default'. 
 
10. DX : A real value specifying the grid distance in the x-direction where the map scale 
factor is 1. For ARW, the grid distance is in meters for the 'polar', 'lambert', and 
'mercator' projection, and in degrees longitude for the 'lat-lon' projection; for 
NMM, the grid distance is in degrees longitude. Grid distances for nests are determined 
recursively based on values specified for parent_grid_ratio and parent_id. No 
default value. 
 
11. DY : A real value specifying the nominal grid distance in the y-direction where the 
map scale factor is 1. For ARW, the grid distance is in meters for the 'polar', 
'lambert', and 'mercator' projection, and in degrees latitude for the 'lat-lon' 
projection; for NMM, the grid distance is in degrees latitude. Grid distances for nests are 
determined recursively based on values specified for parent_grid_ratio and 
parent_id. No default value. 
 
12. MAP_PROJ : A character string specifying the projection of the simulation domain. 
For ARW, accepted projections are 'lambert', 'polar', 'mercator', and 'lat-lon'; 
for NMM, a projection of 'rotated_ll' must be specified. Default value is 'lambert'. 
 
13. REF_LAT : A real value specifying the latitude part of a (latitude, longitude) location 
whose (i,j) location in the simulation domain is known. For ARW, ref_lat gives the 
latitude of the center-point of the coarse domain by default (i.e., when ref_x and ref_y 
are not specified). For NMM, ref_lat always gives the latitude to which the origin is 
rotated. No default value. 
 
14. REF_LON : A real value specifying the longitude part of a (latitude, longitude) 
location whose (i, j) location in the simulation domain is known. For ARW, ref_lon 
gives the longitude of the center-point of the coarse domain by default (i.e., when ref_x 
and ref_y are not specified). For NMM, ref_lon always gives the longitude to which 
the origin is rotated. For both ARW and NMM, west longitudes are negative, and the 
value of ref_lon should be in the range [-180, 180]. No default value. 
 
15. REF_X : A real value specifying the i part of an (i, j) location whose (latitude, 
longitude) location in the simulation domain is known. The (i, j) location is always given 
with respect to the mass-staggered grid, whose dimensions are one less than the 
dimensions of the unstaggered grid. Default value is (((E_WE-1.)+1.)/2.) = (E_WE/2.). 
 
16. REF_Y : A real value specifying the j part of an (i, j) location whose (latitude, 
longitude) location in the simulation domain is known. The (i, j) location is always given 
with respect to the mass-staggered grid, whose dimensions are one less than the 
dimensions of the unstaggered grid. Default value is (((E_SN-1.)+1.)/2.) = (E_SN/2.). 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-51 

17. TRUELAT1 : A real value specifying, for ARW, the first true latitude for the 
Lambert conformal projection, or the only true latitude for the Mercator and polar 
stereographic projections. For NMM, truelat1 is ignored. No default value. 
 
18. TRUELAT2 : A real value specifying, for ARW, the second true latitude for the 
Lambert conformal conic projection. For all other projections, truelat2 is ignored. No 
default value. 
 
19. STAND_LON : A real value specifying, for ARW, the longitude that is parallel with 
the y-axis in the Lambert conformal and polar stereographic projections. For the regular 
latitude-longitude projection, this value gives the rotation about the earth's geographic 
poles. For NMM, stand_lon is ignored. No default value. 
 
20. POLE_LAT : For the latitude-longitude projection for ARW, the latitude of the North 
Pole with respect to the computational latitude-longitude grid in which -90.0° latitude is 
at the bottom of a global domain, 90.0° latitude is at the top, and 180.0° longitude is at 
the center. Default value is 90.0. 
 
21. POLE_LON : For the latitude-longitude projection for ARW, the longitude of the 
North Pole with respect to the computational lat/lon grid in which -90.0° latitude is at the 
bottom of a global domain, 90.0° latitude is at the top, and 180.0° longitude is at the 
center. Default value is 0.0. 
 
22. GEOG_DATA_PATH : A character string giving the path, either relative or absolute, 
to the directory where the geographical data directories may be found. This path is the 
one to which rel_path specifications in the GEOGRID.TBL file are given in relation to. 
No default value. 
 
23. OPT_GEOGRID_TBL_PATH : A character string giving the path, either relative or 
absolute, to the GEOGRID.TBL file. The path should not contain the actual file name, as 
GEOGRID.TBL is assumed, but should only give the path where this file is located. 
Default value is './geogrid/'. 

C. UNGRIB section 

Currently, this section contains only two variables, which determine the output 
format written by ungrib and the name of the output files. 

 
1. OUT_FORMAT : A character string set either to 'WPS', 'SI', or 'MM5'. If set to 
'MM5', ungrib will write output in the format of the MM5 pregrid program; if set to 'SI', 
ungrib will write output in the format of grib_prep.exe; if set to 'WPS', ungrib will write 
data in the WPS intermediate format. Default value is 'WPS'. 

2. PREFIX : A character string that will be used as the prefix for intermediate-format 
files created by ungrib; here, prefix refers to the string PREFIX in the filename 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-52 

PREFIX:YYYY-MM-DD_HH of an intermediate file. The prefix may contain path 
information, either relative or absolute, in which case the intermediate files will be 
written in the directory specified. This option may be useful to avoid renaming 
intermediate files if ungrib is to be run on multiple sources of GRIB data. Default value is 
'FILE'. 

2. ADD_LVLS : A logical that determines whether ungrib will attemp to vertically 
interpolate to an additional set of vertical levels specified using the NEW_PLVL and 
INTERP_TYPE namelist options. Default value is .FALSE.. 

2. INTERP_TYPE : An integer value specifying the method that ungrib will use when 
vertically interpolating to new levels. A value of 0 causes ungrib to interpolate linearly in 
pressure, and a value of 1 causes ungrib to interpolate linearly in log pressure. Default 
value is 0. 

2. NEW_PLVL : An array of real values that specify the additional vertical levels, given 
in Pa, to which the ungrib program will attempt to interpolate when ADD_LVLS is true. 
The set of new levels can be specified explicitly, or, if the levels are evenly spaced in 
pressure, exactly three values can be specified: the starting pressure, the ending pressure, 
and the pressure increment. When a starting pressure, ending pressure, and increment are 
specified, the pressure increment must be a negative number to signal to the ungrib 
program that this value is not a target pressure level, but rather, an increment to be used 
between the first and second values. No default value. 

D. METGRID section 

This section defines variables used only by the metgrid program. Typically, the user 
will be interested in the fg_name variable, and may need to modify other variables of 
this section less frequently. 

 
1. FG_NAME : A list of character strings specifying the path and prefix of ungribbed 
data files. The path may be relative or absolute, and the prefix should contain all 
characters of the filenames up to, but not including, the colon preceding the date. When 
more than one fg_name is specified, and the same field is found in two or more input 
sources, the data in the last encountered source will take priority over all preceding 
sources for that field. Default value is an empty list (i.e., no meteorological fields). 

2. CONSTANTS_NAME : A list of character strings specifying the path and full 
filename of ungribbed data files which are time-invariant. The path may be relative or 
absolute, and the filename should be the complete filename; since the data are assumed to 
be time-invariant, no date will be appended to the specified filename. Default value is an 
empty list (i.e., no constant fields). 
 
3. IO_FORM_METGRID : The WRF I/O API format that the output created by the 
metgrid program will be written in. Possible options are: 1 for binary; 2 for NetCDF; 3 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-53 

for GRIB1. When option 1 is given, output files will have a suffix of .int; when option 2 
is given, output files will have a suffix of .nc; when option 3 is given, output files will 
have a suffix of .gr1. Default value is 2 (NetCDF). 
 
4. OPT_OUTPUT_FROM_METGRID_PATH : A character string giving the path, either 
relative or absolute, to the location where output files from metgrid should be written to. 
The default value is the current working directory (i.e., the default value is './'). 
 
5. OPT_METGRID_TBL_PATH : A character string giving the path, either relative or 
absolute, to the METGRID.TBL file; the path should not contain the actual file name, as 
METGRID.TBL is assumed, but should only give the path where this file is located. 
Default value is './metgrid/'. 
 
5. PROCESS_ONLY_BDY: An integer specifying the number of boundary rows and 
columns to be processed by metgrid for time periods after the initial time; for the initial 
time, metgrid will always interpolate to every grid point. Setting this option to the 
intended value of spec_bdy_width in the WRF namelist.input will speed up processing in 
metgrid, but it should not be set if interpolated data are needed in the domain interior. If 
this option is set to zero, metgrid will horizontally interpolate meteorological data to 
every grid point in the model domains. This option is only available for ARW. Default 
value is 0. 

Description of GEOGRID.TBL Options 

The GEOGRID.TBL file is a text file that defines parameters of each of the data sets to 
be interpolated by geogrid. Each data set is defined in a separate section, with sections 
being delimited by a line of equality symbols (e.g., ‘==============’). Within each 
section, there are specifications, each of which has the form of keyword=value. Some 
keywords are required in each data set section, while others are optional; some keywords 
are mutually exclusive with other keywords. Below, the possible keywords and their 
expected range of values are described. 

1. NAME : A character string specifying the name that will be assigned to the 
interpolated field upon output. No default value. 
 
2. PRIORITY : An integer specifying the priority that the data source identified in the 
table section takes with respect to other sources of data for the same field. If a field has n 
sources of data, then there must be n separate table entries for the field, each of which 
must be given a unique value for priority in the range [1, n]. No default value. 
 
3. DEST_TYPE : A character string, either categorical or continuous, that tells 
whether the interpolated field from the data source given in the table section is to be 
treated as a continuous or a categorical field. No default value. 
 
4. INTERP_OPTION : A sequence of one or more character strings, which are the names 
of interpolation methods to be used when horizontally interpolating the field. Available 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-54 

interpolation methods are: average_4pt, average_16pt, wt_average_4pt, 
wt_average_16pt, nearest_neighbor, four_pt, sixteen_pt, search(r), and 
average_gcell(r). For the search method (search), the optional argument r specifies 
the maximum search radius in units of grid points in the grid of the source data; the 
default search radius is 1200 points. For the grid cell average method (average_gcell), 
the optional argument r specifies the minimum ratio of source data resolution to 
simulation grid resolution at which the method will be applied; unless specified, r = 0.0, 
and the option is used for any ratio. When a sequence of two or more methods are given, 
the methods should be separated by a + sign. No default value. 
 
5. SMOOTH_OPTION : A character string giving the name of a smoothing method to be 
applied to the field after interpolation. Available smoothing options are: 1-2-1, smth-
desmth, and smth-desmth_special (ARW only). Default value is null (i.e., no 
smoothing is applied). 
 
6. SMOOTH_PASSES : If smoothing is to be performed on the interpolated field, 
smooth_passes specifies an integer number of passes of the smoothing method to apply 
to the field. Default value is 1. 
 
7. REL_PATH : A character string specifying the path relative to the path given in the 
namelist variable geog_data_path. A specification is of the general form 
RES_STRING:REL_PATH, where RES_STRING is a character string identifying the 
source or resolution of the data in some unique way and may be specified in the namelist 
variable geog_data_res, and REL_PATH is a path relative to geog_data_path where 
the index and data tiles for the data source are found. More than one rel_path 
specification may be given in a table section if there are multiple sources or resolutions 
for the data source, just as multiple resolutions may be specified (in a sequence delimited 
by + symbols) for geog_data_res. See also abs_path. No default value. 
 
8. ABS_PATH : A character string specifying the absolute path to the index and data tiles 
for the data source. A specification is of the general form RES_STRING:ABS_PATH, 
where RES_STRING is a character string identifying the source or resolution of the data 
in some unique way and may be specified in the namelist variable geog_data_res, and 
ABS_PATH is the absolute path to the data source's files. More than one abs_path 
specification may be given in a table section if there are multiple sources or resolutions 
for the data source, just as multiple resolutions may be specified (in a sequence delimited 
by + symbols) for geog_data_res. See also rel_path. No default value. 
 
9. OUTPUT_STAGGER : A character string specifying the grid staggering to which the 
field is to be interpolated. For ARW domains, possible values are U, V, and M; for NMM 
domains, possible values are HH and VV. Default value for ARW is M; default value for 
NMM is HH. 
 
10. LANDMASK_WATER : One or more comma-separated integer values giving the 
indices of the categories within the field that represents water. When landmask_water is 
specified in the table section of a field for which dest_type=categorical, the 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-55 

LANDMASK field will be computed from the field using the specified categories as the 
water categories. The keywords landmask_water and landmask_land are mutually 
exclusive. Default value is null (i.e., a landmask will not be computed from the field). 
 
11. LANDMASK_LAND : One or more comma-separated integer values giving the 
indices of the categories within the field that represents land. When landmask_water is 
specified in the table section of a field for which dest_type=categorical, the 
LANDMASK field will be computed from the field using the specified categories as the 
land categories. The keywords landmask_water and landmask_land are mutually 
exclusive. Default value is null (i.e., a landmask will not be computed from the field). 
 
12. MASKED : Either land or water, indicating that the field is not valid at land or 
water points, respectively. If the masked keyword is used for a field, those grid points that 
are of the masked type (land or water) will be assigned the value specified by 
fill_missing. Default value is null (i.e., the field is not masked). 
 
13. FILL_MISSING : A real value used to fill in any missing or masked grid points in the 
interpolated field. Default value is 1.E20. 
 
14. HALT_ON_MISSING : Either yes or no, indicating whether geogrid should halt with 
a fatal message when a missing value is encountered in the interpolated field. Default 
value is no. 
 
15. DOMINANT_CATEGORY : When specified as a character string, the effect is to 
cause geogrid to compute the dominant category from the fractional categorical field, and 
to output the dominant category field with the name specified by the value of 
dominant_category. This option can only be used for fields with 
dest_type=categorical. Default value is null (i.e., no dominant category will be 
computed from the fractional categorical field). 
 
16. DOMINANT_ONLY : When specified as a character string, the effect is similar to 
that of the dominant_category keyword: geogrid will compute the dominant category 
from the fractional categorical field and output the dominant category field with the name 
specified by the value of dominant_only. Unlike with dominant_category, though, 
when dominant_only is used, the fractional categorical field will not appear in the 
geogrid output. This option can only be used for fields with dest_type=categorical. 
Default value is null (i.e., no dominant category will be computed from the fractional 
categorical field). 
 
17. DF_DX : When df_dx is assigned a character string value, the effect is to cause 
geogrid to compute the directional derivative of the field in the x-direction using a central 
difference along the interior of the domain, or a one-sided difference at the boundary of 
the domain; the derivative field will be named according to the character string assigned 
to the keyword df_dx. Default value is null (i.e., no derivative field is computed). 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-56 

18. DF_DY : When df_dy is assigned a character string value, the effect is to cause 
geogrid to compute the directional derivative of the field in the y-direction using a central 
difference along the interior of the domain, or a one-sided difference at the boundary of 
the domain; the derivative field will be named according to the character string assigned 
to the keyword df_dy. Default value is null (i.e., no derivative field is computed). 
 
19. Z_DIM_NAME : For 3-dimensional output fields, a character string giving the name 
of the vertical dimension, or z-dimension. A continuous field may have multiple levels, 
and thus be a 3-dimensional field, and a categorical field may take the form of a 3-
dimensional field if it is written out as fractional fields for each category. No default 
value. 
 
20. FLAG_IN_OUTPUT : A character string giving the name of a global attribute which 
will be assigned a value of 1 and written to the geogrid output. Default value is null (i.e., 
no flag will be written for the field). 
 
21. OPTIONAL : Either yes or no, indicating whether the dataset identified by the 
resolution specified in the geog_data_res namelist option is optional. If an entry in the 
GEOGRID.TBL file is optional and if the specified resolution of data cannot be read, 
geogrid will print an informational message indicating that the dataset was not 
interpolated and continue; otherwise, if the entry is not optional and the specified 
resolution of data cannot be read, geogrid will halt with an error. It is possible for 
different priority level entries for the same field to specify different values of the 
optional keyword, e.g., the priority=2 entry for a field can be optional, while the 
priority=1 entry can be non-optional (i.e., optional=no). Default value is no. 
 

 

Description of index Options 

Related to the GEOGRID.TBL are the index files that are associated with each static data 
set. An index file defines parameters specific to that data set, while the GEOGRID.TBL 
file describes how each of the data sets should be treated by geogrid. As with the 
GEOGRID.TBL file, specifications in an index file are of the form keyword=value. 
Below are possible keywords and their possible values. 
 
1. PROJECTION : A character string specifying the projection of the data, which may be 
either lambert, polar, mercator, regular_ll, albers_nad83, or polar_wgs84. No 
default value. 
 
2. TYPE : A character string, either categorical or continuous, that determines 
whether the data in the data files should be interpreted as a continuous field or as discrete 
indices. For categorical data represented by a fractional field for each possible category, 
type should be set to continuous. No default value. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-57 

3. SIGNED : Either yes or no, indicating whether the values in the data files (which are 
always represented as integers) are signed in two's complement form or not. Default 
value is no. 
 
4. UNITS : A character string, enclosed in quotation marks ("), specifying the units of the 
interpolated field; the string will be written to the geogrid output files as a variable time-
independent attribute. No default value. 
 
5. DESCRIPTION : A character string, enclosed in quotation marks ("), giving a short 
description of the interpolated field; the string will be written to the geogrid output files 
as a variable time-independent attribute. No default value. 
 
6. DX : A real value giving the grid spacing in the x-direction of the data set. If 
projection is one of lambert, polar, mercator, albers_nad83, or polar_wgs84, dx 
gives the grid spacing in meters; if projection is regular_ll, dx gives the grid spacing 
in degrees. No default value. 
 
7. DY : A real value giving the grid spacing in the y-direction of the data set. If 
projection is one of lambert, polar, mercator, albers_nad83, or polar_wgs84, dy 
gives the grid spacing in meters; if projection is regular_ll, dy gives the grid spacing 
in degrees. No default value. 
 
8. KNOWN_X : A real value specifying the i-coordinate of an (i,j) location 
corresponding to a (latitude, longitude) location that is known in the projection. Default 
value is 1. 
 
9. KNOWN_Y : A real value specifying the j-coordinate of an (i,j) location 
corresponding to a (latitude, longitude) location that is known in the projection. Default 
value is 1. 
 
10. KNOWN_LAT : A real value specifying the latitude of a (latitude, longitude) 
location that is known in the projection. No default value. 
 
11. KNOWN_LON : A real value specifying the longitude of a (latitude, longitude) 
location that is known in the projection. No default value. 
 
12. STDLON : A real value specifying the longitude that is parallel with the y-axis in 
conic and azimuthal projections. No default value. 
 
13. TRUELAT1 : A real value specifying the first true latitude for conic projections or 
the only true latitude for azimuthal projections. No default value. 
 
14. TRUELAT2 : A real value specifying the second true latitude for conic projections. 
No default value. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-58 

15. WORDSIZE : An integer giving the number of bytes used to represent the value of 
each grid point in the data files. No default value. 
 
16. TILE_X : An integer specifying the number of grid points in the x-direction, 
excluding any halo points, for a single tile of source data. No default value. 
 
17. TILE_Y : An integer specifying the number of grid points in the y-direction, 
excluding any halo points, for a single tile of source data. No default value. 
 
18. TILE_Z : An integer specifying the number of grid points in the z-direction for a 
single tile of source data; this keyword serves as an alternative to the pair of keywords 
tile_z_start and tile_z_end, and when this keyword is used, the starting z-index is 
assumed to be 1. No default value. 
 
19. TILE_Z_START : An integer specifying the starting index in the z-direction of the 
array in the data files. If this keyword is used, tile_z_end must also be specified. No 
default value. 
 
20. TILE_Z_END : An integer specifying the ending index in the z-direction of the array 
in the data files. If this keyword is used, tile_z_start must also be specified. No 
default value 
 
21. CATEGORY_MIN : For categorical data (type=categorical), an integer specifying 
the minimum category index that is found in the data set. If this keyword is used, 
category_max must also be specified. No default value. 
 
22. CATEGORY_MAX : For categorical data (type=categorical), an integer 
specifying the maximum category index that is found in the data set. If this keyword is 
used, category_min must also be specified. No default value. 
 
23. TILE_BDR : An integer specifying the halo width, in grid points, for each tile of data. 
Default value is 0. 
 
24. MISSING_VALUE : A real value that, when encountered in the data set, should be 
interpreted as missing data. No default value. 
 
25. SCALE_FACTOR : A real value that data should be scaled by (through 
multiplication) after being read in as integers from tiles of the data set. Default value is 1. 
 
26. ROW_ORDER : A character string, either bottom_top or top_bottom, specifying 
whether the rows of the data set arrays were written proceeding from the lowest-index 
row to the highest (bottom_top) or from highest to lowest (top_bottom). This keyword 
may be useful when utilizing some USGS data sets, which are provided in top_bottom 
order. Default value is bottom_top. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-59 

27. ENDIAN : A character string, either big or little, specifying whether the values in 
the static data set arrays are in big-endian or little-endian byte order. Default value is big. 
 
28. ISWATER : An integer specifying the land use category of water. Default value is 16. 
 
29. ISLAKE : An integer specifying the land use category of inland water bodies. Default 
value is -1 (i.e., no separate inland water category). 
 
30. ISICE : An integer specifying the land use category of ice. Default value is 24. 
 
31. ISURBAN : An integer specifying the land use category of urban areas. Default value 
is 1. 
 
32. ISOILWATER : An integer specifying the soil category of water. Default value is 14. 
 
33. MMINLU : A character string, enclosed in quotation marks ("), indicating which 
section of WRF's LANDUSE.TBL and VEGPARM.TBL will be used when looking up 
parameters for land use categories. Default value is "USGS".  
 
34. FILENAME_DIGITS : An integer specifying the number of digits used in the names 
of data tiles. Possible values are 5 or 6. Default value is 5.  

 

Description of METGRID.TBL Options 

The METGRID.TBL file is a text file that defines parameters of each of the 
meteorological fields to be interpolated by metgrid. Parameters for each field are defined 
in a separate section, with sections being delimited by a line of equality symbols (e.g., 
‘==============’). Within each section, there are specifications, each of which has 
the form of keyword=value. Some keywords are required in a section, while others are 
optional; some keywords are mutually exclusive with other keywords. Below, the 
possible keywords and their expected range of values are described. 

1. NAME : A character string giving the name of the meteorological field to which the 
containing section of the table pertains. The name should exactly match that of the field 
as given in the intermediate files (and, thus, the name given in the Vtable used in 
generating the intermediate files). This field is required. No default value. 
 
2. OUTPUT : Either yes or no, indicating whether the field is to be written to the metgrid 
output files or not. Default value is yes. 
 
3. MANDATORY : Either yes or no, indicating whether the field is required for 
successful completion of metgrid. Default value is no. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-60 

4. OUTPUT_NAME : A character string giving the name that the interpolated field 
should be output as. When a value is specified for output_name, the interpolation options 
from the table section pertaining to the field with the specified name are used. Thus, the 
effects of specifying output_name are two-fold: The interpolated field is assigned the 
specified name before being written out, and the interpolation methods are taken from the 
section pertaining to the field whose name matches the value assigned to the 
output_name keyword. No default value. 
 
5. FROM_INPUT : A character string used to compare against the values in the fg_name 
namelist variable; if from_input is specified, the containing table section will only be 
used when the time-varying input source has a filename that contains the value of 
from_input as a substring. Thus, from_input may be used to specify different 
interpolation options for the same field, depending on which source of the field is being 
processed. No default value. 
 
6. OUTPUT_STAGGER : The model grid staggering to which the field should be 
interpolated. For ARW, this must be one of U, V, and M; for NMM, this must be one of HH 
and VV. Default value for ARW is M; default value for NMM is HH. 
 
7. IS_U_FIELD : Either yes or no, indicating whether the field is to be used as the wind 
U-component field. For ARW, the wind U-component field must be interpolated to the U 
staggering (output_stagger=U); for NMM, the wind U-component field must be 
interpolated to the V staggering (output_stagger=VV). Default value is no. 
 
8. IS_V_FIELD : Either yes or no, indicating whether the field is to be used as the wind 
V-component field. For ARW, the wind V-component field must be interpolated to the V 
staggering (output_stagger=V); for NMM, the wind V-component field must be 
interpolated to the V staggering (output_stagger=VV). Default value is no. 
 
9. INTERP_OPTION : A sequence of one or more character strings, which are the names 
of interpolation methods to be used when horizontally interpolating the field. Available 
interpolation methods are: average_4pt, average_16pt, wt_average_4pt, 
wt_average_16pt, nearest_neighbor, four_pt, sixteen_pt, search(r), and 
average_gcell(r). For the search method (search), the optional argument r specifies 
the maximum search radius in units of grid points in the grid of the source data; the 
default search radius is 1200 points. For the grid cell average method (average_gcell), 
the optional argument r specifies the minimum ratio of source data resolution to 
simulation grid resolution at which the method will be applied; unless specified, r = 0.0, 
and the option is used for any ratio. When a sequence of two or more methods are given, 
the methods should be separated by a + sign. Default value is nearest_neighbor. 
 
10. INTERP_MASK : The name of the field to be used as an interpolation mask, along 
with the value within that field which signals masked points and an optional relational 
symbol, < or >. A specification takes the form field(?maskval), where field is the name of 
the field, ? is an optional relational symbol (< or >), and maskval is a real value. Source 
data points will not be used in interpolation if the corresponding point in the field field is 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-61 

equal, greater than, or less than, the value of maskval for no relational symbol, a > 
symbol, or a < symbol, respectively. Default value is no mask. 
 
11. INTERP_LAND_MASK : The name of the field to be used as an interpolation mask 
when interpolating to water points (determined by the static LANDMASK field), along 
with the value within that field which signals land points and an optional relational 
symbol, < or >. A specification takes the form field(?maskval), where field is the name of 
the field, ? is an optional relational symbol (< or >), and maskval is a real value. Default 
value is no mask. 
 
12. INTERP_WATER_MASK : The name of the field to be used as an interpolation 
mask when interpolating to land points (determined by the static LANDMASK field), 
along with the value within that field which signals water points and an optional 
relational symbol, < or >. A specification takes the form field(?maskval), where field is 
the name of the field, ? is an optional relational symbol (< or >), and maskval is a real 
value. Default value is no mask. 
 
13. FILL_MISSING : A real number specifying the value to be assigned to model grid 
points that received no interpolated value, for example, because of missing or incomplete 
meteorological data. Default value is 1.E20. 
 
14. Z_DIM_NAME : For 3-dimensional meteorological fields, a character string giving 
the name of the vertical dimension to be used for the field on output. Default value is 
num_metgrid_levels. 
 
15. DERIVED : Either yes or no, indicating whether the field is to be derived from other 
interpolated fields, rather than interpolated from an input field. Default value is no. 
 
16. FILL_LEV : The fill_lev keyword, which may be specified multiple times within a 
table section, specifies how a level of the field should be filled if that level does not 
already exist. A generic value for the keyword takes the form DLEVEL:FIELD(SLEVEL), 
where DLEVEL specifies the level in the field to be filled, FIELD specifies the source 
field from which to copy levels, and SLEVEL specifies the level within the source field to 
use. DLEVEL may either be an integer or the string all. FIELD may either be the name 
of another field, the string const, or the string vertical_index. If FIELD is specified as 
const, then SLEVEL is a constant value that will be used to fill with; if FIELD is 
specified as vertical_index, then (SLEVEL) must not be specified, and the value of the 
vertical index of the source field is used; if DLEVEL is 'all', then all levels from the field 
specified by the level_template keyword are used to fill the corresponding levels in the 
field, one at a time. No default value. 
 
17. LEVEL_TEMPLATE : A character string giving the name of a field from which a list 
of vertical levels should be obtained and used as a template. This keyword is used in 
conjunction with a fill_lev specification that uses all in the DLEVEL part of its 
specification. No default value. 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-62 

18. MASKED : Either land, water, or both. Setting MASKED to land or water indicates 
that the field should not be interpolated to WRF land or water points, respectively; 
however, setting MASKED to both indicates that the field should be interpolated to WRF 
land points using only land points in the source data and to WRF water points using only 
water points in the source data. When a field is masked, or invalid, the static 
LANDMASK field will be used to determine which model grid points the field should be 
interpolated to; invalid points will be assigned the value given by the FILL_MISSING 
keyword. Whether a source data point is land or water is determined by the masks 
specified using the INTERP_LAND_MASK and INTERP_WATER_MASK options. Default value 
is null (i.e., the field is valid for both land and water points). 
 
19. MISSING_VALUE : A real number giving the value in the input field that is assumed 
to represent missing data. No default value. 
 
20. VERTICAL_INTERP_OPTION : A character string specifying the vertical 
interpolation method that should be used when vertically interpolating to missing points. 
Currently, this option is not implemented. No default value. 

21. FLAG_IN_OUTPUT : A character string giving the name of a global attribute which 
will be assigned a value of 1 and written to the metgrid output if the interpolated field is 
to be output (output=yes). Default value is null (i.e., no flag will be written for the field).  

 

Available Interpolation Options in Geogrid and Metgrid 

Through the GEOGRID.TBL and METGRID.TBL files, the user can control the method 
by which source data – either static fields in the case of geogrid or meteorological fields 
in the case of metgrid – are interpolated. In fact, a list of interpolation methods may be 
given, in which case, if it is not possible to employ the i-th method in the list, the (i+1)-st 
method will be employed, until either some method can be used or there are no methods 
left to try in the list. For example, to use a four-point bi-linear interpolation scheme for a 
field, we could specify interp_option=four_pt. However, if the field had areas of 
missing values, which could prevent the four_pt option from being used, we could 
request that a simple four-point average be tried if the four_pt method couldn't be used 
by specifying interp_option=four_pt+average_4pt instead. Below, each of the 
available interpolation options in the WPS are described conceptually; for the details of 
each method, the user is referred to the source code in the file 
WPS/geogrid/src/interp_options.F. 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-63 

1. four_pt : Four-point bi-linear interpolation 

 

The four-point bi-linear interpolation method requires four valid source points aij, 
1 , 2i j≤ ≤ , surrounding the point (x,y), to which geogrid or metgrid must interpolate, as 
illustrated in the figure above. Intuitively, the method works by linearly interpolating to 
the x-coordinate of the point (x,y) between a11 and a12, and between a21 and a22, and then 
linearly interpolating to the y-coordinate using these two interpolated values. 
 

2. sixteen_pt : Sixteen-point overlapping parabolic interpolation 

 

The sixteen_pt overlapping parabolic interpolation method requires sixteen valid source 
points surrounding the point (x,y), as illustrated in the figure above. The method works by 
fitting one parabola to the points ai1, ai2, and ai3, and another parabola to the points ai2, 
ai3, and ai4, for row i, 1 4i≤ ≤ ; then, an intermediate interpolated value pi within row i at 
the x-coordinate of the point is computed by taking an average of the values of the two 
parabolas evaluated at x, with the average being weighted linearly by the distance of x 
from ai2 and ai3. Finally, the interpolated value at (x,y) is found by performing the same 
operations as for a row of points, but for the column of interpolated values pi to the y-
coordinate of (x,y). 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-64 

3. average_4pt : Simple four-point average interpolation 

The four-point average interpolation method requires at least one valid source data point 
from the four source points surrounding the point (x,y). The interpolated value is simply 
the average value of all valid values among these four points. 
 

4. wt_average_4pt : Weighted four-point average interpolation 

The weighted four-point average interpolation method can handle missing or masked 
source data points, and the interpolated value is given as the weighted average of all valid 
values, with the weight wij for the source point aij, 1 , 2i j≤ ≤ , given by 
 

2 2max{0,1 ( ) ( ) }ij i jw x x y y= − − + − . 
 
Here, xi is the x-coordinate of aij and yj is the y-coordinate of aij. 
 

5. average_16pt : Simple sixteen-point average interpolation 

The sixteen-point average interpolation method works in an identical way to the four-
point average, but considers the sixteen points surrounding the point (x,y). 
 

6. wt_average_16pt : Weighted sixteen-point average interpolation 

The weighted sixteen-point average interpolation method works like the weighted four-
point average, but considers the sixteen points surrounding (x,y); the weights in this 
method are given by 
 

2 2max{0,2 ( ) ( ) }ij i jw x x y y= − − + − , 
 

where xi and yj are as defined for the weighted four-point method, and 1 , 4i j≤ ≤ . 
 

7. nearest_neighbor : Nearest neighbor interpolation 

When used for continuous datasets (i.e., datasets that have type=continuous in their 
index files), the nearest neighbor interpolation method simply sets the interpolated value 
at (x,y) to the value of the nearest source data point, regardless of whether this nearest 
source point is valid, missing, or masked. For categorical datasets (i.e., datasets that have 
type=categorical in their index files), this option actually causes the geogrid program 
to consider all source pixels that lie within each WRF grid cell, and to find the fraction of 
the WRF grid cell that is comprised of each category in the source data. 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-65 

 

8. search : Breadth-first search interpolation 

The breadth-first search option works by treating the source data array as a 2-d grid 
graph, where each source data point, whether valid or not, is represented by a vertex. 
Then, the value assigned to the point (x,y) is found by beginning a breadth-first search at 
the vertex corresponding to the nearest neighbor of (x,y), and stopping once a vertex 
representing a valid (i.e., not masked or missing) source data point is found. In effect, this 
method can be thought of as "nearest valid neighbor". 
 

9. average_gcell : Model grid-cell average 

 
 

The grid-cell average interpolator may be used when the resolution of the source data is 
higher than the resolution of the model grid. For a model grid cell Γ, the method takes a 
simple average of the values of all source data points that are nearer to the center of Γ 
than to the center of any other grid cell. The operation of the grid-cell average method is 
illustrated in the figure above, where the interpolated value for the model grid cell – 
represented as the large rectangle – is given by the simple average of the values of all of 
the shaded source grid cells. 

 

Land Use and Soil Categories in the Static Data 

The default land use and soil category data sets that are provided as part of the WPS 
static data tar file contain categories that are matched with the USGS categories described 
in the VEGPARM.TBL and SOILPARM.TBL files in the WRF run directory. 
Descriptions of the 24 land use categories and 16 soil categories are provided in the 
tables below. 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-66 

 

Table 1: USGS 24-category Land Use Categories 

Land Use Category Land Use Description 
1 Urban and Built-up Land 
2 Dryland Cropland and Pasture 
3 Irrigated Cropland and Pasture 
4 Mixed Dryland/Irrigated Cropland and Pasture 
5 Cropland/Grassland Mosaic 
6 Cropland/Woodland Mosaic 
7 Grassland 
8 Shrubland 
9 Mixed Shrubland/Grassland 
10 Savanna 
11 Deciduous Broadleaf Forest 
12 Deciduous Needleleaf Forest 
13 Evergreen Broadleaf 
14 Evergreen Needleleaf 
15 Mixed Forest 
16 Water Bodies 
17 Herbaceous Wetland 
18 Wooden Wetland 
19 Barren or Sparsely Vegetated 
20 Herbaceous Tundra 
21 Wooded Tundra 
22 Mixed Tundra 
23 Bare Ground Tundra 
24 Snow or Ice 

 

Table 2: IGBP-Modified MODIS 20-category Land Use Categories 

Land Use Category Land Use Description 
1 Evergreen Needleleaf Forest 
2 Evergreen Broadleaf Forest 
3 Deciduous Needleleaf Forest 
4 Deciduous Broadleaf Forest 
5 Mixed Forests 
6 Closed Shrublands 
7 Open Shrublands 
8 Woody Savannas 
9 Savannas 
10 Grasslands 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-67 

11 Permanent Wetlands 
12 Croplands 
13 Urban and Built-Up 
14 Cropland/Natural Vegetation Mosaic 
15 Snow and Ice 
16 Barren or Sparsely Vegetated 
17 Water 
18 Wooded Tundra 
19 Mixed Tundra 
20 Barren Tundra 

 

Table 3: 16-category Soil Categories 

Soil Category Soil Description 
1 Sand 
2 Loamy Sand 
3 Sandy Loam 
4 Silt Loam 
5 Silt 
6 Loam 
7 Sandy Clay Loam 
8 Silty Clay Loam 
9 Clay Loam 
10 Sandy Clay 
11 Silty Clay 
12 Clay 
13 Organic Material 
14 Water 
15 Bedrock 
16 Other (land-ice) 

 

WPS Output Fields 

Below, a listing of the global attributes and fields that are written to the geogrid 
program's output files is given. This listing is an abridged version of the output from the 
ncdump program when run on a typical geo_em.d01.nc file. 

netcdf geo_em.d01 { 
dimensions: 
 Time = UNLIMITED ; // (1 currently) 
 DateStrLen = 19 ; 
 west_east = 73 ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-68 

 south_north = 60 ; 
 south_north_stag = 61 ; 
 west_east_stag = 74 ; 
 land_cat = 21 ; 
 soil_cat = 16 ; 
 month = 12 ; 
 num_urb_params = 132 ; 
variables: 
 char Times(Time, DateStrLen) ; 
 float XLAT_M(Time, south_north, west_east) ; 
  XLAT_M:units = "degrees latitude" ; 
  XLAT_M:description = "Latitude on mass grid" ; 
 float XLONG_M(Time, south_north, west_east) ; 
  XLONG_M:units = "degrees longitude" ; 
  XLONG_M:description = "Longitude on mass grid" ; 
 float XLAT_V(Time, south_north_stag, west_east) ; 
  XLAT_V:units = "degrees latitude" ; 
  XLAT_V:description = "Latitude on V grid" ; 
 float XLONG_V(Time, south_north_stag, west_east) ; 
  XLONG_V:units = "degrees longitude" ; 
  XLONG_V:description = "Longitude on V grid" ; 
 float XLAT_U(Time, south_north, west_east_stag) ; 
  XLAT_U:units = "degrees latitude" ; 
  XLAT_U:description = "Latitude on U grid" ; 
 float XLONG_U(Time, south_north, west_east_stag) ; 
  XLONG_U:units = "degrees longitude" ; 
  XLONG_U:description = "Longitude on U grid" ; 
 float CLAT(Time, south_north, west_east) ; 
  CLAT:units = "degrees latitude" ; 
  CLAT:description = "Computational latitude on mass grid" ; 
 float CLONG(Time, south_north, west_east) ; 
  CLONG:units = "degrees longitude" ; 
  CLONG:description = "Computational longitude on mass grid" ; 
 float MAPFAC_M(Time, south_north, west_east) ; 
  MAPFAC_M:units = "none" ; 
  MAPFAC_M:description = "Mapfactor on mass grid" ; 
 float MAPFAC_V(Time, south_north_stag, west_east) ; 
  MAPFAC_V:units = "none" ; 
  MAPFAC_V:description = "Mapfactor on V grid" ; 
 float MAPFAC_U(Time, south_north, west_east_stag) ; 
  MAPFAC_U:units = "none" ; 
  MAPFAC_U:description = "Mapfactor on U grid" ; 
 float MAPFAC_MX(Time, south_north, west_east) ; 
  MAPFAC_MX:units = "none" ; 
  MAPFAC_MX:description = "Mapfactor (x-dir) on mass grid" ; 
 float MAPFAC_VX(Time, south_north_stag, west_east) ; 
  MAPFAC_VX:units = "none" ; 
  MAPFAC_VX:description = "Mapfactor (x-dir) on V grid" ; 
 float MAPFAC_UX(Time, south_north, west_east_stag) ; 
  MAPFAC_UX:units = "none" ; 
  MAPFAC_UX:description = "Mapfactor (x-dir) on U grid" ; 
 float MAPFAC_MY(Time, south_north, west_east) ; 
  MAPFAC_MY:units = "none" ; 
  MAPFAC_MY:description = "Mapfactor (y-dir) on mass grid" ; 
 float MAPFAC_VY(Time, south_north_stag, west_east) ; 
  MAPFAC_VY:units = "none" ; 
  MAPFAC_VY:description = "Mapfactor (y-dir) on V grid" ; 
 float MAPFAC_UY(Time, south_north, west_east_stag) ; 
  MAPFAC_UY:units = "none" ; 
  MAPFAC_UY:description = "Mapfactor (y-dir) on U grid" ; 
 float E(Time, south_north, west_east) ; 
  E:units = "-" ; 
  E:description = "Coriolis E parameter" ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-69 

 float F(Time, south_north, west_east) ; 
  F:units = "-" ; 
  F:description = "Coriolis F parameter" ; 
 float SINALPHA(Time, south_north, west_east) ; 
  SINALPHA:units = "none" ; 
  SINALPHA:description = "Sine of rotation angle" ; 
 float COSALPHA(Time, south_north, west_east) ; 
  COSALPHA:units = "none" ; 
  COSALPHA:description = "Cosine of rotation angle" ; 
 float LANDMASK(Time, south_north, west_east) ; 
  LANDMASK:units = "none" ; 
  LANDMASK:description = "Landmask : 1=land, 0=water" ; 
 float XLAT_C(Time, south_north_stag, west_east_stag) ; 
  XLAT_C:units = "degrees latitude" ; 
  XLAT_C:description = "Latitude at grid cell corners" ; 
 float XLONG_C(Time, south_north_stag, west_east_stag) ; 
  XLONG_C:units = "degrees longitude" ; 
  XLONG_C:description = "Longitude at grid cell corners" ; 
 float LANDUSEF(Time, land_cat, south_north, west_east) ; 
  LANDUSEF:units = "category" ; 
  LANDUSEF:description = "Noah-modified 21-category IGBP-MODIS landuse" 
; 
 float LU_INDEX(Time, south_north, west_east) ; 
  LU_INDEX:units = "category" ; 
  LU_INDEX:description = "Dominant category" ; 
 float HGT_M(Time, south_north, west_east) ; 
  HGT_M:units = "meters MSL" ; 
  HGT_M:description = "GMTED2010 30-arc-second topography height" ; 
 float SOILTEMP(Time, south_north, west_east) ; 
  SOILTEMP:units = "Kelvin" ; 
  SOILTEMP:description = "Annual mean deep soil temperature" ; 
 float SOILCTOP(Time, soil_cat, south_north, west_east) ; 
  SOILCTOP:units = "category" ; 
  SOILCTOP:description = "16-category top-layer soil type" ; 
 float SCT_DOM(Time, south_north, west_east) ; 
  SCT_DOM:units = "category" ; 
  SCT_DOM:description = "Dominant category" ; 
 float SOILCBOT(Time, soil_cat, south_north, west_east) ; 
  SOILCBOT:units = "category" ; 
  SOILCBOT:description = "16-category top-layer soil type" ; 
 float SCB_DOM(Time, south_north, west_east) ; 
  SCB_DOM:units = "category" ; 
  SCB_DOM:description = "Dominant category" ; 
 float ALBEDO12M(Time, month, south_north, west_east) ; 
  ALBEDO12M:units = "percent" ; 
  ALBEDO12M:description = "Monthly surface albedo" ; 
 float GREENFRAC(Time, month, south_north, west_east) ; 
  GREENFRAC:units = "fraction" ; 
  GREENFRAC:description = "MODIS FPAR" ; 
 float LAI12M(Time, month, south_north, west_east) ; 
  LAI12M:units = "m^2/m^2" ; 
  LAI12M:description = "MODIS LAI" ; 
 float SNOALB(Time, south_north, west_east) ; 
  SNOALB:units = "percent" ; 
  SNOALB:description = "Maximum snow albedo" ; 
 float SLOPECAT(Time, south_north, west_east) ; 
  SLOPECAT:units = "category" ; 
  SLOPECAT:description = "Dominant category" ; 
 float CON(Time, south_north, west_east) ; 
  CON:units = "" ; 
  CON:description = "Subgrid-scale orographic convexity" ; 
 float VAR(Time, south_north, west_east) ; 
  VAR:units = "" ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-70 

  VAR:description = "Subgrid-scale orographic variance" ; 
 float OA1(Time, south_north, west_east) ; 
  OA1:units = "" ; 
  OA1:description = "Subgrid-scale orographic asymmetry" ; 
 float OA2(Time, south_north, west_east) ; 
  OA2:units = "" ; 
  OA2:description = "Subgrid-scale orographic asymmetry" ; 
 float OA3(Time, south_north, west_east) ; 
  OA3:units = "" ; 
  OA3:description = "Subgrid-scale orographic asymmetry" ; 
 float OA4(Time, south_north, west_east) ; 
  OA4:units = "" ; 
  OA4:description = "Subgrid-scale orographic asymmetry" ; 
 float OL1(Time, south_north, west_east) ; 
  OL1:units = "" ; 
  OL1:description = "Subgrid-scale effective orographic length scale" ; 
 float OL2(Time, south_north, west_east) ; 
  OL2:units = "" ; 
  OL2:description = "Subgrid-scale effective orographic length scale" ; 
 float OL3(Time, south_north, west_east) ; 
  OL3:units = "" ; 
  OL3:description = "Subgrid-scale effective orographic length scale" ; 
 float OL4(Time, south_north, west_east) ; 
  OL4:units = "" ; 
  OL4:description = "Subgrid-scale effective orographic length scale" ; 
 float VAR_SSO(Time, south_north, west_east) ; 
  VAR_SSO:units = "meters2 MSL" ; 
  VAR_SSO:description = "Variance of Subgrid Scale Orography" ; 
 float LAKE_DEPTH(Time, south_north, west_east) ; 
  LAKE_DEPTH:units = "meters MSL" ; 
  LAKE_DEPTH:description = "Topography height" ; 
 float URB_PARAM(Time, num_urb_params, south_north, west_east) ; 
  URB_PARAM:units = "dimensionless" ; 
  URB_PARAM:description = "Urban_Parameters" ; 
 
// global attributes: 
  :TITLE = "OUTPUT FROM GEOGRID V3.8" ; 
  :SIMULATION_START_DATE = "0000-00-00_00:00:00" ; 
  :WEST-EAST_GRID_DIMENSION = 74 ; 
  :SOUTH-NORTH_GRID_DIMENSION = 61 ; 
  :BOTTOM-TOP_GRID_DIMENSION = 0 ; 
  :WEST-EAST_PATCH_START_UNSTAG = 1 ; 
  :WEST-EAST_PATCH_END_UNSTAG = 73 ; 
  :WEST-EAST_PATCH_START_STAG = 1 ; 
  :WEST-EAST_PATCH_END_STAG = 74 ; 
  :SOUTH-NORTH_PATCH_START_UNSTAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_UNSTAG = 60 ; 
  :SOUTH-NORTH_PATCH_START_STAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_STAG = 61 ; 
  :GRIDTYPE = "C" ; 
  :DX = 30000.f ; 
  :DY = 30000.f ; 
  :DYN_OPT = 2 ; 
  :CEN_LAT = 34.83001f ; 
  :CEN_LON = -81.03f ; 
  :TRUELAT1 = 30.f ; 
  :TRUELAT2 = 60.f ; 
  :MOAD_CEN_LAT = 34.83001f ; 
  :STAND_LON = -98.f ; 
  :POLE_LAT = 90.f ; 
  :POLE_LON = 0.f ; 
  :corner_lats = 28.17127f, 44.36657f, 39.63231f, 24.61906f, 28.17842f, 
44.37617f, 39.57812f, 24.57806f, 28.03771f, 44.50592f, 39.76032f, 24.49431f, 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-71 

28.04485f, 44.51553f, 39.70599f, 24.45341f ; 
  :corner_lons = -93.64893f, -92.39661f, -66.00165f, -72.64047f, -
93.80048f, -92.59155f, -65.83557f, -72.5033f, -93.65717f, -92.3829f, -65.9313f, 
-72.68539f, -93.80841f, -92.57831f, -65.76495f, -72.54843f ; 
  :MAP_PROJ = 1 ; 
  :MMINLU = "MODIFIED_IGBP_MODIS_NOAH" ; 
  :NUM_LAND_CAT = 21 ; 
  :ISWATER = 17 ; 
  :ISLAKE = 21 ; 
  :ISICE = 15 ; 
  :ISURBAN = 13 ; 
  :ISOILWATER = 14 ; 
  :grid_id = 1 ; 
  :parent_id = 1 ; 
  :i_parent_start = 1 ; 
  :j_parent_start = 1 ; 
  :i_parent_end = 74 ; 
  :j_parent_end = 61 ; 
  :parent_grid_ratio = 1 ; 
  :FLAG_MF_XY = 1 ; 
  :FLAG_LAI12M = 1 ; 
  :FLAG_LAKE_DEPTH = 1 ; 
} 
 

The global attributes corner_lats and corner_lons contain the lat-lon location of the 
corners of the domain with respect to different grid staggerings (mass, u, v, and 
unstaggered). The locations referred to by each element of the corner_lats and 
corner_lons arrays are summarized in the table and figure below. 
 
 

Array index Staggering Corner 
1 Mass Lower-left 
2 Upper-left 
3
  

Upper-right 

4 Lower-right 
5 U Lower-left 
6 Upper-left 
7 Upper-right 
8 Lower-right 
9 V Lower-left 
10 Upper-left 
11 Upper-right 
12 Lower-right 
13 Unstaggered Lower-left 
14 Upper-left 
15 Upper-right 
16 Lower-right 

 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-72 

 

 

In addition to the fields in a geogrid output file (e.g., geo_em.d01.nc), the following 
fields and global attributes will also be present in a typical output file from the metgrid 
program, run with the default METGRID.TBL file and meteorological data from NCEP's 
GFS model. 

netcdf met_em.d01.2016-04-07_00\:00\:00 { 
dimensions: 
 Time = UNLIMITED ; // (1 currently) 
 DateStrLen = 19 ; 
 west_east = 73 ; 
 south_north = 60 ; 
 num_metgrid_levels = 27 ; 
 num_st_layers = 4 ; 
 num_sm_layers = 4 ; 
 south_north_stag = 61 ; 
 west_east_stag = 74 ; 
 z-dimension0132 = 132 ; 
 z-dimension0012 = 12 ; 
 z-dimension0016 = 16 ; 
 z-dimension0021 = 21 ; 
variables: 
 char Times(Time, DateStrLen) ; 
 float PRES(Time, num_metgrid_levels, south_north, west_east) ; 
  PRES:units = "" ; 
  PRES:description = "" ; 
 float SOIL_LAYERS(Time, num_st_layers, south_north, west_east) ; 
  SOIL_LAYERS:units = "" ; 
  SOIL_LAYERS:description = "" ; 
 float SM(Time, num_sm_layers, south_north, west_east) ; 
  SM:units = "" ; 
  SM:description = "" ; 
 float ST(Time, num_st_layers, south_north, west_east) ; 
  ST:units = "" ; 
  ST:description = "" ; 
 float GHT(Time, num_metgrid_levels, south_north, west_east) ; 
  GHT:units = "m" ; 
  GHT:description = "Height" ; 
 float HGTTROP(Time, south_north, west_east) ; 
  HGTTROP:units = "m" ; 
  HGTTROP:description = "Height of tropopause" ; 
 float TTROP(Time, south_north, west_east) ; 
  TTROP:units = "K" ; 
  TTROP:description = "Temperature at tropopause" ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-73 

 float PTROPNN(Time, south_north, west_east) ; 
  PTROPNN:units = "Pa" ; 
  PTROPNN:description = "PTROP, used for nearest neighbor interp" ; 
 float PTROP(Time, south_north, west_east) ; 
  PTROP:units = "Pa" ; 
  PTROP:description = "Pressure of tropopause" ; 
 float VTROP(Time, south_north_stag, west_east) ; 
  VTROP:units = "m s-1" ; 
  VTROP:description = "V                 at tropopause" ; 
 float UTROP(Time, south_north, west_east_stag) ; 
  UTROP:units = "m s-1" ; 
  UTROP:description = "U                 at tropopause" ; 
 float HGTMAXW(Time, south_north, west_east) ; 
  HGTMAXW:units = "m" ; 
  HGTMAXW:description = "Height of max wind level" ; 
 float TMAXW(Time, south_north, west_east) ; 
  TMAXW:units = "K" ; 
  TMAXW:description = "Temperature at max wind level" ; 
 float PMAXWNN(Time, south_north, west_east) ; 
  PMAXWNN:units = "Pa" ; 
  PMAXWNN:description = "PMAXW, used for nearest neighbor interp" ; 
 float PMAXW(Time, south_north, west_east) ; 
  PMAXW:units = "Pa" ; 
  PMAXW:description = "Pressure of max wind level" ; 
 float VMAXW(Time, south_north_stag, west_east) ; 
  VMAXW:units = "m s-1" ; 
  VMAXW:description = "V                 at max wind" ; 
 float UMAXW(Time, south_north, west_east_stag) ; 
  UMAXW:units = "m s-1" ; 
  UMAXW:description = "U                 at max wind" ; 
 float SNOWH(Time, south_north, west_east) ; 
  SNOWH:units = "m" ; 
  SNOWH:description = "Physical Snow Depth" ; 
 float SNOW(Time, south_north, west_east) ; 
  SNOW:units = "kg m-2" ; 
  SNOW:description = "Water equivalent snow depth" ; 
 float SKINTEMP(Time, south_north, west_east) ; 
  SKINTEMP:units = "K" ; 
  SKINTEMP:description = "Skin temperature" ; 
 float SOILHGT(Time, south_north, west_east) ; 
  SOILHGT:units = "m" ; 
  SOILHGT:description = "Terrain field of source analysis" ; 
 float LANDSEA(Time, south_north, west_east) ; 
  LANDSEA:units = "proprtn" ; 
  LANDSEA:description = "Land/Sea flag (1=land, 0 or 2=sea)" ; 
 float SEAICE(Time, south_north, west_east) ; 
  SEAICE:units = "proprtn" ; 
  SEAICE:description = "Ice flag" ; 
 float ST100200(Time, south_north, west_east) ; 
  ST100200:units = "K" ; 
  ST100200:description = "T 100-200 cm below ground layer (Bottom)" ; 
 float ST040100(Time, south_north, west_east) ; 
  ST040100:units = "K" ; 
  ST040100:description = "T 40-100 cm below ground layer (Upper)" ; 
 float ST010040(Time, south_north, west_east) ; 
  ST010040:units = "K" ; 
  ST010040:description = "T 10-40 cm below ground layer (Upper)" ; 
 float ST000010(Time, south_north, west_east) ; 
  ST000010:units = "K" ; 
  ST000010:description = "T 0-10 cm below ground layer (Upper)" ; 
 float SM100200(Time, south_north, west_east) ; 
  SM100200:units = "fraction" ; 
  SM100200:description = "Soil Moist 100-200 cm below gr layer" ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-74 

 float SM040100(Time, south_north, west_east) ; 
  SM040100:units = "fraction" ; 
  SM040100:description = "Soil Moist 40-100 cm below grn layer" ; 
 float SM010040(Time, south_north, west_east) ; 
  SM010040:units = "fraction" ; 
  SM010040:description = "Soil Moist 10-40 cm below grn layer" ; 
 float SM000010(Time, south_north, west_east) ; 
  SM000010:units = "fraction" ; 
  SM000010:description = "Soil Moist 0-10 cm below grn layer (Up)" ; 
 float PSFC(Time, south_north, west_east) ; 
  PSFC:units = "Pa" ; 
  PSFC:description = "Surface Pressure" ; 
 float RH(Time, num_metgrid_levels, south_north, west_east) ; 
  RH:units = "%" ; 
  RH:description = "Relative Humidity" ; 
 float VV(Time, num_metgrid_levels, south_north_stag, west_east) ; 
  VV:units = "m s-1" ; 
  VV:description = "V" ; 
 float UU(Time, num_metgrid_levels, south_north, west_east_stag) ; 
  UU:units = "m s-1" ; 
  UU:description = "U" ; 
 float TT(Time, num_metgrid_levels, south_north, west_east) ; 
  TT:units = "K" ; 
  TT:description = "Temperature" ; 
 float PMSL(Time, south_north, west_east) ; 
  PMSL:units = "Pa" ; 
  PMSL:description = "Sea-level Pressure" ; 
 
// global attributes: 
  :TITLE = "OUTPUT FROM METGRID V3.8" ; 
  :SIMULATION_START_DATE = "2016-04-07_00:00:00" ; 
  :WEST-EAST_GRID_DIMENSION = 74 ; 
  :SOUTH-NORTH_GRID_DIMENSION = 61 ; 
  :BOTTOM-TOP_GRID_DIMENSION = 27 ; 
  :WEST-EAST_PATCH_START_UNSTAG = 1 ; 
  :WEST-EAST_PATCH_END_UNSTAG = 73 ; 
  :WEST-EAST_PATCH_START_STAG = 1 ; 
  :WEST-EAST_PATCH_END_STAG = 74 ; 
  :SOUTH-NORTH_PATCH_START_UNSTAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_UNSTAG = 60 ; 
  :SOUTH-NORTH_PATCH_START_STAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_STAG = 61 ; 
  :GRIDTYPE = "C" ; 
  :DX = 30000.f ; 
  :DY = 30000.f ; 
  :DYN_OPT = 2 ; 
  :CEN_LAT = 34.83001f ; 
  :CEN_LON = -81.03f ; 
  :TRUELAT1 = 30.f ; 
  :TRUELAT2 = 60.f ; 
  :MOAD_CEN_LAT = 34.83001f ; 
  :STAND_LON = -98.f ; 
  :POLE_LAT = 90.f ; 
  :POLE_LON = 0.f ; 
  :corner_lats = 28.17127f, 44.36657f, 39.63231f, 24.61906f, 28.17842f, 
44.37617f, 39.57812f, 24.57806f, 28.03771f, 44.50592f, 39.76032f, 24.49431f, 
28.04485f, 44.51553f, 39.70599f, 24.45341f ; 
  :corner_lons = -93.64893f, -92.39661f, -66.00165f, -72.64047f, -
93.80048f, -92.59155f, -65.83557f, -72.5033f, -93.65717f, -92.3829f, -65.9313f, 
-72.68539f, -93.80841f, -92.57831f, -65.76495f, -72.54843f ; 
  :MAP_PROJ = 1 ; 
  :MMINLU = "MODIFIED_IGBP_MODIS_NOAH" ; 
  :NUM_LAND_CAT = 21 ; 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-75 

  :ISWATER = 17 ; 
  :ISLAKE = 21 ; 
  :ISICE = 15 ; 
  :ISURBAN = 13 ; 
  :ISOILWATER = 14 ; 
  :grid_id = 1 ; 
  :parent_id = 1 ; 
  :i_parent_start = 1 ; 
  :j_parent_start = 1 ; 
  :i_parent_end = 74 ; 
  :j_parent_end = 61 ; 
  :parent_grid_ratio = 1 ; 
  :NUM_METGRID_SOIL_LEVELS = 4 ; 
  :FLAG_METGRID = 1 ; 
  :FLAG_EXCLUDED_MIDDLE = 0 ; 
  :FLAG_SOIL_LAYERS = 1 ; 
  :FLAG_SNOW = 1 ; 
  :FLAG_PSFC = 1 ; 
  :FLAG_SM000010 = 1 ; 
  :FLAG_SM010040 = 1 ; 
  :FLAG_SM040100 = 1 ; 
  :FLAG_SM100200 = 1 ; 
  :FLAG_ST000010 = 1 ; 
  :FLAG_ST010040 = 1 ; 
  :FLAG_ST040100 = 1 ; 
  :FLAG_ST100200 = 1 ; 
  :FLAG_SLP = 1 ; 
  :FLAG_SNOWH = 1 ; 
  :FLAG_SOILHGT = 1 ; 
  :FLAG_UTROP = 1 ; 
  :FLAG_VTROP = 1 ; 
  :FLAG_TTROP = 1 ; 
  :FLAG_PTROP = 1 ; 
  :FLAG_PTROPNN = 1 ; 
  :FLAG_HGTTROP = 1 ; 
  :FLAG_UMAXW = 1 ; 
  :FLAG_VMAXW = 1 ; 
  :FLAG_TMAXW = 1 ; 
  :FLAG_PMAXW = 1 ; 
  :FLAG_PMAXWNN = 1 ; 
  :FLAG_HGTMAXW = 1 ; 
  :FLAG_MF_XY = 1 ; 
  :FLAG_LAI12M = 1 ; 
  :FLAG_LAKE_DEPTH = 1 ; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



WPS 
 

 
WRF-ARW V3: User’s Guide 3-76 

 



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-1 

 

Chapter 4: WRF Initialization 
 

Table of Contents 

• Introduction  
• Initialization for Ideal Data Cases  
• Initialization for Real Data Cases  

 

Introduction 

The WRF model has two large classes of simulations that it is able to generate: those with 
an ideal initialization and those utilizing real data.  The idealized simulations typically 
manufacture an initial condition file for the WRF model from an existing 1-D or 2-D 
sounding and assume a simplified analytic orography.  The real-data cases usually require 
pre-processing from the WPS package, which provides each atmospheric and static field 
with fidelity appropriate to the chosen grid resolution for the model.  The WRF model 
executable itself is not altered by choosing one initialization option over another 
(idealized vs. real), but the WRF model pre-processors (the real.exe and ideal.exe 
programs) are specifically built based upon a user's selection.  

The real.exe and ideal.exe programs are never used together.  Both the real.exe and 
ideal.exe are the programs that are processed just prior to the WRF model run. 

The ideal vs. real cases are divided as follows:  

• Ideal cases – initialization programs named “ideal.exe” 

o 3d  
• em_b_wave - baroclinic wave, 100 km  
• em_fire – surface fire, 50 m 
• em_heldsuarez – global case with polar filtering, 625 km 
• em_les – large eddy simulation, 100 m 
• em_quarter_ss - super cell, 2 km 
• em_tropical_cyclone – hurricane, 15 km 

o 2d  
• em_grav2d_x – gravity current, 100 m 
• em_hill2d_x – flow over a hill, 2 km 
• em_seabreeze2d_x – water and land, 2 km, full physics 
• em_squall2d_x – squall line, 250 m 



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-2 

• em_squall2d_y – transpose of above problem 

o 1d 
• em_scm_xy – single column model, 4 km, full physics 

 

• Real data cases – initialization program named “real.exe” 

o em_real – examples from 4 to 30 km, full physics 

The selection of the type of forecast is made when issuing the ./compile statement.  
When selecting a different case to study, the code must be re-compiled to choose the 
correct initialization for the model.  For example, after configuring the setup for the 
architecture (with the ./configure command), if the user issues the command 
./compile em_real, then the initialization program is built using 
module_initialize_real.F as the target module (one of the 
./WRFV3/dyn_em/module_initialize_*.F files). Similarly, if the user specifies 
./compile em_les, then the Fortran module for the large eddy simulation 
(module_initialize_les.F) is automatically inserted into the build for ideal.exe.  Note 
that the WRF forecast model is identical for both of these initialization programs.  In each 
of these initialization modules, the same sort of activities goes on:  

• compute a base state / reference profile for geopotential and column pressure 
• compute the perturbations from the base state for geopotential and column 

pressure 
• initialize meteorological variables: u, v, potential temperature, vapor mixing ratio 
• define a vertical coordinate 
• interpolate data to the model’s vertical coordinate 
• initialize static fields for the map projection and the physical surface; for many of 

the idealized cases, these are simplified initializations, such as map factors set to 
one, and topography elevation set to zero 

Both the real.exe program and ideal.exe programs share a large portion of source code, to 
handle the following duties: 

• read data from the namelist  
• allocate space for the requested domain, with model variables specified at run-

time 
• generate initial condition file  

The real-data case does some additional processing:  

• read meteorological and static input data from the WRF Preprocessing System 
(WPS)  

• prepare soil fields for use in the model (usually, vertical interpolation to the 
required levels for the specified land surface scheme)  



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-3 

• check to verify that soil categories, land use, land mask, soil temperature, sea 
surface temperature are all consistent with each other  

• multiple input time periods are processed to generate the lateral boundary 
conditions, which are required unless processing a global forecast  

• 3d boundary data (u, v, potential temperature, vapor mixing ratio, total 
geopotential) are coupled with total column pressure  

The “real.exe” program may be run as either a serial or a distributed memory job.  Since 
the idealized cases only require that the initialization run for a single time period (no 
lateral boundary file is required) and are, therefore, quick to process, all of the “ideal.exe” 
programs should be run on a single processor.  The Makefile for the 2-D cases will not 
allow the user to build the code with distributed memory parallelism.  For large 2-D 
cases, if the user requires OpenMP, the variables nproc_x and nproc_y must be set in 
the domains portion of the namelist file namelist.input  (nproc_y must be set 
to 1, and nproc_x then set to the number of processors). 

 

Initialization for Ideal Cases 

The program "ideal.exe" is the program in the WRF system that allows a user to run a 
controlled scenario.  Typically this program requires no input except for the 
namelist.input and the input_sounding files (except for the b_wave case 
which uses a 2-D binary sounding file). The program outputs the wrfinput_d01 file 
that is read by the WRF model executable ("wrf.exe").  Since no external data is required 
to run the idealized cases, even for researchers interested in real-data cases, the idealized 
simulations are an easy way to insure that the model is working correctly on a particular 
architecture and compiler. 

Idealized runs can use any of the boundary conditions except "specified", and are 
not, by default, set up to run with sophisticated physics (other than from microphysics). 
Most have no radiation, surface fluxes or frictional effects (other than the sea breeze case, 
LES, and the global Held-Suarez).  The idealized cases are mostly useful for dynamical 
studies, reproducing converged or otherwise known solutions, and idealized cloud 
modeling.  

There are 1-D, 2-D and 3-D examples of idealized cases, with and without topography, 
and with and without an initial thermal perturbation. The namelist can control the size of  
the domain, number of vertical levels, model top height, grid size, time step, diffusion 
and damping properties, boundary conditions, and physics options.  A large number of 
existing namelist settings are already found within each of the directories associated with 
a particular case. 

The input_sounding  file (already in appropriate case directories) can be any set of 
levels that goes at least up to the model top height (ztop) in the namelist. The first line 



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-4 

includes the surface pressure (hPa), potential temperature (K) and moisture mixing ratio 
(g/kg).  Each subsequent line has five input values: height (meters above sea-level), 
potential temperature (K), vapor mixing ratio (g/kg), x-direction wind component (m/s), 
and y-direction wind component (m/s).  The “ideal.exe” program interpolates the data 
from the input_sounding file, and will extrapolate if not enough data is provided. 

The base state sounding for idealized cases is the initial sounding, minus the moisture, 
and therefore does not have to be defined separately.  Note for the baroclinic wave case: a 
1-D input sounding is not used because the initial 3-D arrays are read-in from the file 
input_jet. This means for the baroclinic wave case, the namelist.input file 
cannot be used to change the horizontal or vertical dimensions since they are specified in 
the input_jet file.  

Making modifications, apart from namelist-controlled options or soundings, has to be 
done by editing the Fortran code. Such modifications would include changing the 
topography, the distribution of vertical levels, the properties of an initialization thermal 
bubble, or preparing a case to use more physics, such as a land-surface model. The 
Fortran code to edit is contained in 
./WRFV3/dyn_em/module_initialize_[case].F, where [case] is the case 
chosen in compilation, e.g. module_initialize_squall2d_x.F. The subroutine 
to modify is init_domain_rk. To change the vertical levels, only the 1-D array znw 
must be defined, containing the full levels, starting from 1 at k=1, and ending with 0 at 
k=kde. To change the topography, only the 2-D array ht must be defined, making sure it 
is periodic if those boundary conditions are used. To change the thermal perturbation 
bubble, search for the string "bubble" to locate the code to change.  

Each of the ideal cases provides an excellent set of default examples to the user.  The 
method to specify a thermal bubble is given in the super cell case. In the hill2d case, the 
topography is accounted for properly in setting up the initial 3-D arrays, so that example 
should be followed for any topography cases.  A symmetry example in the squall line 
cases tests that your indexing modifications are correct.  Full physics options are 
demonstrated in the seabreeze2d_x case. 

Available Ideal Test Cases  

The available test cases are  

1. 2-D squall2d_x (test/em_squall2d_x)  
o 2D squall line (x,z) using Kessler microphysics and a fixed 300 m^2/s 

viscosity.  
o periodicity condition used in y so that 3D model produces 2D simulation.  
o v velocity should be zero and there should be no variation in y in the 

results.  
2. 2-D squall2d_y (test/em_squall2d_y)  

o Same as squall2d_x, except with (x) rotated to (y).  



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-5 

o u velocity should be zero and there should be no variation in x in the 
results.  

3. 3-D quarter-circle shear supercell simulation (test/em_quarter_ss).  
o Left and right moving supercells are produced.  
o See the README.quarter_ss file in the test directory for more 

information.  
4. 2-D flow over a bell-shaped hill (x,z) (test/em_hill2d_x)  

o 10 km half-width, 2 km grid-length, 100 m high hill, 10 m/s flow, 
N=0.01/s, 30 km high domain, 80 levels, open radiative boundaries, 
absorbing upper boundary.  

o Case is in linear hydrostatic regime, so vertical tilted waves with ~6-km 
vertical wavelength.  

5. 3-D baroclinic waves (test/em_b_wave)  
o Baroclinically unstable jet u(y,z) on an f-plane.  
o Symmetric north and south, periodic east and west boundaries.  
o 100-km grid size, 16-km top, with 4-km damping layer.  
o 41x81 points in (x,y), 64 layers.  

6. 2-D gravity current (test/em_grav2d_x)  
o Test case is described in Straka et al, INT J NUMER METH FL 17 (1): 1-

22 July 15 1993.  
o See the README.grav2d_x file in the test directory.  

7. 2-D sea breeze (test/em_seabreeze_x)  
o 2-km grid size, 20-km top, land/water.  
o Can be run with full physics, radiation, surface, boundary layer, and land 

options. 
8. 3-D large eddy simulation (test/em_les)  

o 100-m grid size, 2-km top.  
o Surface layer physics with fluxes.  
o Doubly periodic 

9. 3-D Held-Suarez (test/em_heldsuarez)  
o global domain, 625 km in x-direction, 556 km in y-direction, 120-km top.  
o Radiation, polar filter above 45o.  
o Period in x-direction, polar boundary conditions in y-direction 

10. 1-D single column model (test/em_scm_xy) 
o 4-km grid size, 12-km top 
o Full physics 
o Doubly periodic 

11. 3-D surface fire (test/em_fire) 
o Geoscientific Model Development Discussions (GMDD) 4, 497-545, 

2011, http://www.geosci-model-dev-discuss.net/4/497/2011/gmdd-4-497-
2011.html 

o 50-m, 4.5-km top 
o 10:1 subgrid ratio, no physics 
o Open boundaries 

12. 3-D tropical cyclone (test/em_tropical_cyclone) 
o Test case described in Jordan, J METEOR 15, 91-97, 1958. 



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-6 

o 15-km, 25-km top 
o f-plane (f=0.5e-5, about 20 N), SST=28 C 
o Full physics with a simple radiative cooling, no cumulus 
o Doubly periodic 

13. 3-D convective-radiative equilibrium (test/em_convrad) 
o 1 km grid size, 30 km model top 
o tropical condition, small f, weak wind, constant SST 
o full physics 
o doubly periodic 

 

Initialization for Real Data Cases 

The real-data WRF cases are those that have the input data to the “real.exe” program 
provided by the WRF Preprocessing System (WPS). This data from the WPS was 
originally generated from a previously-run external analysis or forecast model. The 
original data was most-likely in GriB format and was most-likely ingested into the WPS 
by first ftp'ing the raw GriB data from one of the national weather agencies’ anonymous 
ftp sites.  

For example, suppose a single-domain WRF forecast is desired, with the following 
criteria:  

• 2000 January 24 1200 UTC through January 25 1200 UTC 
• the original GriB data is available at 6-h increments  

The following coarse-grid files will be generated by the WPS (starting date through 
ending date, at 6-h increments):  

• met_em.d01.2000-01-24_12:00:00.nc  
• met_em.d01.2000-01-24_18:00:00.nc  
• met_em.d01.2000-01-25_00:00:00.nc  
• met_em.d01.2000-01-25_06:00:00.nc  
• met_em.d01.2000-01-25_12:00:00.nc  

The convention is to use "met" to signify data that is output from the WPS “metgrid.exe” 
program and input into the “real.exe” program. The "d01" portion of the name identifies 
to which domain this data refers, which permits nesting. The next set of characters is the 
validation date/time (UTC), where each WPS output file has only a single time-slice of 
processed data. The file extension suffix “.nc” refers to the output format from WPS 
which must be in netCDF for the “real.exe” program.  For regional forecasts, multiple 
time periods must be processed by “real.exe” so that a lateral boundary file is available to 
the model.  The global option for WRF requires only an initial condition.   



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-7 

The WPS package delivers data that is ready to be used in the WRF system by the 
“real.exe” program.  

• The data adheres to the WRF IO API.  Unless you are developing special tools, 
stick with the netCDF option to communicate between the WPS package and 
“real.exe”. 

• The data has already been horizontally interpolated to the correct grid-point 
staggering for each variable, and the winds are correctly rotated to the WRF 
model map projection.  

• 3-D meteorological data required from the WPS: pressure, u, v, temperature, 
relative humidity, geopotential height  

• Optional 3-D hydrometeor data may be provided to the real program at run-time, 
but these fields will not be used in the coarse-grid lateral boundary file.  Fields 
named: QR, QC, QS, QI, QG, QH, QNI (mixing ratio for rain, cloud, snow, ice, 
graupel, hail, and number concentration) are eligible for input from the metgrid 
output files. 

• 3D soil data from the WPS: soil temperature, soil moisture, soil liquid (optional, 
depending on physics choices in the WRF model) 

• 2D meteorological data from the WPS: sea level pressure, surface pressure, 
surface u and v, surface temperature, surface relative humidity, input elevation 

• 2-D meteorological optional data from WPS: sea surface temperature, physical 
snow depth, water equivalent snow depth 

• 2D static data for the physical surface: terrain elevation, land use categories, soil 
texture categories, temporally-interpolated monthly data, land sea mask, elevation 
of the input model’s topography  

• 2D static data for the projection: map factors, Coriolis, projection rotation, 
computational latitude  

• constants: domain size, grid distances, date 
• The WPS data may either be isobaric or some more-generalized vertical 

coordinate, where each column is monotonic in pressure  
• All 3-D meteorological data (wind, temperature, height, moisture, pressure) must 

have the same number of levels, and variables must have the exact same levels.  
For example, it is not acceptable to have more levels for temperature (for 
example) than height.  Likewise, it is not acceptable to have an extra level for the 
horizontal wind components, but not for moisture. 

  

Real Data Test Case: 2000 January 24/12 through 25/12  

• A test data set is accessible from the WRF download page. Under the "WRF 
Model Test Data" list, select the January data. This is a 74x61, 30-km domain 
centered over the eastern US.  

• Make sure you have successfully built the code (fine-grid nested initial data is 
available in the download, so the code may be built with the basic nest option),  



INITIALIZATION 
 

 
WRF-ARW V3: User’s Guide 4-8 

./WRFV3/main/real.exe and ./WRFV3/main/wrf.exe must both 
exist.  

• In the ./WRFV3/test/em_real directory, copy the namelist for the January 
case to the default name   

o cp namelist.input.jan00 namelist.input 

• Link the WPS files (the “met_em*” files from the download) into the 
./WRFV3/test/em_real directory. 

• For a single processor, to execute the real program, type real.exe (this should 
take less than a minute for this small case with five time periods).  

• After running the “real.exe” program, the files “wrfinput_d01” and 
“wrfbdy_d01” should be in this directory; these files will be directly used by 
the WRF model.  

• The “wrf.exe” program is executed next (type wrf.exe), this should only take a 
few minutes (only a 12-h forecast is requested in the namelist file).  

• The output file wrfout_d01:2000-01-24_12:00:00 should contain a 12-
h forecast at 3-h intervals.  

  

Considerations for Recent Releases  

• Since a new simple ocean model has been included in the WRF code, the old 
namelist option for activating an ocean mixed layer is no longer suitable.  The 
variable OMLCALL has been switched to SF_OCEAN_PHYSICS.    

• The default behavior of the base state has been modified.  Starting with release 
version 3.5, the isothermal temperature is no longer zero.  With this change, the 
base state temperature no longer gets colder than 200 K (default in the Registry, 
though a user can override this option with a namelist setting).  This fixes the 
problem associated with layers being too thick near the model top.  A side effect 
of thinning-out these model layers is that users may need to increase the number 
of vertical levels. 

• The common availability of a valid seaice field in the input provided from the 
metgrid program has made obsolete the option to autoconvert “cold enough” 
water points to seaice.  By default, the temperature at which water converts to 
seaice is now 100 K, a temperature cold enough that the option will never be 
triggered.   

 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-1 

Chapter 5: WRF Model 
 

Table of Contents 

• Introduction  
• Installing WRF  
• Running WRF  

o Idealized Case 
o Real Data Case 
o Restart Run 
o Two-Way Nested Runs 
o One-Way Nested Run Using ndown 
o Moving Nested Run 
o Analysis Nudging Runs 
o Observation Nudging 
o Global Run 
o DFI Run 
o SST Update 
o Using bucket_mm and bucket_J options 
o Adaptive Time Stepping 
o Stochastic Parameterization Schemes 
o Run-Time IO 
o Output Diagnostics   
o WRF-Hydro 
o Using IO Quilting   
o Using Physics Suites   
o Hybrid Vertical Coordinate 

• Examples of namelists for various applications 
• Check Output 
• Trouble Shooting 
• Physics and Dynamics Options 
• Summary of PBL Physics Options 
• Summary of Microphysics Options 
• Summary of Cumulus Parameterization Options 
• Summary of Radiation Options 
• Description of Namelist Variables 
• WRF Output Fields 
• Special WRF Output Variables 

 

Introduction 

The WRF model is a fully compressible and nonhydrostatic model (with a run-time 
hydrostatic option). Its vertical coordinate is selectable as either a terrain-following (TF) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-2 

or (beginning in Version 3.9) hybrid vertical coordinate (HVC) hydrostatic pressure 
coordinate. The grid staggering is the Arakawa C-grid. The model uses the Runge-Kutta 
2nd and 3rd order time integration schemes, and 2nd to 6th order advection schemes in 
both the horizontal and vertical. It uses a time-split small step for acoustic and gravity-
wave modes. The dynamics conserves scalar variables.  

The WRF model code contains an initialization program (either for real-data, real.exe, or 
idealized data, ideal.exe; see Chapter 4), a numerical integration program (wrf.exe), a 
program to do one-way nesting (ndown.exe), and a program to do tropical storm 
bogussing (tc.exe). The WRF model, Version 3, supports a variety of capabilities. These 
include 

• Real-data and idealized simulations 
• Various lateral boundary condition options for real-data and idealized simulations 
• Full physics options, and various filter options 
• Positive-definite advection scheme 
• Non-hydrostatic and hydrostatic (runtime option) 
• One-way and two-way nesting, and a moving nest 
• Three-dimensional analysis nudging 
• Observation nudging 
• Regional and global applications 
• Digital filter initialization 
• Vertical refinement in a child domain 

 
Other References 
 

• WRF tutorial presentation: 
http://www.mmm.ucar.edu/wrf/users/supports/tutorial.html 

• WRF-ARW Tech Note: http://www.mmm.ucar.edu/wrf/users/pub-doc.html 
• See chapter 2 of this document for software requirement. 

 

Installing WRF 

Before compiling the WRF code on a computer, check to see if the netCDF library is 
installed. This is because one of the supported WRF I/O options is netCDF, and it is the 
one commonly used and supported by the post-processing programs. If the netCDF is 
installed in a directory other than /usr/local/, then find the path, and use the 
environment variable NETCDF to define where the path is. To do so, type  

setenv NETCDF path-to-netcdf-library  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-3 

Often the netCDF library and its include/ directory are collocated. If this is not the case, 
create a directory, link both netCDF lib and include directories in this directory, and use 
the environment variable to set the path to this directory. For example, 

netcdf_links/lib -> /netcdf-lib-dir/lib 
netcdf_links/include -> /where-include-dir-is/include  

setenv NETCDF /directory-where-netcdf_links-is/netcdf_links 

If the netCDF library is not available on the computer, it needs to be installed first. 
NetCDF source code or pre-built binary may be downloaded from, and installation 
instruction can be found on, the Unidata Web page at http://www.unidata.ucar.edu/. 

Hint: for Linux users: 

If PGI, Intel, gfortran or g95 compilers are are used on a Linux computer, make sure 
netCDF is installed using the same compiler. Use the NETCDF environment variable to 
point to the PGI/Intel/g95 compiled netCDF library. 

Hint: If using netCDF-4, make sure that the new capabilities (such as parallel I/O based 
on HDF5) are not activated at the install time, unless you intend to use the compression 
capability from netCDF-4 (supported in V3.5. More info below). 

The WRF source code tar file can be downloaded from 
http://www.mmm.ucar.edu/wrf/users/download/get_source.html. Once the tar file is 
unzipped (gunzip WRFV3.TAR.gz), and untared (tar –xf WRFV3.TAR), it will create 
a WRFV3/ directory. This contains: 

Makefile Top-level makefile 
README General information about the WRF/ARW core 
README_test_cases Explanation of the test cases 
README.NMM General information for the WRF/NMM core 
README.DA General information for WRFDA 
README.rsl_output Information for dealing with rsl files 
README.io_config Information for runtime IO 
README.windtrubine Information on using wind farm parameterization 
README.hydro Information on WRF-Hydro 
Registry/ Directory for WRF Registry files 
arch/ Directory where compile options are gathered 
clean script to clean created files and executables 
compile script for compiling the WRF code 
configure script to create the configure.wrf file for compiling 
chem/ WRF chemistry, supported by NOAA/GSD 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-4 

dyn_em/ Directory for ARW dynamics and numerics 
dyn_exp/ Directory for a 'toy' dynamic core 
dyn_nmm/ Directory for NMM dynamics and numerics, 

supported by DTC 
external/ Directory that contains external packages, such as 

those for IO, time keeping and MPI 
frame/ Directory that contains modules for the WRF 

framework 
inc/ Directory that contains ‘include’ files 
main/ Directory for main routines, such as wrf.F, and all 

executables after compilation 
phys/ Directory for all physics modules 
run/ Directory where one may run WRF 
share/ Directory that contains mostly modules for the 

WRF mediation layer and WRF I/O  
test/ Directory that contains test case directories, may be 

used to run WRF  
tools/ Directory that contains tools for developers 

The steps to compile and run the model are: 

1. configure: generate a configuration file for compilation 
2. compile: compile the code 
3. run the model 

Go to the WRFV3 (top) directory and type: 

./configure 

The build for the WRF model allows for a few options to be used with the configure 
command. 

./configure –d   build the code with debugging turned on 

./configure –D   same as –d, plus bounds and range checking, uninitialized variables, 
floating traps 

./configure –r8   build the code to use 64 bit reals for computation and output 

./configure –hyb   build the hybrid vertical coordinate option 

For any of the ./configure commands, a list of choices for your computer should appear. 
These choices range from compiling for a single processor job (serial), to using OpenMP 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-5 

shared-memory (smpar), distributed-memory parallelization (dmpar) options for multiple 
processors, or a combination of shared-memory and distributed-memory options 
(dm+sm). When a selection is made, a second choice for compiling nesting will appear. 
For example, on a Linux computer, the above steps may look like:  

> setenv NETCDF /usr/local/netcdf-pgi 
> ./configure 

checking for perl5... no 
checking for perl... found /usr/bin/perl (perl) 
Will use NETCDF in dir: /glade/apps/opt/netcdf/4.3.0/intel/12.1.5 
HDF5 not set in environment. Will configure WRF for use without. 
PHDF5 not set in environment. Will configure WRF for use without. 
Will use 'time' to report timing information 
$JASPERLIB or $JASPERINC not found in environment, configuring to build without grib2 
I/O... 
------------------------------------------------------------------------ 
Please select from among the following Linux x86_64 options: 
 
  1. (serial)   2. (smpar)   3. (dmpar)   4. (dm+sm)   PGI (pgf90/gcc) 
  5. (serial)   6. (smpar)   7. (dmpar)   8. (dm+sm)   PGI (pgf90/pgcc): SGI MPT  
  9. (serial)  10. (smpar)  11. (dmpar)  12. (dm+sm)   PGI (pgf90/gcc): PGI accelerator 
 13. (serial)  14. (smpar)  15. (dmpar)  16. (dm+sm)   INTEL (ifort/icc) 
                                         17. (dm+sm)   INTEL (ifort/icc): Xeon Phi (MIC 
architecture) 
 18. (serial)  19. (smpar)  20. (dmpar)  21. (dm+sm)   INTEL (ifort/icc): Xeon (SNB with 
AVX mods) 
 22. (serial)  23. (smpar)  24. (dmpar)  25. (dm+sm)   INTEL (ifort/icc): SGI MPT  
 26. (serial)  27. (smpar)  28. (dmpar)  29. (dm+sm)   INTEL (ifort/icc): IBM POE  
 30. (serial)               31. (dmpar)                PATHSCALE (pathf90/pathcc) 
 32. (serial)  33. (smpar)  34. (dmpar)  35. (dm+sm)   GNU (gfortran/gcc) 
 36. (serial)  37. (smpar)  38. (dmpar)  39. (dm+sm)   IBM (xlf90_r/cc_r) 
 40. (serial)  41. (smpar)  42. (dmpar)  43. (dm+sm)   PGI (ftn/gcc): Cray XC CLE  
 44. (serial)  45. (smpar)  46. (dmpar)  47. (dm+sm)   CRAY CCE (ftn/cc): Cray XE and XC 
 48. (serial)  49. (smpar)  50. (dmpar)  51. (dm+sm)   INTEL (ftn/icc): Cray XC 
 52. (serial)  53. (smpar)  54. (dmpar)  55. (dm+sm)   PGI (pgf90/pgcc) 
 56. (serial)  57. (smpar)  58. (dmpar)  59. (dm+sm)   PGI (pgf90/gcc): -f90=pgf90 
 60. (serial)  61. (smpar)  62. (dmpar)  63. (dm+sm)   PGI (pgf90/pgcc): -f90=pgf90 
 64. (serial)  65. (smpar)  66. (dmpar)  67. (dm+sm)   INTEL (ifort/icc): HSW/BDW 
 68. (serial)  69. (smpar)  70. (dmpar)  71. (dm+sm)   INTEL (ifort/icc): KNL MIC  
 72. (serial)  73. (smpar)  74. (dmpar)  75. (dm+sm)   FUJITSU (frtpx/fccpx): FX10/FX100 
SPARC64 IXfx/Xlfx 
 
Enter selection [1-75] : -----------------------------------------------------------------
------- 
Compile for nesting? (0=no nesting, 1=basic, 2=preset moves, 3=vortex following) [default 
0]:  
Enter the appropriate options that are best for your computer and application. 

When the return key is hit, a configure.wrf file will be created. Edit compile 
options/paths, if necessary.  

Hint: It is helpful to start with something simple, such as the serial build. If it is 
successful, move on to build dmpar or smpar code. Remember to type ‘./clean –a’ 
between each build when you either change one of the Registry files or when you change 
an option during the configure step. 

Hint: If you would like to use parallel netCDF (p-netCDF) developed by Argonne 
National Lab (http://trac.mcs.anl.gov/projects/parallel-netcdf), you will need to install p-
netCDF separately, and use the environment variable PNETCDF to set the path:  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-6 

setenv PNETCDF path-to-pnetcdf-library 

Hint:  Since V3.5, compilation may take a bit longer due to the addition of the CLM4 
module.  If you do not intend to use the CLM4 land-surface model option, you can 
modify your configure.wrf file by removing -DWRF_USE_CLM from 
ARCH_LOCAL. 

To compile the code, type 

./compile  

and the following choices will appear:  

  Usage: 
  

compile wrf           compile wrf in run dir (Note, no real.exe, 
ndown.exe or ideal.exe generated) 

  
or choose a test case (see README_test_cases for details): 

  
compile em_b_wave 
compile em_convrad (new in V3.7) 
compile em_esmf_exp (example only) 
compile em_grav2d_x 
compile em_heldsuarez 
compile em_hill2d_x 
compile em_les 
compile em_quarter_ss 
compile em_real 
compile em_seabreeze2d_x 
compile em_squall2d_x 
compile em_squall2d_y 
compile em_tropical_cyclone 
compile exp_real (example of a toy solver) 
compile nmm_real (NMM solver) 
 

   compile –h              help message 
  

where em stands for the Advanced Research WRF dynamic solver (which is the 'Eulerian 
mass-coordinate' solver). Type one of the above to compile. When you switch from one 
test case to another, you must type one of the above to recompile. The recompile is 
necessary to create a new initialization executable  (i.e. real.exe, and ideal.exe - 
there is a different ideal.exe for each of the idealized test cases), while wrf.exe is 
the same for all test cases.  

If you want to remove all object files (except those in the external/ directory) and 
executables, type './clean'.  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-7 

Type './clean -a' to remove built files in ALL directories, including 
configure.wrf (the original configure.wrf will be saved to 
configure.wrf.backup). The './clean –a' command is required if you have 
edited the configure.wrf  or any of the Registry files. 

Beginning with V3.5, the compression function in netCDF4 is supported. This option will 
typically reduce the file size by more than 50%. It will require netCDF4 to be installed 
with the option --enable-netcdf-4. Before compiling WRF, you will need to set 
the environment variable NETCDF4. In a C-shell environment, type setenv NETCDF4 
1, followed by ‘configure’ and ‘compile’. 

For more detailed information, visit: 
http://www.mmm.ucar.edu/wrf/users/wrfv3.5/building-netcdf4.html 

a. Idealized case 

For any 2D test case (labeled in the case names), serial or OpenMP (smpar) compile 
options must be used.  Additionally, you must only choose the ‘0=no nesting’ option 
when you configure. For all other cases, you may use serial or parallel (dmpar) and 
nesting.  Suppose you would like to compile and run the 2-dimensional squall case, type  

./compile em_squall2d_x >& compile.log 

After a successful compilation, you should have two executables created in the main/ 
directory: ideal.exe and wrf.exe. These two executables will be linked to the 
corresponding test/case_name and run/ directories. cd to either directory to run the 
model. 

It is a good practice to save the entire compile output to a file. When the executables are 
not present, this output is useful to help diagnose the compile errors. 

b. Real-data case 

For a real-data case, type 

./compile em_real >& compile.log & 

When the compile is successful, it will create three executables in the main/directory: 
ndown.exe, real.exe and wrf.exe. 

real.exe: for WRF initialization of real data cases 
ndown.exe : for one-way nesting 
wrf.exe : WRF model integration 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-8 

Like in the idealized cases, these executables will be linked to the test/em_real and 
run/ directories. cd to one of these two directories to run the model. 

 

Running WRF 

One may run the model executables in either the run/ directory, or the 
test/case_name directory. In either case, one should see executables ideal.exe 
or real.exe (and ndown.exe), and wrf.exe, linked files (mostly for real-data 
cases), and one or more namelist.input files in the directory. 

Hint: If you would like to run the model executables in a different directory, copy or link 
the files in the test/em_* directory to that directory, and run from there. 

a. Idealized case 

Suppose the test case em_squall2d_x is compiled. To run, type  

cd test/em_squall2d_x 

Edit the namelist.input file (see README.namelist in the WRFV3/run/ 
directory or its Web version) to change length of integration, frequency of output, size of 
domain, timestep, physics options, and other parameters.  

If you see a script in the test case directory, called run_me_first.csh, run this one 
first by typing: 

./run_me_first.csh 

This links some physics data files that might be needed to run the case. 

*Note:  when running em_fire, you must copy everything from the ‘hill_simple’ directory 
into your current working directory in order for it to run correctly. 

cp hill_simple/* . 

To run the initialization program, type 

./ideal.exe 

This program will typically read an input sounding file located in that directory, and 
generate an initial condition file wrfinput_d01. All idealized cases do not require a 
lateral boundary file because of the boundary condition choices they use, such as the 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-9 

periodic option. If the job is run successfully, the last thing it prints should be: ‘wrf: 
SUCCESS COMPLETE IDEAL INIT’. 

To run the model and save the standard output to a file, type  

./wrf.exe >& wrf.out & 

or for a 3D test case compiled with MPI (dmpar) option, 

mpirun –np 4 ./wrf.exe 

If  successful, the wrf output file will be written to a file named  
wrfout_d01_0001-01-01_00:00:00. 

Pairs of rsl.out.* and rsl.error.* files will appear with any MPI runs. These 
are standard out and error files. Note that the execution command for MPI runs may be 
different on different machines and for different MPI installation. Check the user manual. 

If the model run is successful, the last thing printed in the ‘wrf.out’ or rsl.*.0000 
files should be: ‘wrf: SUCCESS COMPLETE WRF’. Output files 
wrfout_d01_0001-01-01* and wrfrst* should be present in the run directory, 
depending on how namelist variables are specified for output. The time stamp on these 
files originates from the start times in the namelist file. 

b. Real-data case 

To make a real-data case run, cd to the working directory by typing 

cd test/em_real (or cd run) 

Start with the namelist.input template file in the directory and edit it to match your 
case. 

Running a real-data case requires successfully running the WRF Preprocessing System 
programs (or WPS). Make sure met_em.* files from WPS are seen in the run directory 
(either link or copy the files): 

cd test/em_real 
ls –l ../../../WPS/met_em* 
ln –s ../../..WPS/met_em* .  

Make sure you edit the variables in the &time_control and &domains sections of the 
namelist.input file (the description of the namelists can be found in the later part of 
this chapter):  

&time_control 
 run_days                            = 0, 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-10 

 run_hours                           = 24, 
 run_minutes                         = 0, 
 run_seconds                         = 0, 
 start_year                          = 2000, 2000, 2000, 
 start_month                         = 01,   01,   01, 
 start_day                           = 24,   24,   24, 
 start_hour                          = 12,   12,   12, 
 end_year                            = 2000, 2000, 2000, 
 end_month                           = 01,   01,   01, 
 end_day                             = 25,   25,   25, 
 end_hour                            = 12,   12,   12, 
 interval_seconds                    = 21600 
 input_from_file                     = .true.,.true.,.true., 
 history_interval                    = 180,  60,   60, 
 frames_per_outfile                  = 1000, 1000, 1000, 
/ 
  
&domains 
 time_step                           = 180, 
 max_dom                             = 1, 
 e_we                                = 74,    112,   94, 
 e_sn                                = 61,    97,    91, 
 e_vert                              = 30,    30,    30, 
 p_top_requested                     = 5000, 
 num_metgrid_levels                  = 27, 
 num_metgrid_soil_levels             = 4, 
 dx                                  = 30000, 10000,  3333.33, 
 dy                                  = 30000, 10000,  3333.33, 
 grid_id                             = 1,     2,     3, 
 parent_id                           = 0,     1,     2, 
 i_parent_start                      = 1,     31,    30, 
 j_parent_start                      = 1,     17,    30, 
 parent_grid_ratio                   = 1,     3,     3, 
 parent_time_step_ratio              = 1,     3,     3, 
/ 

Make sure that the dates and dimensions of the domain match those set in WPS. If only 
one domain is used, entries in other columns will be ignored. 

Other options for use to assist vertical interpolation in &domains are: 

 interp_type                         = 2 
 extrap_type                         = 2 
 t_extrap_type                       = 2 
 lowest_lev_from_sfc                 = .false. 
 use_levels_below_ground             = .true. 
 use_surface                         = .true. 
 lagrange_order                      = 1 
 force_sfc_in_vinterp                = 1 
 zap_close_levels                    = 500 
 sfcp_to_sfcp                        = .false. 
 adjust_heights                      = .false. 
 smooth_cg_topo                      = .false. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-11 

To run the real-data initialization program, compiled using serial or OpenMP (smpar) 
options, type  

./real.exe >& real.out 

Successful completion of the job should have ‘real_em: SUCCESS EM_REAL INIT’ 
printed at the end of the real.out file. It should also produce wrfinput_d01 and 
wrfbdy_d01 files. In the real data case, both files are required.   

Run the WRF model by typing  

./wrf.exe 

A successful run should produce one or several output files with names like 
wrfout_d<domain>_<date> (where <domain> represents domain ID, and 
<date> represents a date string with the format yyyy-mm-dd_hh:mm:ss.  For 
example, if you start the model at 1200 UTC, January 24 2000, then your first output file 
should have the name: 

wrfout_d01_2000-01-24_12:00:00 

The time stamp on the file name is always the first time the output file is written. It is 
always good to check the times written to the output file by typing: 

ncdump -v Times wrfout_d01_2000-01-24_12:00:00 

You may have other wrfout files, depending on the namelist options (how often you split 
the output files is determined by the namelist option frames_per_outfile). You 
may also create restart files if you have a restart frequency (restart_interval in 
the namelist.input file) set within your total integration time. The restart file(s) should 
have the following naming convention 

wrfrst_d<domain>_<date> 

The time stamp on a restart file is the time at which that restart file is valid. 

For DM (distributed memory) parallel systems, some form of the mpirun command will 
be needed to run the executables. For example, on a Linux cluster, the command to run 
MPI code, using 4 processors, may look like: 

mpirun -np 4 ./real.exe 
mpirun -np 4 ./wrf.exe 

or 

mpiexec_mpt ./wrf.exe (on NCAR’s cheyenne)   



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-12 

c. Restart Run 

A restart run allows a user to extend a run to a longer simulation period. It is effectively a 
continuous run made of several shorter runs. Hence the results at the end of one or more 
restart runs should be identical to a single run without any restart. 
 
In order to do a restart run, one must first create a restart file. This is done by setting the 
namelist variable restart_interval (default unit is in minutes) to be equal to or 
less than the simulation length in the first model run, as specified by run_* variables or 
start_* and end_* times. When the model reaches the time to write a restart file, a 
restart file named wrfrst_d<domain>_<date> will be written. The date string 
represents the time when the restart file is valid.  
 
When one starts the restart run, edit the namelist.input file, so that your start_* 
time will be set to the restart time (which is the time the restart file is written). The other 
namelist variable one must set is restart, this variable should be set to .true. for a 
restart run. 
 
In summary, these namelist entries should be modified: 
 
start_*, end_*:  start and end times for restart model integration 
restart:    logical to indicate whether the run is a restart or not 

If the history and restart intervals are changed in a restart run, and the outcome isn’t what 
is expected to be, use namelist ‘override_restart_timers = .true.’. 

If history output is desired at the time of restart, use namelist 
‘write_hist_at_0h_rst = .true.’ 

Hint: Typically the restart file is several times the size of the history file, hence one may 
find that it is even ok to write a single model history output time to a file in netCDF 
format (frame_per_outfile=1), but it may fail to write a restart file. This is 
because the basic netCDF file support is only 2Gb (with WRF v3.9, this restriction is 
removed by default). There are two solutions to the problem. The first is to simply set the 
namelist option io_form_restart = 102 (instead of 2), and this will force the 
restart file to be written into multiple pieces, one per processor. As long as one restarts 
the model using the same number of processors, this option works well (and one should 
restart the model with the same number of processors in any case). The second solution is 
to recompile the code using the netCDF large file support option (for WRF versions 
before v3.9: see the section on “Installing WRF” in this chapter). 

d. Two-way Nested Runs 

A two-way nested run is a run in which multiple domains at different grid resolutions are 
run simultaneously and communicate with each other: The coarser domain provides 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-13 

boundary values for the nest, and the nest feeds its calculation back to the coarser 
domain. The model can handle multiple domains at the same nest level (no overlapping 
nest), and multiple nest levels (telescoping).   

When preparing for a nested run, make sure that the code is compiled with basic nest 
options (option 1). 

Most of options to start a nest run are handled through the namelist. All variables in the 
namelist.input file that have multiple columns of entries need to be edited with 
caution. Start with a namelist template. The following are the key namelist variables to 
modify: 

start_*, end_*: start and end simulation times for the nest 

input_from_file: whether a nest requires an input file (e.g. wrfinput_d02). This 
is typically used for a real data case, since the nest input file contains nest topography and 
land information. 

fine_input_stream: which fields from the nest input file are used in nest 
initialization. The fields to be used are defined in the Registry.EM. Typically they include 
static fields (such as terrain and landuse), and masked surface fields (such as skin 
temperature, soil moisture and temperature). Useful for a nest starting at a later time than 
the coarse domain. 

max_dom: the total number of domains to run. For example, if you want to have one 
coarse domain and one nest, set this variable to 2. 

grid_id: domain identifier that is used in the wrfout naming convention. The most 
coarse grid must have grid_id of 1. 
parent_id: used to indicate the parent domain of a nest. grid_id value is used. 

i_parent_start/j_parent_start: lower-left corner starting indices of the nest 
domain in its parent domain. These parameters should be the same as in 
namelist.wps. 

parent_grid_ratio: integer parent-to-nest domain grid size ratio. Typically an odd 
number ratio is used in real-data applications. 

parent_time_step_ratio: integer time-step ratio for the nest domain. It may be 
different from the parent_grid_ratio, though they are typically set the same. 

feedback: this is the key setup to define a two-way nested (or one-way nested) run. 
When feedback is on, the values of the coarse domain are overwritten by the values of the 
variables (average of cell values for mass points, and average of the cell-face values for 
horizontal momentum points) in the nest at the coincident points. For masked fields, only 
the single point value at the collocating points is fed back. If the 
parent_grid_ratio is even, an arbitrary choice of  the southwest corner point value 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-14 

is used for feedback. This is the reason it is better to use an odd parent_grid_ratio 
with this option. When feedback is off , it is equivalent to a one-way nested run, since 
nest results are not reflected in the parent domain. 

smooth_option: this a smoothing option for the parent domain in the area of the nest 
if feedback is on. Three options are available: 0 = no smoothing; 1 = 1-2-1 smoothing; 2 
= smoothing-desmoothing. 
 
3-D Idealized Cases 

For 3-D idealized cases, no nest input files are required. The key here is the specification 
of the namelist.input file. What the model does is to interpolate all variables 
required in the nest from the coarse domain fields. Set 

input_from_file = T, F, 

 
Real Data Cases 

For real-data cases, three input options are supported. The first one is similar to running 
the idealized cases. That is to have all fields for the nest interpolated from the coarse 
domain (input_from_file = T, F). The disadvantage of this option is obvious:  
one will not benefit from the higher resolution static fields (such as terrain, landuse, and 
so on). 

The second option is to set input_from_file = T for each domain, which means 
that the nest will have a nest wrfinput file to read in. The limitation of this option is that 
this only allows the nest to start at the same time as the coarse domain. 

The third option is, in addition to setting input_from_file = T for each domain, 
also set fine_input_stream = 2 for each domain. Why a value of 2? This is based 
on the Registry setting, which designates certain fields to be read in from the auxiliary 
input stream number 2. This option allows the nest initialization to use 3-D 
meteorological fields interpolated from the coarse domain, static fields and masked, and 
time-varying surface fields from the nest wrfinput; hence it allows a nest to start at a later 
time than hour 0. Setting fine_input_stream = 0 is equivalent to the second 
option. 

To run real.exe for a nested run, one must first run WPS and create data for all the 
nests. Suppose WPS is run for a 24 hour period, two-domain nested case starting at 1200 
UTC Jan 24 2000. Then the following files should be generated in a WPS directory: 

met_em.d01.2000-01-24_12:00:00 
met_em.d01.2000-01-24_18:00:00 
met_em.d01.2000-01-25_00:00:00 
met_em.d01.2000-01-25_06:00:00 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-15 

met_em.d01.2000-01-25_12:00:00 
met_em.d02.2000-01-24_12:00:00  

Typically only the first time period of the nest input file is needed to create a nest 
wrfinput file. Link or move all these files to the run directory. 

Edit the namelist.input file and set the correct values for all relevant variables, 
described on the previous pages (in particular, set max_dom = 2, for the total number 
of domains to run), as well as physics options. Type the following to run: 

./real.exe >& real.out  
or 
mpirun –np 4 ./real.exe 

If successful, this will create all input files for coarse, as well as nested domains. For a 
two-domain example, these are created: 

wrfinput_d01 
wrfinput_d02 
wrfbdy_d01 

To run WRF, type 

./wrf.exe 
or 
mpirun –np 4 ./wrf.exe 

If successful, the model should create wrfout files for both domain 1 and 2: 

wrfout_d01_2000-01-24_12:00:00 
wrfout_d02_2000-01-24_12:00:00 

e. One-way Nested Run Using ndown 

WRF supports two separate one-way nested options. In this section, one-way nesting is 
defined as a finer-grid-resolution run, made as a subsequent run after the coarser-grid-
resolution run, where the ndown program is run in-between the two simulations. The 
initial and lateral boundary conditions for this finer-grid run are obtained from the coarse 
grid run, with input from higher resolution terrestrial fields (e.g. terrain, landuse, etc.), 
and masked surface fields (such as soil temperature and moisture). The program that 
performs this task is ndown.exe.  

*Note that the use of this program requires the code to be compiled for nesting. 

When one-way nesting is used, the coarse-to-fine grid ratio is only restricted to be an 
integer. An integer less than or equal to 5 is recommended. Frequent output (e.g. hourly) 
from the coarse grid run is also recommended to provide better boundary specifications. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-16 

Do not change physics options when running ndown (you can change some physics 
options when making wrf runs), and do not remove fields from Registry if you plan to 
use ndown. 

Step 1: Make a coarse grid run. 

This is no different than any of the single-domain WRF runs, as described above. Do 
output history files as often as you can, and this will provide better and more frequent 
boundary conditions for the next model run. 

Step 2:  Run geogrid.exe (gives geo_em.d01 and geo_em.d02 files) and metgrid.exe for 
two domains (as if you are making a 2-way nested run). 

This will generate WPS output files for domain 1 (met_em.d01.<date>) and domain 
2 (met_em.d02.<date>).   

Step 3:  Run real.exe for 2 domains. 

The purpose of this step is to ingest higher resolution terrestrial fields and corresponding 
land-water masked soil fields. 

- Copy the met_em* files into the directory in which you will be running real.exe. 
- Edit the namelist.input file, changing ‘max_dom = 2’, and making sure 
columns 1 and 2 are set-up for a 2 domain run, editting the correct start time and grid 
dimensions. 
- Run real.exe.  This will produce a wrfinput_d01 file, a wrfinput_d02 
file, and a wrfbdy_d01 file. 
- Rename the wrfinput_d02 file to wrfndi_d02.  

Step 4: Make the final fine-grid initial and boundary condition files, by running 
ndown.exe 

- Since V3.2, one must add io_form_auxinput2 = 2 in the &time_control 
section of namelist.input to run ndown.exe successfully. (If one desires to refine 
the vertical resolution when running ndown, set vert_refine_fact = 
integer (new in V3.2). There are no other changes required in the namelist or in the 
procedure. Another way to refine vertical resolution is to use the utility program 
v_interp (see the chapter for ‘Utilities and Tools’ for details)). 

- Change namelist variable interval_seconds to reflect the history output 
interval from the coarse domain model run. 
- Do not change physics options until after running the ndown program. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-17 

- Run ndown.exe, which uses input from the coarse grid wrfout file(s), and the 
wrfndi_d02 file generated from Step 3 above. This will produce a 
wrfinput_d02 and wrfbdy_d02 file. 

Note that the program ndown may be run serially or in MPI, depending on the selected 
compile option.  The ndown program must be built to support nesting, however.  To run 
the program, type 

./ndown.exe 
or  
mpirun –np 4 ./ndown.exe  

Step 5: Make the fine-grid WRF run 

- Rename wrfinput_d02 and wrfbdy_d02 to wrfinput_d01 and 
wrfbdy_d01, respectively.  
- Rename (or move) the original wrfout_d01* files to something else (or another 
directory) so as to not overwrite them. 
- Edit namelist.input,moving all of the fine-grid domain data from column 2 to 
column 1 so that this run will be for the fine-grid domain only.  Make sure that the 
time_step is set to comply with the fine-grid domain (typically 6*DX).  It may be 
beneficial to save namelist.input to something else prior to this step in case you 
need to repeat this process in the future.  Save the newly-edited namelist as 
namelist.input. 
 
- The WRF model’s physics options may be modified between runs (the WRF model 
before ndown and the WRF model after ndown, but do use the same physics from the 
first run when running ndown), except generally for the land surface scheme option 
which has different number of soil depths depending on the scheme.  Users may take 
advantage of a feature that allows both the initial and lateral boundaries to use the 
moist and scalar arrays (have_bcs_moist and have_bcs_scalar, 
respectively).  This option is only to be used during the WRF model run which follows 
the ndown processing.  With this option, a user must keep the microphysics options 
the same between forecasts.  The advantage is that the previous WRF model provides 
realistic lateral boundary tendencies for all of the microphysical variables, instead of a 
simple “zero inflow” or “zero gradient outflow”. 
- Run WRF for this grid. 
*Keep in mind that the output from this run will be in the form wrfout_d01* but it 
will actually be output for domain 2.  It may help to rename these to avoid future 
confusion. 

Running ndown.exe for Three or More Domains 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-18 

It is possible to use the ndown program to run for more than one nest, but the procedure 
is a bit cumbersome.  Because of the way the code it written, it expects particular file 
names (specifically for d01 and d02), and therefore it is important to follow these steps 
precisely: 

Note: This example is for nesting down to a 3rd domain (3 domains total), and assumes 
that you already have wrfout_d01* files from a previous run.   

Step A:  Run the geogrid.exe and metgrid.exe programs for 3 domains.  You should have 
files met_em.d01.<date>, met_em.d02.<date>, and 
met_em.d03.<date>. 

Step B:  Run real.exe for 3 domains. 

 - Copy the met_em* files into the directory in which you will be running 
real.exe. 
- Edit the namelist.input file, changing ‘max_dom = 3’, and making sure 
columns 1, 2 and 3 are set-up for a 3 domain run, editting the correct start time and 
grid dimensions. 
- Run real.exe.  This will produce a wrfinput_d01, wrfinput_d02, a 
wrfinput_d03 file, and a wrfbdy_d01 file. 
- Rename the wrfinput_d02 file to wrfndi_d02.  

Step C:  Make the domain 02 grid initial and boundary condition files, by running 
ndown.exe (see the details in step 4 above) 

 
Step D:  Make the domain 2 WRF run (see the details in step 5 above).  You will now 

have new files named wrfout_d01* which will correspond to domain 02. 

 
Step E:  Make the domain 03 grid initial and boundary condition files, by running 

ndown.exe 
- Rename the wrfinput_d03 file to wrfndi_d02 (this is the name the program 
expects)  
-Make sure the namelist still has io_form_auxinput2 = 2 in the 
&time_control section. 

- Change namelist variable interval_seconds to reflect the history output 
interval from the coarse domain model run. 
- Do not change physics options until after running the ndown program. 

- Run ndown.exe, which uses input from the (new) coarse grid wrfout file(s), and 
the wrfndi_d02 file. This will produce a wrfinput_d02 and wrfbdy_d02 file 
(which will actually correspond to domain 03). 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-19 

Step F:  Make the fine-grid (d03) WRF run. 

- Rename wrfinput_d02 and wrfbdy_d02 to wrfinput_d01 and 
wrfbdy_d01, respectively.  
- Rename (or move) the wrfout_d01* files to something else (or another directory) 
so as to not overwrite them (recall that these files correspond to d02). 
- Edit namelist.input, moving all of the fine-grid domain data from column 3 
to column 1 so that this run will be for the fine-grid domain only.  Make sure that the 
time_step is set to comply with the fine-grid domain (typically 6*DX).  It may be 
beneficial to save namelist.input to something else prior to this step in case you 
need to repeat this process in the future.  Save the newly-edited namelist as 
namelist.input. 

After running wrf.exe, you will have new wrfout_d01* files.  These will 
correspond to domain 03.  If you need to add any more nests, follow the same format, 
keeping the naming convention the same. 
 

The figure on the next page summarizes the data flow for a one-way nested run using the 
program ndown. 

 
 
 

 
 !



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-20 

 
 

 

 

 

f. Moving-Nested Run 

Two types of moving tests are allowed in WRF. In the first option, a user specifies the 
nest movement in the namelist. The second option is to move the nest automatically, 
based on an automatic vortex-following algorithm. This option is designed to follow the 
movement of a well-defined tropical cyclone. 

To make the specified moving nested run, select the right nesting compile option (option 
‘preset moves’). Note that code compiled with this option will not support static nested 
runs. To run the model, only the coarse grid input files are required. In this option, the 

!



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-21 

nest initialization is defined from the coarse grid data - no nest input is used. In addition 
to the namelist options applied to a nested run, the following needs to be added to the 
namelist section &domains: 

num_moves: the total number of moves one can make in a model run. A move of any 
domain counts against this total. The maximum is currently set to 50, but it can be 
changed by changing MAX_MOVES in frame/module_driver_constants.F. 

move_id: a list of nest IDs, one per move, indicating which domain is to move for a 
given move. 

move_interval: the number of minutes from the beginning of the run until a move 
is supposed to occur. The nest will move on the next time step after the specified instant 
of model time has passed. 
move_cd_x,move_cd_y: distance in the number of grid points and direction of the 
nest move (positive numbers indicate moving toward east and north, while negative 
numbers indicate moving toward west and south). 

Parameter max_moves is set to be 50, but can be modified in the source code file 
frame/module_driver_constants.F, if needed. 

To make the automatic moving nested runs, select the ‘vortex-following’ option when 
configuring. Again note that this compile would only support the auto-moving nest, and 
will not support the specified moving nested run or static nested run at the same time. 
Again, no nest input is needed. If one wants to use values other than the default ones, add 
and edit the following namelist variables in the &domains section: 

vortex_interval: how often the vortex position is calculated in minutes (default is 
15 minutes). 

max_vortex_speed: used with vortex_interval to compute the search radius for the 
new vortex center position (default is 40 m/sec). 
corral_dist: the distance in the number of coarse grid cells that the moving nest is 
allowed to get near the mother domain boundary (default is 8). This parameter can be 
used to center the telescoped nests so that all nests are moved together with the storm. 

track_level: the pressure level (in Pa) where the vortex is tracked. 

time_to_move: the time (in minutes) to move a nest. This option may help with the 
case when the storm is still too weak to be tracked by the algorithm.  

When the automatic moving nest is employed, the model dumps the vortex center location, 
with minimum mean sea-level pressure and maximum 10-m winds in a standard-out file 
(e.g. rsl.out.0000). Typing ‘grep ATCF rsl.out.0000’ will produce a list of 
storm information at a 15-minute interval: 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-22 

ATCF 2007-08-20_12:00:00  20.37 -81.80    929.7 133.9 
ATCF  2007-08-20_12:15:00  20.29 -81.76    929.3      133.2 

In both types of moving-nest runs, the initial location of the nest is specified through 
i_parent_start and j_parent_start in the namelist.input file. 

Since V3.6, a capability has been added to incorporate high-resolution terrain and landuse 
input in a moving nest run (Chen, Shuyi S., Wei Zhao, Mark A. Donelan, James F. Price, 
Edward J. Walsh, 2007: The CBLAST-Hurricane Program and the Next-Generation Fully 
Coupled Atmosphere–Wave–Ocean Models for Hurricane Research and Prediction. Bull. 
Amer. Meteor. Soc., 88, 311–317.doi: http://dx.doi.org/10.1175/BAMS-88-3-311). To 
activate this option,  

- At compile time, one needs to set the environment variable, TERRAIN_AND_LANDUSE 
to 1. In cshell,  

setenv TERRAIN_AND_LANDUSE 1 

followed by configuring and compiling the code. 

- At run time, add these namelists in &time_control: 

input_from_hires = .true., .true., 
rsmas_data_path  = “terrain_and_landuse_data_directory” 

The automatic moving nest works best for a well-developed vortex.  

g. Analysis Nudging Runs (Upper-Air and/or Surface) 

Prepare input data to WRF as usual using WPS. If nudging is desired in the nest domains, 
make sure all time periods for all domains are processed in WPS. For surface-analysis 
nudging (new in Version 3.1), OBSGRID needs to be run after METGRID, and it will 
output a wrfsfdda_d01 file that the WRF model reads for this option. 
 
Set the following options before running real.exe, in addition to others described 
earlier (see the namelists in examples.namelist in the test/em_real/ 
directory, for guidance): 
 
grid_fdda = 1 
grid_sfdda = 1 
 
Run real.exe as before, and this will create, in addition to wrfinput_d0* and 
wrfbdy_d01 files, a file named ‘wrffdda_d0*’. Other grid-nudging namelists are 
ignored at this stage, but it is good practice to fill them all in before one runs real. In 
particular, set 
 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-23 

gfdda_inname   =  “wrffdda_d<domain>” 
gfdda_interval =  time interval of input data in minutes 
gfdda_end_h    =  end time of grid-nudging in hours 
 
sgfdda_inname   =  “wrfsfdda_d<domain>” 
sgfdda_interval =  time interval of input data in minutes 
sgfdda_end_h    =  end time of surface grid-nudging in hours 
 
 
See http://www2.mmm.ucar.edu/wrf/users/wrfv3.1/How_to_run_grid_fdda.html and 
README.grid_fdda in WRFV3/test/em_real/ for more information. 
 
A different surface data nudging option is added in V3.8, and activated by setting  
 
grid_sfdda = 2 
 
This option nudges surface air temperature and water vapor mixing ratio similar to that 
with option 1, but uses the tendencies generated from the direct nudging approach to 
constrain surface sensible and latent heat fluxes, thus ensuring thermodynamic 
consistency between the atmosphere and land surface. This works with YSU PBL and 
Noah LSM. (Alapaty et al. JAMC, 2008) 
 
Spectral Nudging is a new upper-air nudging option since Version 3.1. This selectively 
nudges the coarser scales only, but is otherwise set up the same way as grid-nudging. 
This option also nudges geopotential height. The wave numbers defined here are the 
number of waves contained in the domain, and the number is the maximum one that is 
nudged. 
 
grid_fdda = 2  
xwavenum = 3 
ywavenum = 3 

h. Observation Nudging Run 

In addition to the usual input data preparation using WPS, station observation files are 
required. See the Observation Nudging User's Guide and 
http://www2.mmm.ucar.edu/wrf/users/wrfv3.1/How_to_run_obs_fdda.html for details. 
The observation file names expected by WRF are OBS_DOMAIN101 for domain 1, and 
OBS_DOMAIN201 for domain 2, etc. 
 
Observation nudging is activated in the model by the following namelists in &fdda: 
 
obs_nudge_opt = 1 
fdda_start    = 0 (obs nudging start time in minutes) 
fdda_end      = 360 (obs nudging end time in minutes) 
 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-24 

and in &time_control 
 
auxinput11_interval_s = 180, 180, 180, (set the interval to be small enough so 
                                                         that all observations will be checked) 
 
Look for an example to set other obs nudging namelist variables in the file 
examples.namelists in test/em_real/ directory. See The Observation 
Nudging User's Guide, 
http://www2.mmm.ucar.edu/wrf/users/wrfv3.1/How_to_run_obs_fdda.html, and 
README.obs_fdda in WRFV3/test/em_real/ for more information. 

i. Global Run 

WRFV3 supports global capability. To make a global run, run WPS, starting with the 
namelist template namelist.wps.gloabl. Set map_proj = ‘lat-lon’, and 
grid dimensions e_we and e_sn without setting dx and dy in 
namelist.wps. The geogrid program will calculate grid distances, and their values 
can be found in the global attribute section of geo_em.d01.nc file. Type  
ncdump –h geo_em.d01.nc to find out the grid distances, which will be needed in 
filling out WRF’s namelist.input file. Grid distances in x and y directions may be 
different, but it is best that they are set similarly or the same. WRF and WPS assume the 
earth is a sphere, and its radius is 6370 km. There are no restrictions on what to use for 
grid dimensions, but for effective use of the polar filter in WRF, the east-west dimension 
should be set to 2P*3Q*5R+1 (where P, Q, and R are any integers, including 0). 
 
Run the rest of the WPS programs as usual but only for one time period. This is because 
the domain covers the entire globe, and lateral boundary conditions are no longer needed. 
 
Run the program real.exe as usual and for one time period only. The lateral boundary 
file wrfbdy_d01 is not needed. 
 
Copy namelist.input.global to namelist.input, and edit it. Run the model 
as usual. 

Note:  since this is not a commonly-used configuration in the model, use it with caution. 
Not all physics and diffusion options have been tested with it, and some options may not 
work well with polar filters. Also, positive-definite and monotonic advection options do 
not work with polar filters in a global run because polar filters can generate negative 
values of scalars. This implies, too, that WRF-Chem cannot be run with positive-definite 
and monotonic options in a global WRF setup. 

As an extension to the global lat-lon grid, the regional domain can also be set using a lat-
lon grid. To do so, one needs to set both grid dimensions, and grid distances in degrees. 
Again geogrid will calculate the grid distance, assuming the earth is a sphere and its 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-25 

radius is 6370 km. Find the grid distance in meters in the netCDF file, and use the value 
for WRF’s namelist.input file. 

j. Using Digital Filter Initialization 

Digital filter initialization (DFI) is a new option in V3. It is a way to remove initial model 
imbalance as, for example, measured by the surface pressure tendency. This might be 
important when one is interested in the 0 – 6 hour simulation/forecast. It runs a digital 
filter during a short model integration, backward and forward, and then starts the forecast. 
In WRF implementation, this is all done in a single job. With the V3.3 release, DFI can 
be used for multiple domains with concurrent nesting, with feedback disabled. 

There is no special requirement for data preparation.  

Start with the namelist template namelist.input.dfi. This namelist file contains 
an extra namelist record for DFI: &dfi_control. Edit it to match your case 
configuration. For a typical application, the following options are used: 

dfi_opt = 3 (Note:  if doing a restart, this must be changed to 0) 
dfi_nfilter = 7 (filter option: Dolph) 
dfi_cutoff_seconds = 3600 (should not be longer than the filter window) 
For time specification, it typically needs to integrate backward for 0.5 to 1 hour, and 
integrate forward for half of the time.  
 
If option dfi_write_filtered_input is set to true, a filtered wrfinput file, 
wrfinput_initialized_d01, will be produced when you run wrf. 
 
In Version 3.2, a constant boundary condition option is introduced for DFI. To use it, set 
constant_bc = 1 in &bdy_control 
 
If a different time step is used for DFI, one may use time_step_dfi to set it.  

k. Using the sst_update option 

The WRF model physics do not predict sea-surface temperature, vegetation fraction, 
albedo or sea ice. For long simulations, the model provides an alternative to read-in the 
time-varying data and to update these fields. In order to use this option, one must have 
access to time-varying SST and sea ice fields. Twelve monthly values of vegetation 
fraction and albedo are available from the geogrid program. Once these fields are 
processed via WPS, one may activate the following options in the namelist record 
&time_control before running the program real.exe and wrf.exe: 
 
io_form_auxinput4  = 2 
auxinput4_inname  = “wrflowinp_d<domain>” (created by real.exe) 
auxinput4_interval  = 360, 360, 360, 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-26 

 
and in &physics 
 
sst_update = 1 
 
Note that this option doesn’t work with sf_ocean_physics options. 

l. Using bucket_mm and bucket_J options 

These options are for long simulation rainfall accumulations and radiation budget 
accumulation terms (RAINC, RAINNC, ACSWUPT, ACLWDNBC, etc.).  With 32-bit 
accuracy, adding small numbers to very large numbers loses accuracy as the 
accumulation term increases.  For simulations of days to weeks, the accumulations are 
usually okay, but for months to years, this has the effect of truncating the additions, and 
especially small ones may be zeroed-out. 

When these options are activated, part of the term is stored in an integer that increments 
by 1 each time the bucket value is reached, so we have two terms - RAINNC and 
I_RAINNC, where RAINNC now only contains the remainder.  The total is retrieved 
from the output with total = RAINNC+bucket_mm*I_RAINNC.  A reasonable bucket 
value may be based on a monthly accumulation such as 100 mm.  Total precipitation 
equals RAINC + RAINNC, where 

Total RAINNC = RAINNC+bucket_mm*I_RAINNC 

Total RAINC = RAINC+bucket_mm*I_RAINC 

The radiation accumulation terms (e.g., ACSWUPT) are in Joules/m^2, so that the mean 
value over a simulation period is the difference divided by the time between, giving 
W/m^2. 

The bucket_J option is for these terms, and the typical value, based on a monthly 
accumulation, is 1.e9 J.  Here the total is given by (ACSWUPT example - other radiative 
terms would follow the same equation concept): 

total = ACSWUPT+bucket_J*I_ACSWUPT 

m. Using Adaptive Time Stepping 

Adaptive time stepping is a way to maximize the time step that the model can use while 
keeping the model numerically stable. The model time step is adjusted based on the 
domain-wide horizontal and vertical stability criterion (called the Courant-Friedrichs-
Lewy (CFL) condition). The following set of values would typically work well. 
 
use_adaptive_time_step = .true.  
step_to_output_time = .true. (but nested domains may still be writing output at 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-27 

the desired time. Try to use adjust_output_times = .true. to make up for this.) 
target_cfl = 1.2, 1.2, 1.2, 
max_step_increase_pct = 5, 51, 51, (a large percentage value for the nest allows 
the time step for the nest to have more freedom to adjust) 
starting_time_step = the actual value or -1 (which means 4*DX at start time) 
max_time_step : use fixed values for all domains, e.g. 8*DX 
min_time_step : use fixed values for all domains, e.g. 3*DX 
adaptation_domain: which domain is driving the adaptive time step 
 
Also see the description of these options in the list of namelist on page 5-43. 

n. Stochastic parameterization schemes 

The stochastic parameterization suite comprises a number of stochastic parameterization 
schemes, some widely used and some developed for very specific applications. It can be 
used to represent model uncertainty in ensemble simulations by applying a small 
perturbation at every time step to each member. Each of these schemes generates its own 
random perturbation field characterized by spatial and temporal correlations and an 
overall perturbation amplitude defined in the namelist record &stoch (since version 3.6). 

Random perturbations are generated on the parent domain at every time step and by 
default, interpolated to the nested domain(s). The namelist settings determine on which 
domains these perturbations are applied. By setting, e.g. sppt=0,1,1 the perturbations 
would be applied on the nested domains only. 

Since the scheme uses Fast Fourier Transforms (FFTs) provided in the library 
FFTPACK, we recommend the number of gridpoints in each direction to be a product of 
small primes. If the number of gridpoints is a large prime in at least one of the directions, 
the computational cost may increase substantially. 

Random perturbation field (rand_perturb=1)  

This option generates a 3-D Gaussian random perturbation field for user-implemented 
applications.The perturbation field is saved as  rand_pert in the history files (available 
starting with version 3.7). 

Stochastically perturbed physics tendencies (SPPT) (sppt=1) 

A random pattern is used to perturb the accumulated physics tendencies (except those 
from micro-physics) of potential temperature, wind and humidity. For details on the WRF 
implementation see Berner et al., 2015 
(http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-14-00091.1). The perturbation 
field is saved as rstoch in the history files (available starting with version 3.9). 

Stochastic kinetic-energy backscatter scheme (SKEBS) (skebs=1) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-28 

A random pattern is used to perturb the potential temperature and rotational wind 
component. The perturbation fields are saved as ru_tendf_stoch, 
rv_tendf_stoch, rt_tendf_stoch in the history files for u,v and θ, 
respectively.  For details on the WRF implementation see Berner et al., 2011 
http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3595.1) and. 
http://www.cgd.ucar.edu/~berner/skebs.html)  Wind perturbations are proportional to the 
square root of the kinetic-energy backscatter rate, and temperature perturbations are 
proportional to the potential energy backscatter rate (Details available at 
http://www.cgd.ucar.edu/~berner/skebs.html). 

Default parameters are for synoptic-scale perturbations in the mid-latitudes. Tuning 
strategies are discussed in Romine et al. 2014 
(http://journals.ametsoc.org/doi/citedby/10.1175/MWR-D-14-00100.1) and Ha et al. 2015 
(http://journals.ametsoc.org/doi/10.1175/MWR-D-14-00395.1) 

Stochastically perturbed parameter scheme (SPP) (spp=1) 

A random pattern is used to perturb parameters in selected physics packages, namely the 
GF convection scheme, the MYNN boundary layer scheme and the RUC LSM. 
Parameter perturbations to a single physics package can be achieved by setting 
spp_conv=1, spp_pbl=1 or spp_lsm=1. For implementation details see Jankov 
et al. (http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-16-0160.1). The perturbation 
fields are saved as  pattern_spp_conv, pattern_spp_pbl, pattern_spp_lsm 
in the history files. (Available starting with version 3.9). 

Stochastic Perturbations to the boundary conditions (perturb_bdy) 

For perturb_bdy=1, the stochastic random field is used to perturb the boundary 
tendencies for wind and potential temperature. The perturb_bdy option runs 
independently of SKEBS and as such may be run with or without the SKEB scheme, 
which operates solely on the interior grid.  However, selecting perturb_bdy=1 will 
require the generation of a domain-size random array, thus computation time may 
increase.  

For perturb_bdy=2, a user-provided pattern is used to perturb the boundary 
tendencies. Arrays are initialized and called: field_u_tend_perturb, 
field_v_tend_perturb, field_t_tend_perturb. These arrays will need to 
be filled with desired pattern in spec_bdytend_perturb in share/module_bc.F or 
spec_bdy_dry_perturb in dyn_em/module_bc_em.F 

Stochastic perturbations to the boundary tendencies in WRF-CHEM 
(perturb_chem_bdy) 

The random pattern created by the option rand_perturb=1 (see above) is used to 
perturb the chemistry boundary tendencies in WRF-CHEM. For this application, WRF-



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-29 

Chem should be compiled at the time of the WRF compilation.  

The perturb_chem_bdy option runs independently of rand_perturb and as such 
may be run with or without the rand_perturb scheme, which operates solely on the 
interior grid.  However, selecting perturb_bdy_chem=1 will require the generation 
of a domain-size random array to apply the perturbations in the lateral boundary 
zone, thus computation time may increase. When running WRF-Chem with 
have_bcs_chem = .true. in &chem, chemical LBCs read from wrfbdy_d01 are 
perturbed with the random pattern created by rand_perturb=1 (available from 
version 3.7). 

o. Run-Time IO 

With the release of WRF version 3.2, IO decisions may now be updated as a run-time 
option.  Previously, any modification to the IO (such as which variable is associated with 
which stream) was handled via the Registry, and changes to the Registry always 
necessitate a cycle of clean –a, configure, and compile.  This compile-time 
mechanism is still available and it is how most of the WRF IO is defined.  However, 
should a user wish to add (or remove) variables from various streams, that capability is 
available as an option.  
 
First, the user lets the WRF model know where the information for the run-time 
modifications to the IO is located.  This is a text file (my_file_d01.txt), one for 
each domain, defined in the namelist.input file, located in the time_control 
namelist record.  
 
&time_control 
iofields_filename = “my_file_d01.txt”, “my_file_d02.txt” 
ignore_iofields_warning = .true., 
/ 
 
The contents of the text file associates a stream ID (0 is the default history and input) 
with a variable, and whether the field is to be added or removed.  The state variables must 
already be defined in the Registry file.  Following are a few examples: 
-:h:0:RAINC,RAINNC 
would remove the fields RAINC and RAINNC from the standard history file. 
 
+:h:7:RAINC,RAINNC 
would add the fields RAINC and RAINNC to an output stream #7. 
 
The available options are: 
 + or -, add or remove a variable 
 0-24, integer, which stream 
 i or h, input or history 
 field name in the Registry – this is the first string in quotes. Note: do not include  
                                                         any spaces in between field names.  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-30 

 
It is not necessary to remove fields from one stream to insert them in another.  It is OK to 
have the same field in multiple streams. 
 
If you are interested in outputting variables into a new stream (i.e., not the default history 
stream 0), then the following namelist variables will also be necessary (example for 
stream 7): 
 
auxhist7_outname = “yourstreamname_d<domain>_<date>” 
auxhist7_interval = 360, 360, 
frames_per_auxhist7 = 1, 1, 
io_form_auxhist7 = 2 

The namelist variable, ignore_iofields_warning, tells the program what to do if 
it encounters an error in these user-specified files. The default value, .TRUE., is to print a 
warning message but continue the run.  If set to .FALSE., the program will abort if there 
are errors in these user-specified files. 

Note that any field that can be part of the optional IO (either the input or output streams) 
must already be declared as a state variable in the Registry.  Care needs to be taken when 
specifying the names of the variables that are selected for the run-time IO.  The "name" 
of the variable to use in the text file (defined in the namelist.input file) is the quoted 
string from the Registry file. Most of the WRF variables have the same string for the 
name of the variable used inside the WRF source code (column 3 in the Registry file, 
non-quoted, and not the string to use) and the name of the variable that appears in the 
netCDF file (column 9 in the Registry file, quoted, and that is the string to use). 

p. Output Diagnostics 

1. Time series output. To activate the option, a file called “tslist” must be present in 
the WRF run directory. The tslist file contains a list of locations defined by their 
latitude and longitude along with a short description and an abbreviation for each 
location. A sample file looks something like this: 
 
#-----------------------------------------------# 
# 24 characters for name | pfx |  LAT  |   LON  | 
#-----------------------------------------------# 
Cape Hallett              hallt -72.330  170.250  
McMurdo Station           mcm   -77.851  166.713  
 
The first three lines in the file are regarded as header information, and are ignored. Given 
a tslist file, for each location inside a model domain (either coarse or nested) a file 
containing time series variables at each model time step will be written with the name 
pfx.d<domain>.TS, where pfx is the specified prefix for the location in the tslist file. 
The maximum number of time series locations is controlled by the namelist variable 
max_ts_locs in the namelist record &domains. The default value is 5. The time 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-31 

series output contains selected variables at the surface, including 2-m temperature, vapor 
mixing ratio, 10-m wind components, u and v, rotated to the earth coordinate, etc.. More 
information for time series output can be found in WRFV3/run/README.tslist. 
 
Starting in V3.5, in addtion to surface variables, vertical profiles of earth-relative U and 
V, potential temperature, water vapor, and geopotential height will also be output. The 
default number of levels in the output is 15, but can be changed with namelist variable 
max_ts_level. 
 
2. Pressure level output. This is activated by adding a namelist record &diags, and set 
p_lev_diags = 1. The option can output U, V, wind speed, T, dew point T, RH and 
geopotential height at a number of pressure levels.  
 
&diags 
p_lev_diags = 1 
num_press_levels = 4, 
press_levels = 85000, 70000, 50000, 20000, 
 
The output goes to auxiliary output stream 23, so the following should be set in 
&time_control: 
 
auxhist23_interval = 360, 360, 
frames_per_auxhist23 = 100, 100, 
io_form_auxhist23 = 2 
 
3. nwp_diagnostics = 1 in &time_control. Convective storm diagnostics. This 
option outputs maximum 10 m wind speed, max helicity in 2 - 5 km layer, maximum 
vertical velocity in updraft and downdraft below 400 mb, mean vertical velocity in 2 - 5 
km layer, and maximum column graupel in a time-window between history output times. 
The extra fields go to history file. 
 
4. output_diagnostics = 1 in &time_control. Climate diagnostics. This option 
outputs 36 surface diagnostic variables: maximum and minimum, times when max and 
min occur, mean value, standard deviation of the mean for T2, Q2, TSK, U10, V10, 10 m 
wind speed, RAINCV, RAINNCV (the last two are time-step rain). The output goes to 
auxiliary output stream 3, and hence it needs the following: 
 
auxhist3_outname = “wrfxtrm_d<domain>_<date>” 
auxhist3_interval = 1440, 1440, 
frames_per_auxhist3 = 100, 100, 
io_form_auxhist3 = 2 
 
Since this option computes the daily max and min, etc., it is advisable to do a restart at 
the daily interval. 
 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-32 

5. do_avgflx_em = 1 in &dyanmics. This option outputs history-time averaged, 
column-pressure coupled U, V and W for downstream transport models. If Grell-type of 
schemes is used, do_avg_cugd = 1 will output time-averaged convective mass-fluxes. 
 
6. afwa_diag_opt = 1 in &afwa. Main control option to turn on weather diagnostics 
contributed by AFWA. Output goes to auxiliary stream 2. (see full documentation at 
http://www2.mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_WRF.pdf).  NOTE:  
These options cannot be used with OpenMP. 
 
afwa_ptype_opt = 1  precipitation type 
afwa_severe_opt = 1  severe weather diagnostics 
afwa_vil_opt = 1  vertically integrated liquid 
afwa_radar_opt = 1 radar 
afwa_icing_opt = 1 icing 
afwa_vis_opt = 1  visibility 
afwa_cloud_opt = 1 cloud 
afwa_therm_opt = 1 thermal index 
afwa_turb_opt = 1 turbulence 
afwa_buoy_opt = 1 buoyancy 
 
7. Others in &physics 
 
do_radar_ref = 1: compute radar reflectivity using microphysics-specific parameters 
in the model. Works for mp_physics = 2,4,6,7,8,10,14,16. 
 
prec_acc_dt = 60: Time interval for outputing precipitation variables (rain from 
cumulus and microphysics schemes, and snow from microphysics scheme) (unit in 
minutes). 

q. WRF-Hydro 

This is a new capability in V3.5. It couples WRF model with hydrology processes (such 
as routing and channeling). Using WRF-Hydro requires a separate compile by using 
environment variable WRF_HYDRO. In c-shell environment, do 

setenv WRF_HYDRO 1 

before doing ‘configure’ and ‘compile’. Once WRF is compiled, copy files from 
hydro/Run/ directory to your working directory (e.g. test/em_real/). A 
separately prepared geogrid file is also required. Please refer the following web site for 
detailed information: http://www.ral.ucar.edu/projects/wrf_hydro/. (From W. Yu) 

r. Using IO Quilting 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-33 

This option allows a few processors to be set aside to be responsible for output only. It 
can be useful and performance-friendly if the domain size is large, and/or the time taken 
to write an output time is becoming significant when compared to the time taken to 
integrate the model in between the output times. There are two variables for setting the 
option: 
 
nio_tasks_per_group: How many processors to use per IO group for IO quilting. 

Typically 1 or 2 processors should be sufficient for this 
purpose. 

nio_groups:  How many IO groups for IO. Default is 1. 
 
*Note:  This option is only used for wrf.exe.  It does not work for real or ndown. 
 
 
s. Using Physics Suites 
 
Beginning in Version 3.9, an option to use physics suites was introduced.  There is 
currently 1 available approved suite ("CONUS") that requires a one-line specification in 
namelist.input, and consists of a combination of physics options that have been highly 
tested and have shown good and reasonable results.  We expect more approved suites in 
future releases. 
 
To use this option, simply set the "physics_suite" parameter in namelist.input, within the 
&physics namelist record, e.g., 
 
physics_suite = 'CONUS' 
 
and this will set the packaged physics options for the chosen suite (specifically 
mp_physics, cu_physics, ra_lw_physics, ra_sw_physics, bl_pbl_physics, 
sf_sfclay_physics, and sf_surface_physics).  At runtime, the model prints to the rsl files a 
summary of the physics schemes that will be used in the simulation, which are as follows 
(note:  this is an example for a 2 domain run.  All nests are assumed to use the same 
physics options unless the user specifically overrides these options - see example below): 
 
physics_suite = 'CONUS' 
mp_physics =         8, 8 
cu_physics =         6, 6 
ra_lw_physics =      4, 4 
ra_sw_physics =      4, 4  
bl_pbl_physics =     2, 2 
sf_sfclay_physics =  2, 2 
sf_surface_physics = 2, 2   
 
It is possible to override any of the above options by simply adding that particular 
parameter to the namelist.  For example, if you wish to use the CONUS suite but would 
like to turn off cu_physics for domain 3: 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-34 

 
physics_suite = 'CONUS' 
cu_physics = -1, -1, 0 
 
If  you wish to use CONUS suite but would like to use a different cu_physics option, and 
to turn cu_physics off for domain 3: 
 
physics_suite = 'CONUS' 
cu_physics = 2, 2, 0 
 
 
t. Hybrid Vertical Coordinate 
 
Beginning in Version 3.9, the option is available to use either a terrain following (TF) 
vertical coordinate (the vertical coordinate in the WRF model that has been used for the 
Eulerian mass model since the initial release) or a hybrid vertical coordinate (HVC). 
Here, the HVC is a coordinate that is terrain following near the ground and becomes 
isobaric at a pre-defined user level. 
 
The new definition of the coordinate has been implemented with a modification to the 
meaning of the variable “mu”. Previously, this variable was both the 2d column pressure 
and the 2d d(PDRY)/d(h). With the selection of the hybrid vertical coordinate, now the dry 
pressure is defined as:  
 
PDRY(i,j,k) = B(k) (PDRY SFC(i,j) – PTOP) + (h(k) – B(k)) (P0 – PTOP) + PTOP 
 
where the B(k) field is a 1d weighting array computed internally.  
 

When B(k) ≡ h(k), this definition simplifies to the current TF coordinate. 
When B(k) ≡ 0, this definition simplifies to an isobaric coordinate system. 

 
The vertical value where the B(k) arrays transitions to isobaric, hC, determines how many 
of the h layers (downward from the model lid) are isobaric. The default value for ETAC 
is set in a registry file, and is safe for usage across the globe. Figure 5.1 shows the 
transitioning of the coordinate surfaces from TF to HVC under several values of ETAC. 
 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-35 

 
 

Fig. 5.1 The transition of the h coordinate surfaces from terrain following (TF) to isobaric is a 
function of the critical value of h at which the user requests that an isobaric surface be achieved. 
The fundamental property of the TF vs. the HVC system is seen when tracing a horizontal line 
from any value on the “Weighting Term B(h)” axis. The degree of model coordinate  “flatness”, 
for example, is the same in the TF system at h = 0.2 as in the HVC system for hC = 0.4 when the 
approximate value of h = 0.6. 
 

 
The depiction of the vertical location of an h surface for an isobaric coordinate (figure 
5.2a), a terrain following coordinate (figure 5.2b), and a hybrid coordinate (figure 5.2c) is 
given with a simple 2d cross section. The depth of the atmosphere (m) is and the pressure 
are shown.  

 
 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-36 

 
 

 
Fig. 5.2 Three cross section plots show the vertical location of the h surfaces for a given model lid 
(25 km is approximately 25 hPa) and for a given hC = 0.2. 

 
There are two steps required to select the HVC option.  

1. WRF must be built for the HVC option. 
At the configure step, the user must add the “-hyb” flag 
./configure –hyb 

2. The user must select the namelist option hybrid_opt 
&dynamics 
hybrid_opt = 2 

 
It is important that the real.exe and the wrf.exe programs both run with the same 
hybrid_opt value. 
 
The “mu” fields in the WRF model have changed meaning. Due to the large number of 
source lines that needed to modified, an automatic text processing method was chosen to 
introduce the changes. This automatic method is employed during the build process. 
Users are strongly warned against modifying any source code line that has any of the 
various “mu” arrays.  
 
Users must also use care when pushing the HVC data through post-processors. The post-
processors must know the new definition of dry pressure. It is preferable that either the 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-37 

hydrostatic pressure (P_HYD) or the total pressure (PB + P) be used for diagnostics and 
for vertical interpolations. 
 
 

Examples of namelists for various applications 

A few physics options sets (plus model top and the number of vertical levels) are 
provided here for reference. They may provide a good starting point for testing the model 
in your application. Also note that other factors will affect the outcome; for example, the 
domain setup, the distributions of vertical model levels, and input data. 

a. 1 – 4 km grid distances, convection-permitting runs for a 1- 3 day run (as used for the 
NCAR spring real-time convection forecast over the US in 2013 and 3 km ensemble in 
2015 – 2017, and this is the ‘conus’ physics suite without the cumulus scheme): 

mp_physics                          = 8, 
ra_lw_physics                       = 4, 
ra_sw_physics                       = 4, 
radt                                = 10, 
sf_sfclay_physics                   = 2, 
sf_surface_physics                  = 2, 
bl_pbl_physics                      = 2, 
bldt                                = 0, 
cu_physics                          = 0, 

ptop_requested                      = 5000, 
e_vert                              = 40, 

b. 10 – 20 km grid distances, 1- 3 day runs (e.g., NCAR daily real-time runs over the 
US): 

mp_physics                          = 8, 
ra_lw_physics                       = 4, 
ra_sw_physics                       = 4, 
radt                                = 15, 
sf_sfclay_physics                   = 1, 
sf_surface_physics                  = 2, 
bl_pbl_physics                      = 1, 
bldt                                = 0, 
cu_physics                          = 3, 
cudt                                = 0, 

ptop_requested                      = 5000, 
e_vert                              = 39, 

c. Cold region 10 – 30 km grid sizes (e.g. used in NCAR’s Antarctic Mesoscale 
Prediction System): 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-38 

mp_physics                          = 4, 
ra_lw_physics                       = 4, 
ra_sw_physics                       = 2, 
radt                                = 15, 
sf_sfclay_physics                   = 2, 
sf_surface_physics                  = 2, 
bl_pbl_physics                      = 2, 
bldt                                = 0, 
cu_physics                          = 1, 
cudt                                = 5, 
fractional_seaice                   = 1, 
seaice_threshold                    = 0.0, 

ptop_requested                      = 1000, 
e_vert                              = 44, 

d. Hurricane applications (e.g. 36, 12, and 4 km nesting used by NCAR’s real-time 
hurricane runs in 2012): 

mp_physics                          = 6, 
ra_lw_physics                       = 4, 
ra_sw_physics                       = 4, 
radt                                = 10, 
sf_sfclay_physics                   = 1, 
sf_surface_physics                  = 2, 
bl_pbl_physics                      = 1, 
bldt                                = 0, 
cu_physics                          = 6, (only on 36/12 km grid) 
cudt                                = 0, 
isftcflx                            = 2, 

ptop_requested                      = 2000, 
e_vert                              = 36, 

e. Regional climate case at 10 – 30 km grid sizes (e.g. used in NCAR’s regional climate 
runs): 

mp_physics                          = 6, 
ra_lw_physics                       = 3, 
ra_sw_physics                       = 3, 
radt                                = 30, 
sf_sfclay_physics                   = 1, 
sf_surface_physics                  = 2, 
bl_pbl_physics                      = 1, 
bldt                                = 0, 
cu_physics                          = 1, 
cudt                                = 5, 
sst_update                          = 1, 
tmn_update                          = 1, 
sst_skin                            = 1, 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-39 

bucket_mm                           = 100.0, 
bucket_J                            = 1.e9, 
ptop_requested                      = 1000, 
e_vert                              = 51, 

spec_bdy_width                      = 10, 
spec_zone                           = 1, 
relax_zone                          = 9, 
spec_exp                            = 0.33, 

 

Check Output 

Once a model run is completed, it is good practice to check a couple of things quickly.  

If you have run the model on multiple processors using MPI, you should have a number 
of rsl.out.* and rsl.error.* files. Type ‘tail rsl.out.0000’ to see if you 
get ‘SUCCESS COMPLETE WRF’. This is a good indication that the model has run 
successfully.  

The namelist options are written to a separate file: namelist.output. 

Check the output times written to the wrfout* file by using the netCDF command:  

  ncdump –v Times wrfout_d01_yyyy-mm-dd_hh:00:00 

Take a look at either the rsl.out.0000 file or other standard-out files. This file logs 
the times taken to compute for one model time step, and to write one history and restart 
output file: 

 
Timing for main: time 2006-01-21_23:55:00 on domain  2:    4.91110 elapsed seconds. 
Timing for main: time 2006-01-21_23:56:00 on domain  2:    4.73350 elapsed seconds. 
Timing for main: time 2006-01-21_23:57:00 on domain  2:    4.72360 elapsed seconds. 
Timing for main: time 2006-01-21_23:57:00 on domain  1:   19.55880 elapsed seconds. 

and 

Timing for Writing wrfout_d02_2006-01-22_00:00:00 for domain 2: 1.17970 elapsed seconds. 
Timing for main: time 2006-01-22_00:00:00 on domain 1: 27.66230 elapsed seconds. 
Timing for Writing wrfout_d01_2006-01-22_00:00:00 for domain 1: 0.60250 elapsed seconds. 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-40 

Trouble Shooting 

- If the model aborts very quickly, it is likely that either the computer memory is not 
large enough to run the specific configuration, or the input data have some serious 
problems. For the first potential issue, try to type ‘unlimit’ or ‘ulimit -s 
unlimited’ to see if more memory and/or stack size can be obtained. 

- For OpenMP (smpar-compiled code), the stack size needs to be set large, but not 
unlimited. Unlimited stack size may crash the computer. 

- To check if the input data are the problem, use ncview or another netCDF file 
browser to check the fields in the wrfinput files. 

- Another frequent error seen is ‘module_configure: initial_config: 
error reading namelist’. This is an error message from the model 
complaining about errors and typos in the namelist.input file. Edit the 
namelist.input file with caution. If unsure, always start with an available 
template. A namelist record where the namelist read error occurs is provided in the 
V3 error message, and it should help with identifying the error. 

- If the model did not run to completion, one possibility is that the model may have 
become numerically unstatble, which means the time step used for advancing the 
model in time is too large for a stable solution. Even if one observes the standard rule 
for setting the model time step (to be ~ 6*DX in kilometers in physical space), other 
configurations of the model domain may affect the outcome. For example, if one has 
thin model layers, or if one uses a very large domain and the corners of the domain 
may have a very large map-scale factor that reduces the equivalent earth distance to 
be a lot smaller than the model grid size. One can find out whether this is the case by 
searching for CFL prints in the standard output/error files (e.g. the rsl files): 

 
grep cfl rsl.error.* or grep cfl wrf.out 

you might see something like these: 

5 points exceeded cfl=2 in domain            1 at time   4.200000   
  MAX AT i,j,k:          123          48          3 cfl,w,d(eta)= 4.165821  
21 points exceeded cfl=2 in domain            1 at time   4.200000   
  MAX AT i,j,k:          123          49          4 cfl,w,d(eta)= 10.66290 

   
When this happens, consider using the namelist option w_damping, and/or reducing 
the time step. 

 

Physics and Dynamics Options 

Physics Options 

WRF offers multiple physics options that can be combined in any way. The options 
typically range from simple and efficient, to sophisticated and more computationally 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-41 

costly, and from newly developed schemes, to well-tried schemes such as those in current 
operational models. 

The choices vary with each major WRF release, but here we will outline those available 
in WRF Version 3. 

1. Microphysics (mp_physics) 
a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in idealized 
cloud modeling studies (mp_physics = 1). 
b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel processes, 
suitable for real-data high-resolution simulations (2). 
c. WRF Single-Moment 3-class scheme: A simple, efficient scheme with ice and snow 
processes suitable for mesoscale grid sizes (3). 
d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version of (c) 
that allows for mixed-phase processes and super-cooled water (4). 
e. Eta microphysics: The operational microphysics in NCEP models. A simple 
efficient scheme with diagnostic mixed-phase processes. For fine resolutions (< 5km) 
use option (5) and for coarse resolutions use option (95). 
f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel 
processes suitable for high-resolution simulations (6). 
g. Goddard microphysics scheme. A scheme with ice, snow and graupel processes 
suitable for high-resolution simulations (7). New in Version 3.0. 
h.  New Thompson et al. scheme: A new scheme with ice, snow and graupel processes 
suitable for high-resolution simulations (8). This adds rain number concentration and 
updates the scheme from the one in Version 3.0. New in Version 3.1. 
i. Milbrandt-Yau Double-Moment 7-class scheme (9). This scheme includes separate 
categories for hail and graupel with double-moment cloud, rain, ice, snow, graupel 
and hail. New in Version 3.2. (Note: Do not use this scheme in V3.6 and V3.6.1.) 
j. Morrison double-moment scheme (10). Double-moment ice, snow, rain and graupel 
for cloud-resolving simulations. New in Version 3.0. 
k. WRF Double-Moment 5-class scheme (14). This scheme has double-moment rain. 
Cloud and CCN for warm processes, but is otherwise like WSM5. New in Version 3.1. 
l. WRF Double-Moment 6-class scheme (16). This scheme has double-moment rain. 
Cloud and CCN for warm processes, but is otherwise like WSM6. New in Version 3.1. 
m. Stony Brook University (Y. Lin) scheme (13). This is a 5-class scheme with riming 
intensity predicted to account for mixed-phase processes. New in Version 3.3. 
n. NSSL 2-moment scheme (17, 18). New since Version 3.4, this is a two-moment 
scheme for cloud droplets, rain drops, ice crystals, snow, graupel, and hail. It also 
predicts average graupel particle density, which allows graupel to span the range from 
frozen drops to low-density graupel. There is an additional option to predict cloud 
condensation nuclei (CCN, option 18) concentration (intended for idealized 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-42 

simulations). The scheme is intended for cloud-resolving simulations (dx <= 2km) in 
research applications.  Since V3.5, two more one-moment schemes have been added 
(19 and 21). Option 19 is a single-moment version of the NSSL scheme, and option 21 
is similar to Gilmore et al. (2004). Option 22 (new in V3.7) is the two moment scheme 
(option 17) without hail. 
o. CAM V5.1 2-moment 5-class scheme. 
p. Thompson aerosol-aware (28). This scheme considers water- and ice-friendly 
aerosols. A climatology dataset may be used to specify initial and boundary conditions 
for the aerosol variables (Thompson and Eidhammer, 2014, JAS.) New in Version 3.6. 
q. HUJI (Hebrew University of Jerusalem, Israel) spectral bin microphysics, full (32) 
and ‘fast’ (30) versions are available since Version 3.6.  
s. P3 (Morrison and Milbrandt): Predicted Particle Property scheme. This has one ice 
category that represents a combination of ice, snow and graupel, and also carries 
prognostic arrays for rimed ice mass and rimed ice volume. Double moment rain and 
ice. P3-nc: As P3 but adds supersaturation dependent activation and double-moment 
cloud water. 
 

2.1 Longwave Radiation (ra_lw_physics) 
a. RRTM scheme (ra_lw_physics = 1): Rapid Radiative Transfer Model. An accurate 
scheme using look-up tables for efficiency. Accounts for multiple bands, and 
microphysics species. For trace gases, the volume-mixing ratio values for  
CO2=330e-6, N2O=0. and CH4=0. in pre-V3.5 code; in V3.5, CO2=379e-6, 
N2O=319e-9 and CH4=1774e-9. See section 2.3 for time-varying option. 
b. GFDL scheme (99): Eta operational radiation scheme. An older multi-band scheme 
with carbon dioxide, ozone and microphysics effects. 
c. CAM scheme (3): from the CAM 3 climate model used in CCSM. Allows for 
aerosols and trace gases. It uses yearly CO2, and constant N2O (311e-9) and CH4 
(1714e-9). See section 2.3 for the time-varying option. 
d. RRTMG scheme (4): A new version of RRTM added in Version 3.1. It includes the 
MCICA method of random cloud overlap. For major trace gases, CO2=379e-6, 
N2O=319e-9, CH4=1774e-9. See section 2.3 for the time-varying option. In V3.7, a 
fast version is introduced as option 24. 
e. New Goddard scheme (5). Efficient, multiple bands, ozone from climatology. It 
uses constant CO2=337e-6, N2O=320e-9, CH4=1790e-9. New in Version 3.3. 
f. Fu-Liou-Gu scheme (7). multiple bands, cloud and cloud fraction effects, ozone 
profile from climatology and tracer gases. CO2=345e-6. New in Version 3.4. 
 

2.2 Shortwave Radiation (ra_sw_physics) 
a. Dudhia scheme: Simple downward integration allowing efficiently for clouds and 
clear-sky absorption and scattering (ra_sw_physics = 1). 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-43 

b. Goddard shortwave: Two-stream multi-band scheme with ozone from climatology 
and cloud effects (2). 
c. GFDL shortwave: Eta operational scheme. Two-stream multi-band scheme with 
ozone from climatology and cloud effects (99). 
d. CAM scheme: from the CAM 3 climate model used in CCSM. Allows for aerosols 
and trace gases (3). 
e. RRTMG shortwave. A new shortwave scheme with the MCICA method of random 
cloud overlap (4). New in Version 3.1. In V3.7, a fast version is introduced as option 
24. 
f. New Goddard scheme (5). Efficient, multiple bands, ozone from climatology. New 
in Version 3.3. 
g. Fu-Liou-Gu scheme (7). multiple bands, cloud and cloud fraction effects, ozone 
profile from climatology, can allow for aerosols. New in Version 3.4. 
h. Held-Suarez relaxation. A temperature relaxation scheme designed for idealized 
tests only (31). 
Related options: 
- Slope and shading effects. slope_rad = 1 modifies surface solar radiation flux 
according to terrain slope. topo_shading = 1 allows for shadowing of neighboring 
grid cells. Use only with high-resolution runs with grid size less than a few 
kilometers. Since Version 3.2, these are available for all shortwave options.  

- swrad_scat: scattering turning parameter for ra_sw_physics = 1. Default value is 1, 
which is equivalent to 1.e-5 m2/kg. When the value is greater than 1, it increases the 
scattering. 
- swint_opt: Interpolation of short-wave radiation based on the updated solar zenith 
angle between SW calls. Available since V3.5.1. 
 

2.3 Input to radiation options 
a. CAM Green House Gases: Provides yearly green house gases from 1765 to 2500. 
The option is activated by compiling WRF with the macro –DCLWRFGHG added in 
configure.wrf. Once compiled, CAM, RRTM and RRTMG long-wave schemes will 
see these gases. Five scenario files are available: from IPCC AR5: 
CAMtr_volume_mixing_ratio .RCP4.5, CAMtr_volume_mixing_ratio.RCP6, and 
CAMtr_volume_mixing_ratio.RCP8.5; from IPCC AR4: 
CAMtr_volume_mixing_ratio.A1B, and CAMtr_volume_mixing_ratio.A2. The 
default points to the RCP8.5 file. New in Version 3.5. 
b. Climatological ozone and aerosol data for RRTMG: The ozone data is adapted 
from CAM radiation (ra_*_physics=3), and it has latitudinal (2.82 degrees), height 
and temporal (monthly) variation, as opposed to the default ozone used in the scheme 
that only varies with height. This is activated by the namelist option o3input = 2, 
which becomes the default option in V3.7. The aerosol data is based on Tegen et al. 
(1997), which has 6 types: organic carbon, black carbon, sulfate, sea salt, dust and 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-44 

stratospheric aerosol (volcanic ash, which is zero). The data also has spatial (5 
degrees in longitude and 4 degrees in latitudes) and temporal (monthly) variations. 
The option is activated by the namelist option aer_opt = 1. New in Version 3.5. 
c. Aerosol input for RRTMG and Goddard radiation options (aer_opt = 2). Either 
AOD or AOD plus Angstrom exponent, single scattering albedo, and cloud 
asymmetry parameter can be provided via constant values from namelist or 2D input 
fields via auxiliary input stream 15. Aerosol type can be set too. New in V3.6. 
d. Aerosol input for RRTMG radiation scheme from climatological water- and ice-
friendly aerosols (aer_opt = 3). It works with Thompson microphysics option 28. 
New in V3.8. 

e. Effective cloud water, ice and snow radii from Thompson (since 3.5.1), WSM, 
WDM and NSSL microphysics schemes (new in V3.7) are used in RRTMG. 

 
2.4 Cloud fraction option 

icloud: = 1, use Xu-Randall method; = 2, use threshold method which gives either 0 
or 1 cloud fraction; = 3, use a RH-based method that follows Sundqvist et al. (1989). 
The threshold of RH depends on grid sizes (new in V3.7, fixed in V3.8). 

 
3.1 Surface Layer (sf_sfclay_physics) 

a. MM5 similarity: Based on Monin-Obukhov with Carslon-Boland viscous sub-layer 
and standard similarity functions from look-up tables (sf_sfclay_physics = 91). In 
V3.7, the thermal and moisture roughness lengths (or exchange coefficients for heat 
and moisture) over ocean are changed to COARE 3 formula (Fairall et al. 2003) 
b. Eta similarity: Used in Eta model. Based on Monin-Obukhov with Zilitinkevich 
thermal roughness length and standard similarity functions from look-up tables (2). 
c. Pleim-Xiu surface layer. (7). New in Version 3.0. 
d. QNSE surface layer. Quasi-Normal Scale Elimination PBL scheme’s surface layer 
option (4). New in Version 3.1. 
e. MYNN surface layer. Nakanishi and Niino PBL’s surface layer scheme (5). New in 
Version 3.1. 
f. TEMF surface layer. Total Energy – Mass Flux surface layer scheme. New in 
Version 3.3. 
g. Revised MM5 surface layer scheme (option 11 prior to V3.6, renamed to option 1 
since V3.6): Remove limits and use updated stability functions. New in Version 3.4. 
(Jimenez et al. MWR 2012). In V3.7, the code is sped up to give similar timing as with 
the old MM5 scheme. The thermal and moisture roughness lengths (or exchange 
coefficients for heat and moisture) over ocean are changed to COARE 3 formula 
(Fairall et al. 2003) in V3.7. 
h. Other: iz0tlnd = 1 (works with sf_sfclay_physics = 1, 91, and 5), Chen-Zhang 
thermal roughness length over land, which depends on vegetation height, 0 = original 
thermal roughness length in each sfclay option. New in Version 3.2. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-45 

 
3.2 Land Surface (sf_surface_physics) 

a. (1)5-layer thermal diffusion: Soil temperature only scheme, using five layers. 
b. (2) Noah Land Surface Model: Unified NCEP/NCAR/AFWA scheme with soil 
temperature and moisture in four layers, fractional snow cover and frozen soil physics. 
New modifications are added in Version 3.1 to better represent processes over ice 
sheets and snow covered area. 

- In V3.6, a sub-tiling option is introduced, and it is activated by namelist 
sf_surface_mosaic = 1, and the number of tiles in a grid box is defined by namelist 
mosaic_cat, with a default value of 3. 

 c. (3) RUC Land Surface Model: This model has a layer approach to the solution of 
energy and moisture budgets in that the atmospheric fluxes, as well as soil fluxes, are 
computed in the middle of the first atmospheric layer and the top soil layer, 
respectively, and these fluxes modify the heat and moisture storage in the layer 
spanning the ground surface. The RUC LSM currently uses 9 levels in soil with 
higher resolution near the interface with the atmosphere. (NOTE: if initialized from 
the model with low resolution near the surface, like the Noah LSM, the top levels 
could be too moist causing moist/cold biases in the model forecast. Solution: cycle 
soil moisture and let it spin-up for at least several days to fit the vertical structure of 
RUC LSM). 

 
The prognostic variable for soil moisture is volumetric soil moisture content minus 
the residual soil moisture tied to soil particles and therefore not participating in 
moisture transport. The RUC LSM takes into account freezing and thawing processes 
in the soil. It is able to use the explicit mixed-phase precipitation provided by the 
cloud microphysics schemes.  It has a simple treatment of sea ice which solves heat 
diffusion in sea ice and allows evolving snow cover on top of sea ice. In the warm 
season, RUC LSM corrects soil moisture in the cropland areas to compensate for 
irrigation in these regions. 

  
Snow, accumulated on top of soil, can have up to two layers depending on snow 
depth (ref S16). When snow layer is very thin, it is combined with the top soil layer to 
avoid excessive radiative cooling at night.  The grid cell can be partially covered with 
snow, when snow water equivalent is below a threshold value of 3 cm. When this 
condition occurs, surface parameters, such as roughness length and albedo, are 
computed as a weighted average of snow-covered and snow-free areas. The energy 
budget utilizes an iterative snow melting algorithm. Melted water can partially 
refreeze and remain within the snow layer, and the rest of it percolates through the 
snow pack, infiltrates into soil and forms surface runoff. Snow density evolves as a 
function of snow temperature, snow depth and compaction parameters. Snow albedo 
is initialized from the maximum snow albedo for the given vegetation type, but it can 
also be modified depending on snow temperature and snow fraction. To obtain a 
better representation of snow accumulated on the ground, the RUC LSM has 
introduced estimation of frozen precipitation density. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-46 

  
The most recent modifications to RUC LSM include refinements to the interception 
of liquid or frozen precipitation by the canopy, and also the “mosaic” approach for 
patchy snow with a separate treatment of energy and moisture budgets for snow-
covered and snow-free portions of the grid cell, and aggregation of the separate 
solutions at the end of time step. 

 
The datasets needed to initialize RUC LSM include:  
1.   High-resolution dataset for soil and land-use types;  
2.   Climatological albedo for snow-free areas; 
3.   Spatial distribution of maximum surface albedo in the presence of snow cover; 
4.   Fraction of vegetation types in the grid cell to take into account sub-grid-
scale         heterogeneity in computation of surface parameters; 
5.   Fraction of soil types within the grid cell; 
6.   Climatological greenness fraction; 
7.   Climatological leaf area index; 
8.   Climatological mean temperature at the bottom of soil domain; 
 9.  Real-time sea-ice concentration; 
10. Real-time snow cover to correct cycled in RAP and HRRR snow fields. 
 
The recommended namelist options: 
 sf_surface_physics  = 3 
 num_soil_layers  = 9, 
 usemonalb         = .true., 
 rdlai2d                = .true., 
 mosaic_lu           = 1 
 mosaic_soil         = 1 
 
References: 
Smirnova et al (2016, Mon. Wea. Rev., S16); 
RAP and HRRR that use RUC LSM as their land component: 
https://rapidrefresh.noaa.gov/RAP and https://rapidrefresh.noaa.gov/hrrr/HRRR. 
 
(from Tanya Smirnova, GSD/NOAA) 
 
d. (7) Pleim-Xiu Land Surface Model. For a more detailed description of the PX LSM, 
including pros/cons, best practices, and recent improvements, see 
http://www2.mmm.ucar.edu/wrf/users/docs/PX-ACM.pdf 
Two-layer scheme with vegetation and sub-grid tiling (7). New in Version 3.0:  The 
Pleim-Xiu land surface model (PX LSM; Pleim and Xiu 1995; Xiu and Pleim 2001) 
was developed and improved over the years to provide realistic ground temperature, 
soil moisture, and surface sensible and latent heat fluxes in mesoscale meteorological 
models.  The PX LSM is based on the ISBA model (Noilhan and Planton 1989), and 
includes a 2-layer force-restore soil temperature and moisture model.  the top layer is 
taken to be 1 cm thick, and the lower layer is 99 cm.  Grid aggregate vegetation and 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-47 

soil parameters are derived from fractional coverage of land use categories and soil 
texture types.  There are two indirect nudging schemes that correct biases in 2-m air 
temperature and moisture by dynamic adjustment of soil moisture (Pleim and Xiu, 
2003) and deep soil temperature (Pleim and Gilliam, 2009). 
Users should recognize that the PX LSM was primarily developed for retrospective 
simulation, where surface-based observations are available to inform the indirect soil 
nudging.  While soil nudging can be disabled using the FDDA namelist.input setting 
"pxlsm_soil_nudge," little testing has been done in this mode, although some users 
have reported reasonable results.  Gilliam and Pleim (2010) discuss the 
implementation in the WRF model and provide typical configurations for retrospective 
applications.  If soil nudging is activated, modelers must use the Obsgrid objective re-
analysis utility to produce a surface nudging file with the naming convention 
"wrfsfdda_d0*."  Obsgrid takes WPS "met_em*" files and LittleR observation files 
and produces the "wrfsfdda_d0*" file.  The PX LSM uses 2-m temperature and mixing 
ratio re-analyses from this file for the deep soil moisture and temperature nudging.  If 
modelers want to test PX LSM in forecast mode with soil nudging activated, 
forecasted 2-m temperature and mixing ratio can be used with empty observation files 
to produce the "wrfsfdda_d0*" files, using Obsgrid, but results will be tied to the 
governing forecast model. 
 f. (4) Noah-MP (multi-physics) Land Surface Model: uses multiple options for key 
land-atmosphere interaction processes. Noah-MP contains a separate vegetation 
canopy defined by a canopy top and bottom with leaf physical and radiometric 
properties used in a two-stream canopy radiation transfer scheme that includes shading 
effects. Noah-MP contains a multi-layer snow pack with liquid water storage and 
melt/refreeze capability and a snow-interception model describing loading/unloading, 
melt/refreeze, and sublimation of the canopy-intercepted snow. Multiple options are 
available for surface water infiltration and runoff, and groundwater transfer and 
storage including water table depth to an unconfined aquifer. Horizontal and vertical 
vegetation density can be prescribed or predicted using prognostic photosynthesis and 
dynamic vegetation models that allocate carbon to vegetation (leaf, stem, wood and 
root) and soil carbon pools (fast and slow). New in Version 3.4. (Niu et al. 2011) 
g. (8) SSiB Land Surface Model: This is the third generation of the Simplified Simple 
Biosphere Model (Xue et al. 1991; Sun and Xue, 2001). SSiB is developed for 
land/atmosphere interaction studies in the climate model. The aerodynamic resistance 
values in SSiB are determined in terms of vegetation properties, ground conditions and 
bulk Richardson number according to the modified Monin–Obukhov similarity theory. 
SSiB-3 includes three snow layers to realistically simulate snow processes, including 
destructive metamorphism, densification process due to snow load, and snow melting, 
which substantially enhances the model’s ability for the cold season study. To use this 
option, ra_lw_physics and ra_sw_physics should be set to either 1, 3, or 4. The second 
full model level should be set to no larger than 0.982 so that the height of that level is 
higher than vegetation height. New in Version 3.4. 
h. Fractional sea-ice (fractional_seaice = 1). Treat sea-ice as fractional field. Require 
fractional sea-ice as input data. Data sources may include those from GFS or the 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-48 

National Snow and Ice Data Center (http://nsidc.org/data/seaice/index.html). Use 
XICE for Vtable entry instead of SEAICE. This option works with sf_sfclay_physics = 
1, 2, 5, and 7, and sf_surface_physics = 2, 3, and 7 in the present release. New in 
Version 3.1. 
i. (5) CLM4 (Community Land Model Version 4, Oleson et al. 2010; Lawrence et al. 
2010): CLM4 was developed at the National Center for Atmospheric Research with 
many external collaborators and represents a state-of-the-science land surface process 
model. It contains sophisticated treatment of biogeophysics, hydrology, 
biogeochemistry, and dynamic vegetation. In CLM4, the land surface in each model 
grid cell is characterized into five primary sub-grid land cover types (glacier, lake, 
wetland, urban, and vegetated). The vegetated sub-grid consists of up to 4 plant 
functional types (PFTs) that differ in physiology and structure. The WRF input land 
cover types are translated into the CLM4 PFTs through a look-up table. The CLM4 
vertical structure includes a single-layer vegetation canopy, a five-layer snowpack, 
and a ten-layer soil column. An earlier version of CLM has been quantitatively 
evaluated within WRF in Jin and Wen (2012; JGR-Atmosphere), Lu and Kueppers 
(2012; JGR-Atmosphere), and Subin et al. (2011; Earth Interactions) (from Jin). New 
in Version 3.5. Updated for 20/21 category MODIS landuse data in V3.6. 

 
3.3 Urban Surface (sf_urban_physics – replacing old switch ucmcall) 

The orban physics options work with Noah LSM since V3.1, and with NoahMP since 
V3.9. 
a. Urban canopy model (1): 3-category UCM option with surface effects for roofs, 
walls, and streets. In V3.7, a green roof option is added. 
b. BEP (2). Building Environment Parameterization: Multi-layer urban canopy model 
that allows for buildings higher than the lowest model levels. Only works with Noah 
LSM and Boulac and MYJ PBL options. New in Version 3.1. 
c. BEM (3). Building Energy Model. Adds to BEP, building energy budget with 
heating and cooling systems. Works with same options as BEP. New in Version 3.2. 
 

3.4 Lake Physics (sf_lake_physics) 
a. CLM 4.5 lake model (1). The lake scheme was obtained from the Community Land 
Model version 4.5 (Oleson et al. 2013) with some modifications by Gu et al. (2013). It 
is a one-dimensional mass and energy balance scheme with 20-25 model layers, 
including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the 
lake bottom. The lake scheme is used with actual lake points and lake depth derived 
from the WPS, and it also can be used with user defined lake points and lake depth in 
WRF (lake_min_elev and lakedepth_default). The lake scheme is independent of a 
land surface scheme and therefore can be used with any land surface scheme 
embedded in WRF. The lake scheme developments and evaluations were included in 
Subin et al. (2012) and Gu et al. (2013) (Subin et al. 2012: Improved lake model for 
climate simulations, J. Adv. Model. Earth Syst., 4, M02001. 
DOI:10.1029/2011MS000072; Gu et al. 2013: Calibration and validation of lake 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-49 

surface temperature simulations with the coupled WRF-Lake model. Climatic 
Change, 1-13, 10.1007/s10584-013-0978-y).  

4. Planetary Boundary layer (bl_pbl_physics) 
a. Yonsei University scheme: Non-local-K scheme with explicit entrainment layer and 
parabolic K profile in unstable mixed layer (bl_pbl_physics = 1).  

- topo_wind: = 1: Topographic correction for surface winds to represent extra drag 
from sub-grid topography and enhanced flow at hill tops (Jimenez and Dudhia, 
JAMC 2012). Works with YSU PBL only. New in Version 3.4. = 2: a simpler 
terrain variance-related correction. New in Version 3.5.  
- ysu_topdown_pblmix: = 1: option for top-down mixing driven by radiative 
cooling. New in V3.7. 

b. Mellor-Yamada-Janjic scheme: Eta operational scheme. One-dimensional 
prognostic turbulent kinetic energy scheme with local vertical mixing (2). 
c. MRF scheme: Older version of (a) with implicit treatment of entrainment layer as 
part of non-local-K mixed layer (99). 
d. ACM2 PBL: Asymmetric Convective Model with non-local upward mixing and 
local downward mixing (7). New in Version 3.0. 
e. Quasi-Normal Scale Elimination PBL (4). A TKE-prediction option that uses a new 
theory for stably stratified regions (Available since 3.1). Daytime part uses eddy 
diffusivity mass-flux method with shallow convection (mfshconv = 1) which is added 
in Version 3.4. 
f. Mellor-Yamada Nakanishi and Niino Level 2.5 PBL (5). Predicts sub-grid TKE 
terms. New in Version 3.1 with significant update in V3.8. 

- icloud_bl: = 1, option to couple subgrid-scale clouds from MYNN to radiation; 
- bl_mynn_cloudpdf: = 1, Kuwano et al (2010); = 2, Chaboureau and Bechtold 
(2002, JAS, with mods, default); 
- bl_mynn_cloudmix: = 1, mixing cloud water and ice (qnc and qni are mixed 
when scalar_pblmix = 1); 
The above three options are new in V3.8. 
- bl_mynn_edmf = 1, activate mass-flux in MYNN (ok to try since v3.9); 
- bl_mynn_mixlength = 2: 1 is from RAP/HRRR, 2 is from blending (also 
available from v3.9). 

g. Mellor-Yamada Nakanishi and Niino Level 3 PBL (6). Predicts TKE and other 
second-moment terms. New in Version 3.1. 
h. BouLac PBL (8): Bougeault-Lacarrère PBL. A TKE-prediction option. New in 
Version 3.1. Designed for use with BEP urban model. 
i. UW (Bretherton and Park) scheme (9). TKE scheme from CESM climate model. 
New in Version 3.3. 
j. Total Energy - Mass Flux (TEMF) scheme (10). Sub-grid total energy prognostic 
variable, plus mass-flux type shallow convection. New in Version 3.3. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-50 

k. LES PBL: A large-eddy-simulation (LES) boundary layer is available in Version 3. 
For this, bl_pbl_physic = 0, isfflx = 1, and sf_sfclay_physics and sf_surface_physics 
are selected. This uses diffusion for vertical mixing and must use diff_opt = 2, and 
km_opt = 2 or 3, see below. Alternative idealized ways of running the LESPBL are 
chosen with isfflx = 0 or 2. New in Version 3.0. 
l. Grenier-Bretherton-McCaa scheme (12): This is a TKE scheme. Tested in cloud-
topped PBL cases. New in Version 3.5. 
m. Shin-Hong scheme (11): Include scale dependency for vertical transport in 
convective PBL. Vertical mixing in the stable PBL and free atmosphere follows YSU. 
This scheme also has diagnosed TKE and mixing length output. New in V3.7. 

5. Cumulus Parameterization (cu_physics) 
a. Kain-Fritsch scheme: Deep and shallow convection sub-grid scheme using a mass 
flux approach with downdrafts and CAPE removal time scale (cu_physics = 1). 

-  kfeta_trigger = 1 – default trigger; = 2 – moisture-advection modulated trigger 
function [based on Ma and Tan (2009, Atmospheric Research)]. May improve results 
in subtropical regions when large-scale forcing is weak. 
- cu_rad_feedback = true – allow sub-grid cloud fraction interaction with radiation. 
New in V3.6. (Alapaty et al. 2012, Geophysical Research Letters) 

b. Betts-Miller-Janjic scheme. Operational Eta scheme. Column moist adjustment 
scheme relaxing towards a well-mixed profile (2). 
c. Grell-Devenyi (GD) ensemble scheme: Multi-closure, multi-parameter, ensemble 
method with typically 144 sub-grid members (moved to option 93 in V3.5). 
d. Simplified Arakawa-Schubert (4). Simple mass-flux scheme with quasi-equilibrium 
closure with shallow mixing scheme (and momentum transport in NMM only). 
Adapted for ARW in Version 3.3. 
e. Grell 3D is an improved version of the GD scheme that may also be used on high 
resolution (in addition to coarser resolutions) if subsidence spreading (option 
cugd_avedx) is turned on (5). New in Version 3.0.  
f. Tiedtke scheme (U. of Hawaii version) (6). Mass-flux type scheme with CAPE-
removal time scale, shallow component and momentum transport. New in Version 3.3. 
g. Zhang-McFarlane scheme (7). Mass-flux CAPE-removal type deep convection from 
CESM climate model with momentum transport. New in Version 3.3. 
h. New Simplified Arakawa-Schubert (14). New mass-flux scheme with deep and 
shallow components and momentum transport. New in Version 3.3. 
i. New Simplified Arakawa-Schubert (84, HWRF version). New mass-flux scheme 
with deep and shallow components and momentum transport. New in Version 3.4. 
j. Grell-Freitas (GF) scheme (3): An improved GD scheme that tries to smooth the 
transition to cloud-resolving scales, as proposed by Arakawa et al. (2004). New in 
Version 3.5. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-51 

k. Old Kain-Fritsch scheme: Deep convection scheme using a mass flux approach with 
downdrafts and CAPE removal time scale (99). 
l. Multi-scale Kain-Fritsch scheme (11): using scale-dependent dynamic adjustment 
timescale, LCC-based entrainment. Also uses new trigger function based on Bechtold. 
m. New Tiedtke scheme (16): this version is similar to the Tiedtke scheme used in 
REGCM4 and ECMWF cy40r1. New in V3.7, updated in V3.8. 
n. Kain-Fritsch-Cumulus Potential scheme (10): this option modifies the KF ad-hoc 
trigger function with one linked to boundary layer turbulence via probability density 
function (PDFs) using cumulus potential scheme. The scheme also computes the 
cumulus cloud fraction based on the time-scale relevant for shallow cumuli. (Berg et 
al. 2013.) New in V3.8. 

6. Shallow convection option (shcu_physics) 
a. ishallow = 1, shallow convection option on. Works together with Grell 3D scheme 
(cu_physics = 5) – will move to shcu_physics category in the future. 
b. UW (Bretherton and Park) scheme (2). Shallow cumulus option from CESM 
climate model with momentum transport. New in Version 3.3. 
c. GRIMS (Global/Regional Integrated Modeling System) scheme: it represents the 
shallow convection process by using eddy-diffusion and the pal algorithm, and 
couples directly to the YSU PBL scheme. New in Version 3.5. 

7. Other physics options 
a. Options to use for tropical storm and hurricane applications: 

- sf_ocean_physics = 1 (renamed from omlcall in previous versions): Simple ocean 
mixed layer model (1): 1-D ocean mixed layer model following that of Pollard, 
Rhines and Thompson (1972). Two other namelist options are available to specify 
the initial mixed layer depth (although one may ingest real mixed layer depth data) 
(oml_hml0) and a temperature lapse rate below the mixed layer (oml_gamma). 
Since V3.2, this option works with all sf_surface_physics options. 
- sf_ocean_physics = 2: New in V3.5. 3D Price-Weller-Pinkel (PWP) ocean model 
based on Price et al. (1994). This model predicts horizontal advection, pressure 
gradient force, as well as mixed layer processes. Only simple initialization via 
namelist variables ocean_z, ocean_t, and ocean_s is available in V3.5. 
- isftcflx: Modify surface bulk drag (Donelan) and enthalpy coefficients to be more 
in line with recent research results of those for tropical storms and hurricanes. This 
option also includes dissipative heating term in heat flux. It is only available for 
sf_sfclay_physics = 1. There are two options for computing enthalpy coefficients: 
isftcflx = 1: constant Z0q (since V3.2) for heat and moisture; isftcflx = 2 Garratt 
formulation, slightly different forms for heat and moisture. 

b. Other options for long simulations (new in Version 3.1): 
- tmn_update: update deep soil temperature (1). 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-52 

- sst_skin: calculate skin SST based on Zeng and Beljaars (2005) (1) 
- bucket_mm: bucket reset value for water equivalent precipitation accumulations 
(value in mm, -1 = inactive).  
- bucket_J: bucket reset value for energy accumulations (value in Joules, -1 = 
inactive). Only works with CAM and RRTMG radiation (ra_lw_physics = 3 and 4 
and ra_sw_physics = 3 and 4) options.  
- To drive WRF model with climate data that does not have leap year, there is a 
compile option to do that. Edit configure.wrf and  
add -DNO_LEAP_CALENDAR to the macro ARCH_LOCAL. 

c. Land model input options: 
- usemonalb: When set to .true., it uses monthly albedo fields from geogrid, 
instead of table values 
- rdlai2d: When set to .true., it uses monthly LAI data from geogrid (new in V3.6) 
and the field will also go to wrflowinp file if sst_update is 1. 

d. gwd_opt: Gravity wave drag option. Can be activated when grid size is greater than 
10 km. May be beneficial for simulations longer than 5 days and over a large domain 
with mountain ranges. It is recommended that this option is used only with unrotated 
lat/long (e.g. global) or Mercator projections because the input orographic sub-grid 
asymmetry arrays assume this grid orientation. New in Version 3.1. 
e. windfarm_opt: Wind turbine drag parameterization scheme. It represents sub-grid 
effects of specified turbines on wind and TKE fields. The physical charateristics of the 
wind farm is read in from a file and use of the manufacturers’ specification is 
recommeded. An example of the file is provided in run/wind-turbine-1.tbl. The 
location of the turbines are read in from a file, windturbines.txt. See 
README.windturbine in WRFV3/ directory for more detail. New in Version 3.3, and 
in this version it only works with 2.5 level MYNN PBL option (bl_pbl_physics=5), 
and updated in V3.6. 

8. Physics sensitivity options 

a. no_mp_heating: When set to 1, it turns off latent heating from microphysics. When 
using this option, cu_physics should be set to 0. 
b. icloud: When set to 0, it turns off cloud effect on optical depth in shortwave 
radiation options 1, 4 and longwave radiation option 1, 4. Note since V3.6, this 
namelist also controls which cloud fraction method to use for radiation. 
c. isfflx: When set to 0, it turns off both sensible and latent heat fluxes from the 
surface. This option works for sf_sfclay_physics = 1, 5, 7, 11. 
d. ifsnow: When set to 0, it turns off snow effect in sf_surface_physics = 1. 

Diffusion and Damping Options 

Diffusion in WRF is categorized under two parameters: the diffusion option and the K 
option. The diffusion option selects how the derivatives used in diffusion are calculated, 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-53 

and the K option selects how the K coefficients are calculated. Note that when a PBL 
option is selected, vertical diffusion is done by the PBL scheme, and not by the diffusion 
scheme. In Version 3, vertical diffusion is also linked to the surface fluxes. 

1.1 Diffusion Option (diff_opt) 
a. Simple diffusion: Gradients are simply taken along coordinate surfaces (diff_opt = 
1). 
b. Full diffusion: Gradients use full metric terms to more accurately compute 
horizontal gradients in sloped coordinates (diff_opt = 2). This option can be used with 
real-data cases since V3.6.1. 

 
1.2 K Option (km_opt) 

Note that when using a PBL scheme, only options (a) and (d) below make sense, 
because (b) and (c) are designed for 3d diffusion. 
a. Constant: K is specified by namelist values for horizontal and vertical diffusion 
(km_opt = 1). 
b. 3d TKE: A prognostic equation for turbulent kinetic energy is used, and K is based 
on TKE (km_opt = 2). 
c. 3d Deformation: K is diagnosed from 3d deformation and stability following a 
Smagorinsky approach (km_opt = 3). 
d. 2d Deformation: K for horizontal diffusion is diagnosed from just horizontal 
deformation. The vertical diffusion is assumed to be done by the PBL scheme (km_opt 
= 4).  

1.3 6th Order Horizontal Diffusion (diff_6th_opt) 
6th-order horizontal hyper diffusion (del^6) on all variables to act as a selective short-
wave numerical noise filter. Can be used in conjunction with diff_opt. = 1: simple; = 
2: positive definite. Option 2 is recommended.  

1.4 Nonlinear Backscatter Anisotropic (NBA) (sfs_opt) 
Sub-grid turbulent stress option for momentum in LES applications. New in Version 
3.2. sfs_opt = 1 diagnostic sub-grid stress to be used with diff_opt = 2 and km_opt = 2 
or 3. sfs_opt =  TKE sub-grid stress to be used with diff_opt = 2 and km_opt = 2.  

 
2. Damping Options 

These are independently activated choices. 
a. Upper Damping: Either a layer of increased diffusion (damp_opt =1) or a Rayleigh 
relaxation layer (2) or an implicit gravity-wave damping layer (3, new in Version 3.0), 
can be added near the model top to control reflection from the upper boundary. 
b. Vertical velocity damping (w_damping): For operational robustness, vertical motion 
can be damped to prevent the model from becoming unstable with locally large 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-54 

vertical velocities. This only affects strong updraft cores, so has very little impact on 
results otherwise. 
c. Divergence Damping (sm_div): Controls horizontally-propagating sound waves. 
d. External Mode Damping (em_div): Controls upper-surface (external) waves. 
e. Time Off-centering (epssm): Controls vertically-propagating sound waves. 

Advection Options 

a. Horizontal advection orders for momentum (h_mom_adv_order) and scalar 
(h_sca_adv_order) can be 2ndto 6th, with 5th order being the recommended one. 
b. Vertical advection orders for momentum (v_mom_adv_order) and scalar 
(v_sca_adv_order) can be 2ndand 6th, with 3rd order being the recommended one. 
c. Monotonic transport (option 2, new in Version 3.1) and positive-definite advection 
option (option 1) can be applied to moisture (moist_adv_opt), scalar (scalar_adv_opt), 
chemistry variables (chem_adv_opt) and tke (tke_adv_opt). Option 1 replaces 
pd_moist = .true. etc. in previous versions. 
d. WENO (weighted essentially non-oscillatory) (option 3 for 5th order WENO; option 
4 for 5th order WENO with positive definite limiter): for moisture (moist_adv_opt), 
scalar (scalar_adv_opt), chemistry variables (chem._adv_opt) and TKE (tke_adv_opt). 
For momentum, momentum_adv_opt = 3. 
Some notes about using monotonic and positive-definite advection options: 
 
The positive-definite and monotonic options are available for moisture, scalars, 
chemical scalers and TKE in the ARW solver.  Both the monotonic and positive-
definite transport options conserve scalar mass locally and globally and are consistent 
with the ARW mass conservation equation. We recommend using the positive-
definite option for moisture variables on all real-data simulations.  The monotonic 
option may be beneficial in chemistry applications and for moisture and scalars in 
some instances. 
 
When using these options there are certain aspects of the ARW integration scheme 
that should be considered in the simulation configuration. 
 
(1) The integration sequence in ARW changes when the positive-definite or 
monotonic options are used.  When the options are not activated, the timestep 
tendencies from the physics (excluding microphysics) are used to update the scalar 
mixing ratio at the same time as the transport (advection). The microphysics is 
computed, and moisture is updated, based on the transport+physics update.  When the 
monotonic or positive definite options are activated, the scalar mixing ratio is first 
updated with the physics tendency, and the new updated values are used as the 
starting values for the transport scheme.  The microphysics update occurs after the 
transport update using these latest values as its starting point. It is important to 
remember that for any scalars, the local and global conservation properties, positive 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-55 

definiteness and monotonicity depend upon each update possessing these properties. 
  
(2) Some model filters may not be positive definite.  

i. diff_6th_opt = 1 is not positive definite nor monotonic.  Use diff_6th_opt = 2 
if you need this diffusion option (diff_6th_opt = 2 is monotonic and positive-
definite).  We have encountered cases where the departures from 
monotonicity and positive-definiteness have been very noticeable. 

ii. diff_opt = 1 and km_opt = 4 (a commonly-used real-data case mixing option) 
is not guaranteed to be positive-definite nor monotonic due to the variable 
eddy diffusivity, K.  We have not observed significant departures from 
positive-definiteness or monotonicity when this filter is used with these 
transport options. 

iii. The diffusion option that uses a user-specified constant eddy viscosity is 
positive definite and monotonic. 

iv. Other filter options that use variable eddy viscosity are not positive definite or 
monotonic. 

 
(3) Most of the model physics are not monotonic nor should they be - they represent 
sources and sinks in the system.  All should be positive definite, although we have not 
examined and tested all options for this property. 
 
(4) The monotonic option adds significant smoothing to the transport in regions 
where it is active.  You may want to consider turning off the other model filters for 
variables using monotonic transport (filters such as the second and sixth order 
horizontal filters).  At present it is not possible to turn off the filters for the scalars but 
not for the dynamics using the namelist - one must manually comment out the calls in 
the solver.   

Other Dynamics Options 

a. The model can be run hydrostatically by setting the non_hydrostatic switch to .false. 
b. The Coriolis term can be applied to wind perturbation (pert_coriolis = .true.) only 
(idealized only). 
c. For diff_opt = 2 only, vertical diffusion may act on full fields (not just on 
perturbation from the 1D base profile (mix_full_fields = .true.; idealized only). 
d. To obtain more accurate solution with moisture, one can add  

use_q_diabatic: which considers moisture tendency from microphysics in small 
steps. This option could make time-step more restrictive. 
use_theta_m: which considers moisture effect on pressure in small steps. The 
current implementation may cost a bit more to run. 

Lateral Boundary Condition Options 

a. Periodic (periodic_x / periodic_y): for idealized cases. 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-56 

b. Open (open_xs, open_xe, open_ys, open_ye): for idealized cases. 
c. Symmetric (symmetric_xs, symmetric_xe, symmetric_ys, symmetric_ye): for 

idealized cases. 
d. Specified (specified): for real-data cases. The first row and column are specified 

with external model values (spec_zone = 1, and it should not change). The rows 
and columns in relax_zone have values blended from an external model and WRF. 
The value of relax_zone may be changed, as long as spec_bdy_width = spec_zone 
+ relax_zone. This can be used with periodic_x in tropical channel simulations. 
spec_exp: exponential multiplier for the relaxation zone ramp, used with a 
specified boundary condition. 0. = linear ramp, default; 0.33 = ~3*dx exp decay 
factor. This may be useful for long simulations. 

e. Nested (nested): for real and idealized cases.  

 

Summary of PBL Physics Options 

bl_pbl_physics Scheme Reference Added 

1 YSU Hong, Noh and Dudhia (2006, MWR) 2004 

2 MYJ Janjic (1994, MWR) 2000 

3 GFS Hong and Pan (1996, MWR) 2005 

4 QNSE Sukoriansky, Galperin and Perov (2005, BLM) 2009 

5 MYNN2 Nakanishi and Niino (2006, BLM) 2009 

6 MYNN3 Nakanishi and Niino (2006, BLM) 2009 

7 ACM2 Pleim (2007, JAMC 2008 

8 BouLac Bougeault and Lacarrere (1989, MWR) 2009 

9 UW Bretherton and Park (2009, JC) 2011 

10 TEMF Angevine, Jiang and Mauriten (2010, MWR) 2011 

12 GBM Grenier and Bretherton (2001, MWR) 2013 

99 MRF Hong and Pan (1996, MWR) 2000 

11 Shin-
Hong Shin and Hong (2015, MWR) 2015 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-57 

bl_pbl_ 
physics 
 

Scheme 
 

Cores 
 

sf_sfclay_ 
physics 
 

Prognostic 
variables 
 

Diagnostic 
variables 
 

Cloud 
mixing 
 

1 
 

YSU 
 

ARW/ 
NMM 
 

1, (91)* 
 

 
 

exch_h 
 

QC,QI 
 

2 
 

MYJ 
 

ARW/ 
NMM 
 

2 
 

TKE_PBL 
 

el_myj, exch_h 
 

QC,QI 
 

3 
 

GFS 
(hwrf) 
 

NMM 
 

3 
 

 
 

 
 

QC,QI 
 

4 
 

QNSE-
EDMF 
 

ARW/ 
NMM 
 

4 
 

TKE_PBL 
 

el_pbl, exch_h, 
exch_m 

QC,QI 
 

5 
 

MYNN2 
 

ARW 
 

1,2,5,(91) 
 

QKE 
 

Tsq, Qsq, Cov, 
exch_h, exch_m 
 

QC 
 

6 
 

MYNN3 
 

ARW 
 

1,2,5,(91) 
 

QKE, Tsq, 
Qsq, Cov 
 

exch_h, exch_m 
 

QC 
 

7 
 

ACM2 
 

ARW 
 

1,7,(91) 
 

 
 

 
 

QC,QI 
 

8 
 

BouLac 
 

ARW 
 

1,2,(91) 
 

TKE_PBL 
 

el_pbl, exch_h, 
exch_m, wu_tur, 
wv_tur, wt_tur, 
wq_tur 

QC 
 

9 UW ARW 1,2,(91) TKE_PBL exch_h, exch_m QC 

10 TEMF ARW 10 TE_TEMF *_temf QC, QI 

12 GBM ARW 1,(91) TKE_PBL el_pbl, exch_tke 
 

QC, QI 

99 
 

MRF 
 

ARW/ 
NMM 
 

1,(91) 
 

 
 

 
 

QC, QI 
 

11 Shin-
Hong 

ARW 1,(91)   exch_h, tke_diag QC, QI 

* sfclay option 11 was renamed to 1, and original option 1 to 91 in Version 3.6. 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-58 

Summary of Microphysics Options 

mp_physics Scheme Reference Added 
 

1 Kessler Kessler (1969) 2000 

2 Lin (Purdue) Lin, Farley and Orville (1983, JCAM) 2000 

3 WSM3 Hong, Dudhia and Chen (2004, MWR) 2004 

4 WSM5 Hong, Dudhia and Chen (2004, MWR) 2004 

5 Eta (Ferrier) Rogers, Black, Ferrier, Lin, Parrish and 
DiMego (2001, web doc) 2000 

6 WSM6 Hong and Lim (2006, JKMS) 2004 

7 Goddard Tao, Simpson and McCumber (1989, MWR) 2008 

8  Thompson Thompson, Field, Rasmussen and Hall (2008, 
MWR) 2009 

9 Milbrandt 2-mom Milbrandt and Yau (2005, JAS) 2010 

10 Morrison 2-mom Morrison, Thompson and Tatarskii (2009, 
MWR) 2008 

11 CAM 5.1 Neale et al. (2012, NCAR Tech Note) 2013 

13 SBU-YLin Lin and Colle (2011, MWR) 2011 

14 WDM5 Lim and Hong (2010, MWR) 2009 

16 WDM6 Lim and Hong (2010, MWR) 2009 

17 NSSL 2-mom Mansell, Ziegler and Bruning (2010, JAS) 2012 

18 NSSL 2-mom w/ 
CCN prediction Mansell, Ziegler and Bruning (2010, JAS) 2012 

19 NSSL 1-mom  2013 

21 NSSL 1-momlfo  2013 

22 NSSL 2-mom w/o 
hail  2015 

28 Thompson aerosol-
aware Thompson and Eidhammer (2014, JAS) 2014 

30 HUJI SBM ‘fast’ Khain et al. (2010, JAS) 2014 

32 HUJI SBM full Khain et al. (2004, JAS) 2014 

50/51 P3 Morrison and Milbrandt (2015, JAS) 2017 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-59 

mp_physics Scheme Cores Mass Variables Number 
Variables 

1 Kessler ARW Qc Qr  
 

2 Lin (Purdue) ARW (Chem) Qc Qr Qi Qs Qg  
 

3 WSM3 ARW Qc Qr  
 

4 WSM5 ARW/NMM Qc Qr Qi Qs  
 

5 Eta (Ferrier) ARW/NMM Qc Qr Qs (Qt*)  
 

6 WSM6 ARW/NMM Qc Qr Qi Qs Qg  
 

8  Thompson ARW/NMM Qc Qr Qi Qs Qg  Ni Nr 

9 Milbrandt 2-
mom ARW Qc Qr Qi Qs Qg Qh Nc Nr Ni Ns Ng 

Nh 

10 Morrison 2-
mom ARW (Chem) Qc Qr Qi Qs Qg Nr Ni Ns Ng 

11 CAM 5.1 ARW Qc Qr Qi Qs Qg Nr Ni Ns Ng 

13 SBU-YLin ARW Qc Qr Qi Qs  

14 WDM5 ARW Qc Qr Qi Qs Nn** Nc Nr 

16 WDM6 ARW Qc Qr Qi Qs Qg  Nn** Nc Nr 

17 NSSL 2-mom ARW Qc Qr Qi Qs Qg Qh Nc Nr Ni Ns Ng 
Nh 

18 NSSL 2-mom 
+CCN ARW Qc Qr Qi Qs Qg Qh Nc Nr Ni Ns Ng 

Nh Nn Vg 
19 NSSL 1-mom ARW Qc Qr Qi Qs Qg Qh Vg*** 

21 NSSL 1-momlfo ARW Qc Qr Qi Qs Qg  

22 /nssl 2-mom ARW Qc Qr Qi Qs Qg  Nc Nr Ni Ns Ng  

28 Thompson 
aerosol-aware ARW/NMM Qc Qr Qi Qs Qg Ni Nr Nwf Nif 

30 HUJI fast  ARW Qc Qr Qs Qg Qi Nc Nr Ns Ni Ng 
Nn 

32 HUJI full ARW Qc Qr Qs Qg Qh Qip 
Qic Qid Qnn 

Nc Nr Ns Ng Nip 
Nic Nid Nn 

50 P3 ARW Qc Qr Qi Nr Ni Ri+ Bi++ 

51 P3-nc ARW Qc Qr Qi Nc Nr Ni Ri Bi 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-60 

* Advects only total condensates   ** Nn = CCN number  *** Vg: graupel volume 
+ Rimed ice mass ++ rimed ice volume 

Summary of Cumulus Parameterization Options 

cu_physics Scheme Reference Added 
 

1 Kain-Fritsch Kain (2004, JAM) 2000 

2 Betts-Miller-Janjic Janjic (1994, MWR; 2000, JAS) 2002 

3 Grell-Freitas Grell et al. (2013) 2013 

4 
Old Simplied 

Arakawa-
Schubert 

Pan and Wu (1995), NMC Office Note 409 
 

2005/ 
2011 

5 Grell-3 - 2008 

6 Tiedtke Tiedtke (1989, MWR), Zhang et al. (2011, 
MWR) 2011 

7 Zhang-McFarlane Zhang and McFarlane (1995, AO) 2011 

10 KF-CuP Berg et al. (2013, MWR) 2016 

11 Multi-scale KF Zheng et al. (2015, MWR) 2015 

14  New SAS Han and Pan (2011, Wea. Forecasting) 2011 

16 New Tiedtke Zhang and Wang (2016) 2015 

84 New SAS (HWRF) Han and Pan (2011, Wea. Forecasting) 2012 

93 Grell-Devenyi Grell and Devenyi (2002, GRL) 2002 

99 Old Kain-Fritsch Kain and Fritsch (1990, JAS; 1993, Meteo. 
Monogr.) 2000 

 

cu_physics Scheme Cores Moisture 
Tendencies 

Momentum 
Tendencies 

Shallow 
Convection 

1 Kain-Fritsch ARW / NMM Qc Qr Qi Qs no 
 

yes 

2 BMJ ARW / NMM - no yes 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-61 

 

3 GF ARW Qc Qi no yes 

4 OSAS ARW / NMM Qc Qi yes (NMM) yes (ARW) 

5 G3 ARW Qc Qi no yes 

6 Tiedtke ARW / NMM Qc Qi yes yes 

7 Zhang-
McFarlane ARW Qc Qi yes  no 

10 KF-CuP ARW Qc Qr Qi Qs no yes 

11 Multi-scale KF ARW Qc Qr Qi Qs no yes 

14 NSAS ARW Qc Qr Qi Qs yes yes 

16 New Tiedtke ARW Qc Qi yes yes 

84 NSAS (HWRF) NMM Qc Qi yes  

93 GD ARW Qc Qi no no 

99 old KF ARW Qc Qr Qi Qs no no 

 

Summary of Radiation Physics Options 

ra_sw_physics Scheme Reference Added 

1 Dudhia Dudhia (1989, JAS) 2000 

2 Goddard Chou and Suarez (1994, NASA Tech Memo) 2000 

3 CAM Collins et al. (2004, NCAR Tech Note) 2006 

4 RRTMG Iacono et al. (2008, JGR) 2009 

24 RRTMG Fast version 2015 

5 New 
Goddard Chou and Suarez (1999, NASA Tech Memo) 2011 

7 FLG Gu et al. (2011, JGR), Fu and Liou (1992, JAS) 2012 

99 GFDL Fels and Schwarzkopf (1981, JGR) 2004 

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-62 

ra_sw_ 
physics 

Scheme Cores+Chem Microphysics 
Interaction 

Cloud 
Fraction 

Ozone 

1 Dudhia ARW NMM + 
Chem(PM2.5) 

Qc Qr Qi Qs Qg 1/0 none 

2 GSFC ARW+Chem(τ) Qc Qi 1/0 5 profiles 
3 CAM ARW Qc Qi Qs max-rand 

overlap 
lat/month 

4 RRTMG ARW + Chem 
(τ), NMM 

Qc Qr Qi Qs max-rand 
overlap 

1 profile or 
lat/month 

24 RRTMG     
5 New 

Goddard 
ARW Qc Qr Qi Qs Qg 1/0 5 profiles 

7 FLG ARW Qc Qr Qi Qs Qg 1/0 5 profiles 
99 GFDL ARW NMM Qc Qr Qi Qs max-rand 

overlap 
lat/date 

 

ra_lw_physics Scheme Reference Added 

1 RRTM Mlawer et al. (1997, JGR) 2000 

3 CAM Collins et al. (2004, NCAR Tech Note) 2006 

4 RRTMG Iacono et al. (2008, JGR) 2009 

24 RRTMG Fast version 2015 

5 New 
Goddard Chou and Suarez (1999, NASA Tech Memo) 2011 

7 FLG Gu et al. (2011, JGR), Fu and Liou (1992, JAS) 2012 

31 Held-Suarez  2008 

99 GFDL Fels and Schwarzkopf (1981, JGR) 2004 

 

ra_lw_ 
physics 

Scheme Cores+Chem Microphysics 
Interaction 

Cloud 
Fraction 

Ozone GHG 

1 RRTM ARW NMM  Qc Qr Qi Qs 
Qg 

1/0 1 profile constant or 
yearly GHG 

3 CAM ARW Qc Qi Qs max-rand 
overlap 

lat/month yearly CO2 
or yearly 
GHG 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-63 

4 RRTMG ARW + Chem 
(τ), NMM 

Qc Qr Qi Qs max-rand 
overlap 

1 profile 
or 
lat/month 

constant or 
yearly GHG 

24 RRTMG      
5 New 

Goddard 
ARW Qc Qr Qi Qs 

Qg 
1/0 5 profiles constant 

7 FLG ARW Qc Qr Qi Qs 
Qg 

1/0 5 profiles constant 

31 Held-
Suarez 

ARW none none  none 

99 GFDL ARW NMM Qc Qr Qi Qs max-rand 
overlap 

lat/date constant 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-64 

Description of Namelist Variables 

The following is a description of the namelist variables. The variables that are a function 
of nests are indicated by (max_dom) following the variable. Also see the 
Registry/Registry.EM and run/README.namelist files in the WRFV3/ for 
more detailed information. 

Variable Names Input Option Description 
   
&time_control  options for time control 
run_days 0 run time in days 
run_hours 0 run time in hours *note: if it is 

more than 1 day, you may use both 
run_days and run_hours or just 
run_hours.  e.g. if the total run 
length is 36 hrs, you may set 
run_days = 1, and run_hours = 12, 
or run_days = 0, and run_hours = 
36 

run_minutes 0 run time in minutes 
run_seconds 0 run time in seconds 
start_year (max_dom) 2012 4 digit year of starting time 
start_month (max_dom) 06 2 digit month of starting time 
start_day (max_dom) 11 2 digit day of starting time 
start_hour (max_dom) 12 2 digit hour of starting time 
start_minute (max_dom) 00 2 digit minute of starting time 
start_second (max_dom) 00 2 digit second of starting time  

*note:  the start time is used to 
name the first wrfout file.  It also 
controls the start time for nest 
domains, and the time to restart 

end_year (max_dom) 2012 4 digit year of ending time 
end_month (max_dom) 06 2 digit month of ending time 
end_day (max_dom) 12 2 digit day of ending time 
end_hour (max_dom) 12 2 digit hour of ending time 
end_minute (max_dom) 00 2 digit minute of ending time 
end_second (max_dom_ 00 2 digit second of ending time  

*note:  all end times also control 
when the nest domain integrations 
end.  All start and end times are 
used by real.exe.  You may use 
either run_days/run_hours/etc. or 
end_year/month/day/hour/etc. to 
control the length of model 
integration; but 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-65 

run_days/run_hours takes 
precedence over the end times.  
The program real.exe uses start 
and end times only 

interval_seconds 10800 time interval between the incoming 
real data, which will be the interval 
between the lateral boundary 
condition file (in seconds) (for real 
only) 

input_from_file 
(max_dom) 

.true. (logical); whether the nested run 
will have input files for domains 
other than domain 1 

fine_input_stream 
(max_dom) 

 selected fields from nest input 

 0 (default) all fields from nest input 
are used 

 2 only nest input specified from 
input stream 2 (defined in the 
Registry) are used.  In V3.2, this 
requires io_form_auxinput2 
to be set 

history_interval 
(max_dom) 

60 history output file interval in 
minutes (integer only) 

history_interval_d 
(max_dom) 

1 history output file interval in days 
(integer only); used as an 
alternative to 
history_interval 

history_interval_h 
(max_dom) 

1 history output file interval in hours 
(integer only); used as an 
alternative to 
history_interval 

history_interval_m 
(max_dom) 

1 history output file interval in 
minutes (integer only); used as an 
alternative to 
history_interval and is 
equivalent to 
history_interval 

history_interval_s 
(max_dom) 

1 history output file interval in 
seconds (integer only); used as an 
alternative to 
history_interval 

frames_per_outfile 
(max_dom) 

1 number of output times bulked into 
each history file; used to split 
output files into smaller pieces 

restart .false. (logical); whether this run is a 
restart 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-66 

restart_interval 1440 restart output file interval in 
minutes 

override_restart_timers 
(new since V3.5.1) 

.false. (default) uses all output intervals 
(including history) given by the 
wrfrst files 

 .true. uses restart output intervals given 
by the namelist 

write_hist_at_0h_rst .false. (default) does not give a history 
file at the initial time of restart 
(prevents overwriting original 
history file at this time) 

 .true. gives a history file at the initial 
time of restart 

output_ready_flag (new 
since V3.7) 

.true. asks the model to write-out an 
empty file with the name 
'wrfoutReady_d<domain>_<date>; 
Useful in production runs so that 
post-processing code can check on 
the completeness of this file. 

reset_simulation_start .false. whether to overwrite the 
simulation start date with the 
forecast start time 

auxinput1_inname "met_em.d<domain>
<date>" 

(default); name of input file from 
WPS 

auxinput4_inname "wrflowinp_d<domai
n>" 

name of input file for lower 
boundary file; works with 
sst_update = 1 

auxinput4_interval 
(max_dom) 

360 file interval in minutes for lower 
boundary file; works with 
sst_update = 1 

io_form_auxinput4 2 IO format for wrflowinp files; 
required for V3.2; works with 
sst_update = 1 

io_form_history  the format in which the history 
output file will be 

 2 netCDF 
 102 split netCDF files, one per 

processor  *note:  no supported 
post-processing software for split 
files 

 1 binary format *note:  no supported 
post-processing software available 

 4 PHDF5 format *note:  no 
supported post-processing software 
available 

 5 GRIB1 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-67 

 10 GRIB2 
 11 parallel netCDF 
io_form_restart  the format in which the restart 

output files will be 
 2 nedCDF 
 102 split netCDF files, one per 

processor (must restart with the 
same number of processors) 

io_form_input  the format of the input files 
 2 netCDF 
 102 allows the program real.exe to read 

in split met_em* files, and write 
split wrfinput files.  No split file 
for the wrfbdy file. 

io_form_boundary  the format for the wrfbdy file 
 2 netCDF format 
 4 PHD5 format 
 5 GRIB1 format 
 10 GRIB2 format 
 11 pnetCDF format 
ncd_nofill .true. (default) only a single write, not 

the write/read/write sequence (new 
in V3.6) 

io_form_auxinput2  IO format for input stream 2 data 
 2 netCDF format 
 4 PHD5 format 
 5 GRIB1 format 
 10 GRIB2 format 
 11 pnetCDF format 
diag_print 0 (default) When set to 1 or 2, it 

allows some simple diagnostic 
fields to be output 

 1 domain-averaged 3-hourly 
hydrostatic surface pressure 
tendency (Dpsfc/Dt), and dry-
hydrostatic column pressure 
tendency (Dmu/Dt) will appear in 
stdout file.  

 2 in addition to those listed above, 
domain-averaged rainfall, surface 
evaporation, and sensible and 
latent heat fluxes will be output in 
stdout file.  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-68 

debug_level 0 giving this a larger value (50, 100, 
200, etc.) increases the debugging 
print-outs when running WRF 

auxhist2_outname "rainfall_d<domain>" file name to write additional output 
to a different unit or output 
stream.. If not specified, 
auxhist2_d<domain>_<date> will 
be used.  Also note that to write 
variables in output other than the 
history file requires either a change 
in the Registry.EM_COMMON 
file, or the use of the option 
iofields_filename option. 

auxhist2_interval 
(max_dom) 

10 the interval in minutes for the 
output	

io_form_auxhist2  output format for using auxhist2  
 2 netCDF format 
 4 PHD5 format 
 5 GRIB1 format 
 10 GRIB2 format 
 11 pnetCDF format 
frames_per_auxhist2	
(max_dom) 

1000 how many output times will be in 
each output file 

auxinput11_interval 10 interval in minutes for obs nudging 
input.  It should be set as the same 
(or more) frequency as obs_ionf 
(with the unit of the coarse domain 
time step) 

auxinput11_end_h 6 end of the observation time (in 
hours), when using the 
diag_print option 

nocolons .false. when set to .true. this replaces the 
colons with underscores in the 
output file names 

write_input .true. write input-formatted data as 
output for 3DVAR application 

inputout_interval 
(max_dom) 

180 interval in minutes when using the 
write_input option 

input_outname "wrf_3dvar_input_d<
domain>_<date>" 

Output file name from 3DVAR 

inputout_begin_y 
(max_dom) 

0 beginning year to write 3DVAR 
data 

inputout_begin_d 
(max_dom) 

0 beginning day to write 3DVAR 
data 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-69 

inputout_begin_h 
(max_dom) 

3 beginning hour to write 3DVAR 
data 

inputout_begin_m 
(max_dom) 

0 beginning minute to write 3DVAR 
data 

inputout_begin_s 
(max_dom) 

0 beginning second to write 3DVAR 
data 

inputout_end_y 
(max_dom) 

0 ending year to write 3DVAR data 

inputout_end_d 
(max_dom) 

0 ending day to write 3DVAR data 

inputout_end_h 
(max_dom) 

12 ending hour to write 3DVAR data 

inputout_end_m 
(max_dom) 

0 ending minute to write 3DVAR 
data 

inputout_end_s (max_dom) 0 ending second to write 3DVAR 
data 

  *NOTE:  The above example 
shows that the input-formatted 
data are output starting from 
hour 3 to hour 12 in a 180-min 
interval. 

all_ic_times .false. when set to .true., allows you to 
output a wrfinput file for all time 
periods 

adjust_output_times .false. (default); adjust output times to the 
nearest hour 

output_ready_flag (new 
since V3.6.1) 

.true. (default = .false.); when turned on, 
the model will write out an empty 
file with the name 
wrfoutReady_d<domain>_<
date>. This is useful in 
production runs so that post-
processing code can check on the 
existence of this file to start doing 
processing. 

output_diagnostics (new 
since V3.3.1) 

0 set to =1 to add 36 surface 
diagnostic arrays 
(max/min/mean/std) 

 1 36 surface diagnostic arrays 
(max/min/mean/std) in the time 
interval are specified.  The output 
goes to auxiliary history output 
stream 3 with default file name 
'wrfxtrm_d<domain>_<date>.'  
You must also set 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-70 

io_form_auxhist3 =2, 
auxhist3_interval = 1440, 
1440, and 
frames_per_auxhist3 = 
1000, 1000. Note: do restart 
only at multiple of 
auxhist3_intervals 

nwp_diagnostics (new 
since V3.5) 

0 set to =1 to add 7 history_interval 
max diagnostic fields 

For automatic moving nests 
input_from_hires 
(max_dom) (new since 
V3.6) 

.false. When set to .true., high-resolution 
terrain and landuse will be used in 
the nests (requires special input 
data, and environment variable 
TERRAIN_AND_LANDUSE set 
at compile time). This optin will 
overwrite input_from_file 
option for nest domains. 

rsmas_data_path “high-res-data-
directory” 

Directory path where the high-res 
data is 

 1 output 7 history-interval maximum 
or mean diagnostic fields in 
wrfout: 10 m surface wind max, 
max positive and negative w, max 
helicity in the 2-5 km layer, mean 
w, max column-integrated graupel 

iofields_filename 
(max_dom) 

"my_iofields_list.txt" an option to request particular 
variables to appear in output, if 
they are not already, or to not 
appear if they do and you do not 
want them to.  You must also 
create a text file 
(my_iofields_list.txt) in which you 
will declare the variables to be 
output.  It will be a single line of 
text, e.g.:  +:h:7:RAINC,RAINNC 
or -:h:0:RAINC,RAINNC 

ignore_iofields_warning .true. tells the model to continue if an 
error is encountered in the user-
specified files 

 .false. tells the model to abort if an error 
is encountered in the user-specified 
files 

   
&domains  dimensions, nesting, parameters 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-71 

time_step 60 time step for integration seconds 
(recommended 6*dx in km for a 
typical case) 

time_step_fract_num 0 numerator for fractional time step 
time_step_fract_den 1 denominator for fractional time 

step.  E.g., if you want to use 60.3 
sec as your time step, set 
time_step = 60, 
time_step_fract_num = 3, 
and time_step_fract_den = 
10. 

time_step_dfi 60 time step when setting dfi_opt = 
1,	may	be	different	from	the	
regular	time	step	

max_dom 1 the number of domains over which 
you are running 

s_we (max_dom) 1 start index in x (west-east) 
direction (leave as is) 

e_we (max_dom) 91 end index in x (west_east) 
direction (staggered dimension) 

s_sn (max_dom) 1 start index in y (south-north) 
direction (leave as is) 

e_sn (max_dom) 82 end index in y (south-north) 
direction (staggered dimension) 

s_vert (max_dom) 1 start index in z (vertical) direction 
(leave as is) 

e_vert (max_dom) 30 end index in z (vertical) direction 
(staggered dimension -- this refers 
to full levels).  Most variables are 
on unstaggered levels.  *Note:  
Vertical dimensions need to be the 
same for all nests 

dx (max_dom) 30000 grid length in x-direction (in 
meters) 

dy (max_dom) 30000 grid length in y-direction (in 
meters) 

ztop (max_dom) 19000 height in meters; used to define 
model top for idealized cases 

grid_id (max_dom) 1 domain identifier 
parent_id (max_dom) 0 ID of the parent domain 
i_parent_start (max_dom) 1 the starting lower-left corner i-

indice from the parent domain 
j_parent_start (max_dom) 1 the starting lower-left corner 

j_indice from the parent domain 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-72 

parent_grid_ratio 
(max_dom) 

1 parent-to-nest domain grid size 
ratio.  *Note:  for real data cases 
the ratio must be odd; for ideal 
data cases, the ratio can be even if 
feedback is set to 0. 

parent_time_step_ratio 
(max_dom) 

1 parent-to-nest time step ratio; this 
can be different from the 
parent_grid_ratio 

feedback 0 no feedback 
 1 feedback from nest to its parent 

domain 
smooth_option  smoothing option for parent 

domain; used only with feedback 
 0 turned off 
 1 1-2-1 smoothing option for parent 

domain; used only with 
feedback=1 

 2 (default) smoothing-desmoothing 
option for parent domain; used 
only with feedback=1  

hypsometric_opt  2 

(default changed to 2 
beginning V3.4) 

(default) computes height in 
program real.exe and pressure in 
the model (ARW only) by using an 
alternative method (less biased 
when compared against input data) 

 1 original method  
max_ts_locs 5 maximum number of time series 

locations 
max_ts_level (new since 
V3.7) 

15 highest model level for profile 
output 

wif_input_opt 0 (default is 0=off) whether to 
process the Water Ice Friendly 
Aerosol input from metgrid (set to 
=1 to turn on); used for 
mp_physics = 28; see 
run/README.namelist for 
additional information 

num_wif_levels 27 (default) number of levels in the 
Thompson Water Ice Friendly 
Aerosols (mp_physics = 28); 
see run/README.namelist for 
additional information 

Options for Program 
real.exe 

  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-73 

num_metgrid_levels 40 number of vertical levels in WPS 
output (type ncdump -h on one of 
the met_em* files to find out this 
number) 

num_metgrid_soil_levels 4 number of soil levels or layers in 
WPS output (type ncdump -h on 
one of the met_em* files to find 
out this number) 

eta_levels 1.0, 0.99, ...0.0 model eta levels from 1 to 0.  If 
not given, real will provide a set of 
levels 

ideal_init_method (new 
since V3.8) 

 method to compute albedo in 
idealized cases in start_em 

 1 (default) albedo from phb 
 2 albedo from t_init 
Horizontal interpolation 
options, coarse grid to 
fine grid 

  

interp_method_type (new 
since V3.7) 

 The default is to use the 
Smolarkiewicz "SINT" method; 
however, this is known to break 
with the implementation inside of 
WRF for large refinement ratios 
(such as 15:1).  For those extreme 
and rare occurrences, other 
schemes ar available.  For options 
1, 3, 4, and 12, the FG lateral 
boundaries use the same horizontal 
scheme for the lateral BC 
computations 

 1 bi-linear interpolation 
 2 (default) SINT 
 3 nearest-neighbor - only to be used 

for testing purposes 
 4 overlapping quadratic 
 12 for testing only, uses SINT 

horizontal interpolation, and same 
scheme for computation of FG 
lateral boundaries 

Vertical interpolation 
options 

  

force_sfc_in_vinterp 1 (default) use the surface level as 
the lower boundary when 
interpolating through this many eta 
levels 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-74 

 0 perform traditional trapping 
interpolation 

maxw_horiz_pres_diff 
(new since V3.6.1) 

5000 (default) Pressure threshold (Pa).  
For using the level of max winds 
when the pressure difference 
between neighboring values 
exceeds this maximum, the 
variable is NOT inserted into the 
column for vertical interpolation.  
ARW real only. 

trop_horiz_pres_diff (new 
since V3.6.1) 

5000 (default) Pressure threshold (Pa).  
For using the tropopause level 
when the pressure difference 
between neighboring values 
exceeds this maximum, the 
variable is NOT inserted into the 
column for vertical interpolation.  
ARW real only. 

maxw_above_this_level 
(new since V3.6.1) 

30000 (default) minimum height (it is 
actually pressure in Pa) to allow 
using the level of max wind 
information in real.  With a value 
of 300 hPa, then a max wind value 
at 500 hPa will be ignored.  ARW 
real only. 

use_maxw_level (new 
since V3.7.1) 

1 use max wind speed level in 
vertical interpolation inside of the 
ARW real program (default = 0; do 
not use level) 

use_trop_level (new since 
V3.7.1) 

1 same as above, but with 
tropopause level data (default = 0; 
do not use) 

interp_theta (new since 
V3.3.1) 

.false. 

(default changed to 
.false. beginning 

V3.4) 

(default) vertically interpolates 
temperature (which may reduce 
bias when compared with input 
data) 

 .true. vertically interpolates potential 
temperature 

p_top_requested 5000 pressure top (in Pa) to use in the 
model; must be available in WPS 
data 

interp_type 2 (default) vertical interpolation that 
is linear in log(pressure) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-75 

 1 vertical interpolation that is linear 
in pressure 

extrap_type 2 (default) vertical extrapolation of 
non-temperature variables, using 
the lowest level as constant below 
ground 

 1 vertical extrapolation of non-
temperature variables, using the 2 
lowest levels 

t_extrap_type  vertical extrapolation for potential 
temp: 

 2 (default) -6.5 K/km lapse rate for 
temperature 

 1 isothermal 
 3 constant theta 
use_levels_below_ground  in vertical interpolation, whether to 

use levels below input surface 
level 

 .true. (default) use input isobaric levels 
below input surface 

 .false. extrapolate when WRF location is 
below input surface level 

use_surface .true. (default) uses input surface level 
data in vertical interpolation 

 .false. do not use input surface data 
lagrange_order 2 

(default changed to 2 
beginning V3.4) 

(default) quadratic vertical 
interpolation order 

 1 linear vertical interpolation order 
 9 Cubic spline 
lowest_lev_from_sfc .false. (default) use traditional 

interpolation 
 .true. use surface values for the lowest 

eta (u,v,t,q) 
sfcp_to_sfcp .true optional method to compute 

model's surface pressure when 
incoming data only has surface 
pressure and terrain, but not sea-
level pressure (default is .false.) 

use_tavg_for_tsk .true. uses diurnally-averaged surface 
temp as skin temp.  The diurnally-
averaged surface temp can be 
computed using WPS utility 
avg_tsfc.exe.  May use this 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-76 

option when SKINTEMP is not 
present (default is .false.) 

rh2qv_wrt_liquid (new 
since V3.3) 

.true. (default) computes qv with respect 
to liquid water 

 .false. computes qv with respect to ice 
rh2qv_method (new since 
V3.3) 

 which method to use to computer 
mixing ratio from RH:   

 1 (default) old MM5 method 
 2 uses a WMO recommended 

method (WMO-No. 49, 
corrigendum, August 2000) 

smooth_cg_topo .true. smooths the outer rows and 
columns of the domain 1 
topography with respect to the 
input data (default is .false.) 

vert_refine_fact 1 vertical refinement factor for 
ndown (1 = same number of 
vertical levels as the coarse 
domain, 2 = double the vertical 
resolution, and so on); not used for 
current vertical grid refinement 

vert_refine_method 
(max_dom) (new since 
V3.7) 

0 (default) no vertical refinement 

 1 integer vertical refinement 
 2 use specified or computed eta 

levels for vertical refinement 
Options for Preset 
Moving Nest 

  

num_moves 0 total # of moves for all domains 
move_id (max_moves) 2, 2, a list of nest domain ID's, one per 

move 
move_interval 
(max_moves) 

60, 120, time in minutes since the start of 
this domain 

move_cd_x (max_moves) 1, -1, the # of parent domain grid cells to 
move in the i-direction 

move_cd_y (max_moves) -1, 1, the # of parent domain grid cells to 
move in the j-direction (positive in 
increasing i/j directions, and 
negative in decreasing i/j 
directions.  Only 1, 0, and -1 is 
permitted. 

Options for Automatic 
Moving Nest 

  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-77 

vortex_interval (max_dom) 15 how often the new vortex position 
is computed (in mins) 

max_vortex_speed 
(max_dom) 

40 used to compute the search radius 
for the new vortex position (in 
m/s) 

corral_dist (max_dom) 8 how close the moving nest is 
allowed to get to the coarse grid 
boundary.  This # sets the 
minimum limit of grid cells 
allowed between them. 

track_level 50000 pressure level value (Pa) at which 
the tropical storm vortex is tracked 

time_to_move (max_dom) 0., time (in mins) to start moving nest  
Options for Adaptive 
Time Step 

  

use_adaptive_time_step .true. use adaptive time step (default is 
.false.) 

step_to_output_time .true. modifies the time step so that the 
exact history time is reached 

target_cfl (max_dom) 1.2., 1.2., 1.2., if vertical CFL £ this value, then 
time step is increased 

target_hcfl (max_dom) 
(new since V3.3) 

0.84, 0.84, 0.84, if horizontal CFL £ this value, the 
time step is increased 

max_step_increase_pct 
(max_dom) 

5, 51, 51, percentage of previous time step to 
increase if the max CFL is £ 
target_cfl 

starting_time_step 
(max_dom)  

-1, -1, -1, flag -1 implies 4*dx is used to start 
the model.  Any positive integer 
specifies the time step the model 
will use to start (in seconds).  
*Note:  when 
use_adapative_time_step = 
.true., the value specified for 
time_step is ignored. 

starting_time_step_den 
(max_dom) (new since 
V3.6) 

0 denominator for starting_time_step 
(so that fractional time step can be 
used) 

max_time_step (max_dom) -1, -1, -1, flag -1 implies the maximum time 
step is 8*dx.  Any positive integer 
specifies the maximum time step 
(in seconds). 

max_time_step_den 
(max_dom) (new since 
V3.6) 

0 denominator for max_time_step 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-78 

min_time_step (max_dom) -1, -1, -1, flag -1 implies the minimum time 
step is 3*dx.  Any positive integer 
specifies the minimum time step 
(in seconds). 

min_time_step_den 
(max_dom) (new since 
V3.6) 

0 denominator for min_time_step 

adaptation_domain 1 (default) specifies which domain to 
use to drive adaptive time stepping 

Options to Control 
Parallel Computing 

  

tile_sz_x 0 number of points in tile x direction 
(open MP only) 

tile_sz_y 0 number of points in tile y 
direction; can be determined 
automatically (open MP only) 

numtiles 1 number of tiles per patch 
(alternative to above 2 items; open 
MP only) 

nproc_x -1 (default) turned off; code will do 
automatic decomposition (MPI 
only) 

 >1 number of processors in x for 
decomposition (MPI only) 

nproc_y -1 (default) turned off; code will do 
automatic decomposition (MPI 
only) 

 >1 number of processors in y for 
decomposition (MPI only) 

Options for 3D Ocean 
Model 

  

ocean_levels 30 (default) number of ocean levels 
when using sf_ocean_physics 
= 2 

ocean_z (values for # of 
ocean_levels) 

vertical profile of layer depths for 
for ocean (in meters).  See 
/run/README.namelist for more 
details. 

ocean_t (values for # of 
ocean_levels) 

vertical profile of ocean temps (K).  
See /run/README.namelist for 
more details 

ocean_s (values for # of 
ocean_levels 

vertical profile of salinity.  See 
/run/README.namelist for more 
details 

   



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-79 

&physics   
chem_opt (max_dom) 0 chemistry option - use WRF-Chem 
mp_physics (max_dom) 0 (default) no microphysics 
 1 Kessler scheme 
 2 Lin et al. scheme 
 3 WSM 3-class simple ice scheme 
 4 WSM 5-class scheme 
 5 Ferrier (new Eta) microphysics, 

operational High-Resolution 
Window 

 6 WSM 6-class graupel scheme 
 7 Goddard GCE scheme (also uses 

gsfcgce_hail and 
gsfcgce_2ice) 

 8 Thompson graupel scheme (2-
moment scheme in V3.1) 

 9 Milbrandt-Yau 2-moment scheme 
 10 Morrison 2-moment scheme 
(new since V3.5) 11 CAM 5.1 5-class scheme 
(new since V3.3) 13 SBU_YLin, 5-class scheme 
 14 WRF double moment, 5-class 

scheme 
 15 High-resolution Ferrier 

microphysics, with advection 
 16 WRF double moment, 6-class 

scheme 
(new since V3.4) 17 NSSL 2-moment 4-ice scheme 

(steady background CCN) 
(new since V3.4) 18 NSSL 2-moment 4-ice scheme 

with predicted CCN (better for 
idealized than real cases); to set a 
global CCN value, use 
nssl_cccn = 0.7e9 (CCN 
for NSSL scheme 18).  Also sets 
same value to ccn_conc for 
mp_physics = 18. 

(new since V3.5) 19 NSSL 1-moment, 6-class scheme 
(new since V3.5) 21 NSSL-LFO 1-moment, 6-class; 

very similar to Gilmore et al. 2004; 
can set intercepts and particle 
densities in physics namelist, e.g., 
nssl_cnor for NSSL 1-moment 
schemes, intercept and particle 
densities can be set for snow, 
graupel, hail, and rain.  For the 1- 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-80 

and 2-moment schemes, the shape 
parameters for graupel and hail can 
be set.  See 
/WRFV3/run/README.namelis
t file for specifics 

(new since V3.7) 22 NSSL 2-moment 3-ice scheme, no 
hail. 

(new since V3.6) 28 aerosol-aware Thompson scheme 
with water- and ice-friendly 
aerosol climatology (new for 
V3.6); this option has 2 
climatological aerosol input 
options: use_aero_icbs = .F. (use 
constant values), and 
use_aero_icbc = .T. (use input 
from WPS) 

(new since V3.6) 30 HUJI (Hebrew University of 
Jerusalem, Israel) spectral bin 
microphysics, fast version 

(new since V3.6) 32 HUJI spectral bin microphysics, 
full version 

(new since V3.9) 50 P3 1-category 
(new since V3.9) 51 P3 1-category plus double moment 

cloud water 
 95 Ferrier (old Eta), operational NAM 

(WRF NMM) 
 98 Thompson scheme in V3.0 
do_radar_ref  
(new since V3.4.1) 

0 allows radar reflectivity to be 
computed using mp-scheme- 
specific parameters. Currently 
works for mp_physics = 
2,4,6,7,8,10,14,16 
0: off 
1: on 

mp_zero_out  for non-zero mp_physics options, 
this keeps moisture variables 
above a threshold value ³0.  An 
alternative (and better) way to 
keep moisture variables positive is 
to use the moist_adv_opt. 

 0 (default) no action taken; no 
adjustment to any moisture field 

 1 except for Qv, all other moisture 
arrays are set to zero if they fall 
below a critical value 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-81 

 2 Qv ³ 0 and all other moisture 
arrays are set to zero if they fall 
below a critical value 

mp_zero_out_thresh 1.e-8 critical value for moisture variable 
threshold, below which moisture 
arrays (except for Qv) are set to 
zero (unit:  kg/kg) 

mp_tend_lim 10. limit on temp tendency from 
microphysics latent heating when 
radar data assimilation is used 

gsfcgce_hail 0 (default) running gsfcgce scheme 
with graupel 

 1 running gsfcgce scheme with hail 
gsfcgce_2ice 0 (default) running gsfcgce scheme 

with snow, ice, and graupel/hail 
 1 running gsfcgce scheme with only 

ice and snow (gsfcgce_hail is 
ignored) 

 2 running gsfcgce scheme with only 
ice and graupel (used only in very 
extreme situation; gsfcgce_hail 
is ignored) 

ccn_conc (new name since 
V3.7) 

1.0E8 (default) CCN concentration; used 
by WDM schemes (previously 
afwa_ccn_conc, new in V3.6.1) 

hail_opt (new name since 
V3.7) 

 hail/graupel switch for WSM6, 
WDM6, and Morrison schemes 
(previously afwa_hail_opt, new in 
V3.6.1) 

The following 9 namelists are for the NSSL 1-moment scheme.  For the 1- and 2-moment 
schemes, the shape parameters for graupel and hail can also be set. 
nssl_alphah 0 shape parameter for graupel 
nssl_alphahl 2 shape parameter for hail 
nssl_cnoh 4.e5 graupel intercept 
nssl_cnohl 4.e4 hail intercept 
nssl_cnor 8.e5 rain intercept 
nssl_cnos 3.e6 snow intercept 
nssl_rho_qh 500. graupel density 
nssl_rho_ghl 900. hail density 
nssl_rho_qs 100. snow density 
no_mp_heating 1 turn off latent heating from a 

microphysics scheme (0 is off and 
is default) 

use_mp_re (new since 
V3.8) 

 whether to use effective radii 
computed in mp schemes in 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-82 

RRTMG (the mp schemes that 
compute effective radii are 3, 4, 6, 
8, 14, 16, 17-21) 

 0 off; do not use 
 1 (default) on; use effective radii 
ra_lw_physics (max_dom) 0 (default) no longwave radiation  
 1 rrtm scheme 

(Default values for GHG in V3.5: 
co2vmr=379.e-6, n2ovmr=319.e-9, 
ch4vmr=1774.e-9; Values used in 
previous versions: co2vmr=330.e-
6, n2ovmr=0., ch4vmr=0.) 

 3 CAM scheme  
*Note: restart must be at 6-hourly 
interval; also requires levsiz, 
paerlev, 
cam_abs_dim1(2); see below 

 4 rrtmg scheme 
(Default values for GHG in V3.5: 
co2vmr=379.e-6, n2ovmr=319.e-9, 
ch4vmr=1774.e-9) 

(new since V3.7) 24 fast rrtmg scheme for GPU and 
MIC  

(new since V3.3) 5 Goddard scheme 
(new since V3.4) 7 FLG (UCLA) scheme 
 31 Earth Held-Suarez forcing 
 99 GFDL (Eta) longwave (semi-

supported); also must use co2tf 
= 1 for ARW 

ra_sw_physics (max_dom) 0 (default) no shortwave radiation 
 1 Dudhia scheme (ptop > 50 mb) 
 2 (old) Goddard shortwave scheme 
 3 CAM scheme (restart must be at 6-

hourly interval); must set 
levsiz, paerlev, 
cam_abs_dim1/2 

 4 rrtmg scheme 
(new since V3.7) 24 fast rrtmg scheme for GPU and 

MIC 
(new since V3.3) 5 Goddard scheme 
(new since V3.4) 7 FLG (UCLA) scheme 
 99 GFDL (Eta) longwave (semi-

supported); must use co2tf = 1 
for ARW 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-83 

radt (max_dom) 30 minutes between radiation physics 
calls.  Recommended 1 minute per 
km of dx (e.g. 10 for 10 km grid); 
use the same value for all nests 

swint_opt (new since 
V3.5.1) 

 Interpolation of shortwave 
radiation based on the updated 
solar zenith angle between 
radiation calls 

 0 no interpolation 
 1 use interpolation 
ra_call_offset 0 default; call radiation after output 

time 
 -1 may call radiation just before 

output time. 
co2tf 1 CO2 transmission function flag for 

GFDL radiation only.  Set it to 1 
for ARW, which allows generation 
of CO2 function internally 

* Note:  The following 5 variables for CAM are automatically set since V3.2 
cam_abs_freq_s 21600 default CAM clear sky longwave 

absorption calculation frequency 
(recommended minimum value to 
speed scheme up) 

levsiz 59 (default) number of ozone data 
levels for  CAM radiation  

paerlev 29 (default) number of aerosol data 
levels for CAM radiation  

cam_abs_dim1 4 (default) dimension for absnxt 
(absorption save array) in CAM 
radiation 

cam_abs_dim2 same as e_vert (default) dimension for abstot (2nd 
absorption save array) in CAM 
radiation 

o3input (new since V3.5)  ozone input option (RRTMG only) 
 0 using  profile inside the scheme 
 2 

(became default in 
V3.7) 

using CAM ozone data 
(ozone.formatted) 

aer_opt   aerosol input option (RRTMG 
only) 

 0 off 
(new since V3.5) 1 using Tegen climatology 
(new since V3.6) 2 using J. A. Ruiz-Arias method (see 

other aer* options) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-84 

(new since V3.8) 3 using G. Thompson's water/ice-
friendly climatological aerosol 

alevsiz 12 no of vertical levels in aerosol 
data. Value set automatically. 

no_src_types 6 no of aerosol types: organic and 
black carbon, sea salt, sulfate, dust 
and stratospheric aerosol (volcanic 
ash – currently 0).  Value set 
automatically. 

 0 do not interpolate (default) 
 1 interpolate 
*The following aerosol options allow RRTMG and new Goddard radiation schemes to 
see it, but the aerosols are constant during the model integration 
aer_aod550_opt 
(max_dom) 

1 (default) input constant value for 
AOD at 550 nm from namelist; in 
this case, the value is read from 
aer_aod550_val 

 2 input value from auxiliary input 5; 
it is a time-varying 2D grid in 
netcdf wrf-compatible format.  

aer_aod550_val 
(max_dom) 

0.12 (default) value to be used with  
aer_aod550_opt = 1 

aer_angexp_opt 
(max_dom) 

1 (default) input constant value for 
Angstrom exponent from namelist.  
In this case, the value is read from 
aer_angexp_val 

 2 input value from auxiliary input 5, 
as in aer_aod550_opt 

 3 Angstrom exponent value 
estimated from the aerosol type 
defined in aer_type, and 
modulated with the RH in WRF.   

aer_angexp_val 
(max_dom) 

1.3 (default) value to be used with  
aer_angexp_opt = 1 

aer_ssa_opt (max_dom) 1 (default)  input constant value for 
single scattering albedo from 
namelist.  In this case, the value is 
read from aer_ssa_val 

 2 input value from auxiliary input 5, 
as in aer_aod550_opt 

 3 single scattering albedo value 
estimated from the aerosol type 
defined in aer_type, and 
modulated with the RH in WRF.   



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-85 

aer_ssa_val (max_dom) 0.85 (default) value to be used with  
aer_ssa_opt = 1 

aer_asy_opt (max_dom) 1 (default)  input constant value for 
asymmetry parameter from 
namelist.  In this case, the value is 
read from aer_asy_val 

 2 input value from auxiliary input 5, 
as in aer_aod550_opt 

 3 asymmetry parameter value 
estimated from the aerosol type 
defined in aer_type, and 
modulated with the RH in WRF.   

aer_asy_val (max_dom) 0.9 (default) value to be used with  
aer_asy_opt = 1 

aer_type (max_dom)  aerosol type to be used with the 
above aerosol options 

 1 (default) rural 
 2 urban 
 3 maritime 
sf_sfclay_physics 
(max_dom) 

 surface layer option 

 0 (default) no surface-layer 
 (since V3.6; option 11 for 
V3.4 and V3.5) 

1 Revised MM5 Monin-Obukhov 
scheme (Jimenez, renamed in v3.6) 

 2 Monin-Obukhov (Janjic Eta) 
scheme 

 3 NCEP GFS scheme (NMM only) 
 4 QNSE 
 5 MYNN 
 7 Pleim-Xiu (ARW only), only 

tested with Pleim-Xiu surface and 
ACM2 PBL 

(new since V3.3) 10 TEMF (ARW only) 
(since V3.6; option 1 in 
earlier versions) 

91 old MM5 surface layer scheme 
(previously option 1) 

iz0tlnd (new since V3.2)  switch to control land thermal 
roughness length 

 0 (default) old, or non-vegetation 
dependent thermal roughness 
length over land 

 1 veg dependent Chen-Zhang Czil 
sf_surface_physics 
(max_dom) 

 land-surface option (set this before 
running real.exe; also make sure 
num_soil_layers is set 
correctly) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-86 

 0 (default) no surface temp 
prediction 

 1 thermal diffusion scheme 
 2 unified Noah land-surface model 
 3 RUC land-surface model 
(new since V3.4) 4 Noah-MP land-surface model 

(additional options under the 
&noah_mp section) 

(new since V3.5) 5 CLM4 (Community Land Model 
Version 4) 

 7 Pleim-Xiu scheme (ARW only) 
(new since V3.4) 8 SSiB land-surface model (ARW 

only).  Works with 
ra_lw_physics = 1, 3, 
or 4, and ra_sw_physics = 
1, 3, or 4 

sf_urban_physics  activate urban canopy model (in 
Noah LSM only) 

 0 (default) off 
 1 Single-layer, UCM 
 2 Multi-layer, Building Environment 

Parameterization (BEP) scheme 
(works only with the MYJ and 
BouLac PBL) 

 3 Multi-layer, Building Environment 
Model (BEM) scheme (works only 
with MYJ and BouLac PBL) 

ua_phys (new since V3.5) .false. Option to activate UA Noah LSM 
changes to use a different snow-
cover physics. Aimed toward 
improving treatment of snow as it 
relates to the vegetation canopy. 

num_soil_layers  number of soil layers in land 
surface model (set before running 
real.exe) 

 5 (default) thermal diffusion scheme 
for temp only 

 4 Noah land-surface model 
 6 or 9 RUC land-surface model 
 10 CLM4 land-surface model 
 2 Pleim-Xu land-surface model 
 3 SSiB land-surface model 
bl_pbl_physics (max_dom)  boundary layer option 
 0 (default) no boundary-layer 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-87 

 1 YSU scheme; use 
sf_sfclay_physics =1 

 2 Mellor-Yamada-Janjic (Eta) TKE 
scheme; use 
sf_sfclay_physics=2 

 4 QNSE-EDMF; use 
sf_sfclay_physics=4 

 5 MYNN 2.5 level TKE; use 
sf_sfclay_physics=1, 2, 
or 5 

 6 MYNN 3rd level TKE; use 
sf_sfclay_physics=5 

 7 ACM2 (Pleim) scheme (ARW 
only); use 
sf_sfclay_physics=1 or 7 

 8 Bougeault and Lacarrere (BouLac) 
TKE; use 
sf_sfclay_physics=1 or 2 

(new since V3.3) 9 Bretherton-Park/UW TKE scheme; 
use sf_sfclay_physics=1 
or 2 

(new since V3.3) 10 TEMF scheme (ARW only); use  
sf_sfclay_physics=10 

(new since V3.7) 11 Shin-Hong 'scale-aware' PBL 
scheme 

(new since V3.5) 12 GBM TKE-type scheme (ARW 
only); use  
sf_sfclay_physics=1 

 99 MRF scheme (to be removed in the 
future) 

mfshconv (max_dom) 1 turns on day-time EDMF for 
QNSE (0=off) 

bldt (max_dom) 0 minutes between boundary-layer 
physics calls (0=call every time 
step) 

topo_wind (max_dom) 
(new since V3.4) 

 turns on topographic surface wind 
correction, and  requires extra 
input from geogrid. YSU PBL only 

 0 off 
 1 Jimenez method 
 2 UW method  
bl_mynn_tkebudget 
(max_dom) (new since 
V3.4.1) 

0 (default) off 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-88 

 1 adds MYNN tke budget terms to 
output 

bl_mynn_tkeadvect 
(max_dom) (new since 
V3.5) 

.false. (default) off; does not advect tke in 
MYNN scheme (default) 

 .true. do MYNN tke advection 
icloud_bl (new since V3.8)  option to couple the subgrid-scale 

clouds from the PBL scheme 
(MYNN only) to the radiation 
scheme 

 0 no coupling 
 1 (default) activate coupling to 

radiation 
bl_mynn_cloudmix 
(max_dom) (new since 
V3.8) 

 option to activate mixing of qc and 
qi in MYNN (NOTE:  qnc and qni 
are mixed when 
scalar_pblmix = 1) 

 0 (default) no mixing of qc and qi 
 1 activates mixing of qc and qi in 

MYNN 
bl_mynn_mixlength (new 
since V3.8) 

 option to change mixing length 
formulation in MYNN 

 0 original, as in Nakanishi and Niino 
2009 

 1 (default) RAP/HRRR (including 
BouLac in free atmosphere) 

 2 experimental (includes cloud-
specific mixing length and a scale-
aware mixing length; following Ito 
et al. 2015, BLM); this option has 
been well-tested with the edmf 
options 

bl_mynn_cloudpdf  option to switch to diffrent cloud 
PDFs to represent subgrid clouds 

 0 original (Sommeria and Deardorf 
1977) 

 1 Kuwano et al. 2010; similar to 
option 0, but uses resolved scale 
gradients, as opposed to higher 
order moments 

 2 (default) from Chaboureau and 
Bechtold 2002 (JAS, with mods) 

bl_mynn_edmf (max_dom) 
(new since V3.8) 

 option to activate mass-flux 
scheme in MYNN 

 0 (default) regular MYNN 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-89 

 1 for StEM 
 2 for TEMF 
bl_mynn_edmf_mom 
(max_dom) (new since 
V3.8) 

 option to activate momentum 
transport in MYNN mass-flux 
scheme (assuming bl_mynn_edmf 
> 0) 

 0 no momentum transport 
 1 (default) momentum transport 

activated 
bl_mynn_edmf_tke 
(max_dom) (new since 
V3.8) 

 option to activate TKE transport in 
MYNN mass-flux scheme 
(assumumg bl_mynn_edmf > 0) 

 0 (default) no TKE transport 
 1 activate TKE transport 
scalar_pblmix (new since 
V3.6) 

0 (default) off 

 1 mix scalar fields consistent with 
PBL option (exch_h) 

tracer_pblmix (new since 
V3.6) 

0 (default) off 

 1 mix tracer fields consistent with 
PBL option (exch_h) 

shinhong_tke_diag 
(max_dom) (new since 
V3.7) 

0 diagnostic TKE and mixing length 
from Shin-Hong PBL 

opt_thcnd (new since V3.8)  option to treat thermal conductivity 
in Noah LSM  

 1 (default) original 
 2 McCumber and Pielke for silt loam 

and sandy loam 
sf_surface_mosaic (new 
since V3.6) 

 option to mosaic landuse 
categories for Noah LSM 

 0 (default) use dominant category 
only 

 1 use mosaic landuse categories 
mosaic_lu (new since V3.4) 1 option to specify landuse 

parameters based on a mosaic 
approach, when using the RUC 
land surfce model; default is 0 
(off) 

mosaic_soil (new since 
V3.4) 

1 option to specify soil parameters 
based on a masaic approach, when 
using the RUC land surface model; 
default is 0 (off) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-90 

mosaic_cat (new since 
V3.6) 

3 (default) number of mosaic 
landuse categories in a grid cell 

grav_settling (max_dom) 
(new since V3.5.1) 

 gravitational settling of fog/cloud 
droplets (Now works for any PBL 
scheme, since V3.5.1) 

 0 (default) no settling of cloud 
droplets 

 1 settling from Dyunkerke 1991 (in 
atmosphere at at surface) 

 2 Fogdes (vegetation and wind speed 
dependent; Katata et al. 2008) at 
surface, and Dyunkerke in the 
atmosphere 

ysu_topdown_pblmix (new 
since V3.7) 

1 turns on top-down radiation-driven 
mixing (default is 0=no) 

cu_physics (max_dom)  cumulus parameterization option 
 0 (default) no cumulus 

parameterization  
 1 Kain-Fritsch (new Eta) scheme 
 2 Betts-Miller-Janjic scheme 
(new since V3.5, replacing 
Grell-Devenyi scheme) 

3 Grell-Freitas ensemble scheme 

(new to ARW since V3.3) 4 Scale-aware GFS Simplified 
Arakawa-Schubert (SAS) scheme 

 5 New Grell scheme (G3) 
(new since V3.3) 6 Tiedtke scheme (ARW only) 
(new since V3.3) 7 Zhang-McFarlane from CESM 

(works with MYJ and UW PBL) 
(new since V3.7) 10 Modified Kain-Fritsch scheme 

with trigger function based on 
PDFs (ARW-only) 

(new since V3.7) 11 Multi-scale Kain-Fritsch scheme 
(new since V3.3) 14 New GFS SAS from YSU (ARW 

only) 
(new since V3.7) 16 A newer Tiedke scheme 
(option 3 before V3.5) 93 Grell-Devenyi ensemble scheme 
 94 2015 GFS Simplified Arakawa-

Schubert scheme (HWRF) 
 95 Previous GFS Simplified 

Arakawa-Schubert scheme 
(HWRF) 

 99 previous Kain-Fritsch scheme 
cudt (max_dom) 0 minutes between cumulus physics 

calls; should be set to 0 when 
using all cu_physics except 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-91 

Kain-Fritsch (0 = call every time 
step) 

kfeta_trigger 1 The way to determines whether a 
grid point is convective; used only 
with cu_physics=1.  
= 1, default, original. 

(new since V3.3) 2 moisture-advection based trigger 
(Ma and Tan 2009; ARW only) 

 3 relative humidity-dependent 
ishallow 0 =1 turns on shallow convection 

used with cu_physics=3 or 
5 (default is 0 = off) 

cu_diag (max_dom) 0 additional t-averaged stuff for cu 
physics (cu_physics = 3, 
5, and 93 only) 

shcu_physics (max_dom)  independent shallow cumulus 
option (not tied to deep 
convection) 

 0 no independent shallow cumulus 
(new since V3.3) 2 Park and Bretherton shallow 

cumulus from CAM5 
(new since V3.5) 3 GRIMS scheme 
*Note:  The following 5 options show recommended #'s.  If you would like to use any 
other number, consult the code to understand what you are doing. 
maxiens 1 Grell-Devenyi and G3 only 
maxens 3 Grell-Devenyi only 
maxens2 3 Grell-Devenyi only 
maxens3 16 Grell-Devenyi only 
ensdim 144 Grell-Devenyi only  
cugd_avedx 1 (default) number of grid boxes 

over which subsidence is spread, 
for large grid distances 

 3 for small grid distances (DX < 5 
km) 

nsas_dx_factor (New since 
V3.6) 

0 (default); off 

 1 nsas grid distance dependent 
option  

For the KF-CuP Scheme: 
shallowcu_forced_ra 
(max_dom) (new since 
V3.8) 

.false. radiative impact of shallow Cu by 
a prescribed maximum cloud 
fraction [cu_physics = 10 only; 
default = .false. (off); if =.true., 
radiative impact of shallow cu with 
a cloud fraction value of 0.36 ] 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-92 

numbins (max_dom) (new 
since V3.8) 

1 number of perturbations for 
potential temperature and mixing 
ratio in the CuP PDF (cu_physics 
= 10 only ; default is 1; should be 
an odd number - recommended 
value is 21) 

thBinSize (max_dom) (new 
since V3.8) 

1 bin size of potential temperature 
perturbation increment:  0.01 K ( 
cu_physics = 10 only; default is 1) 

rBinSize (max_dom) (new 
since V3.8) 

1 bin size of mixing ratio 
perturbation increment: 1.0e-4 
kg/kg (cu_physics = 10 only; 
default is 1) 

minDeepFreq (max_dom) 
(new since V3.8) 

1 minimum frequency required 
before deep convection is allowed:  
0.333 (cu_physics = 10 only; 
default is 1) 

minShallowFreq 
(max_dom) (new since 
V3.8) 

1 minimum frequency required 
before shallow convection is 
allowed:  1.0e-2 (cu_physics = 10 
only; default is 1) 

shcu_aerosols_opt 
(max_dom) (new since 
V3.8) 

 whether to include aerosols in shcu 
(cu_physics = 10 only; run with 
WRF-Chem) 

 0 (default) none 
 2 prognostic 
cu_diag (max_dom) 0 Additional time-averaged 

diagnostics from cu_physics (use 
only with 
cu_physics=3,5,and 93) 

kf_edrates (max_dom) 
(new since V3.8) 

 option to add 
entrainment/detrainment rates and 
convective timescale output 
variables for KF-based cumulus 
schemes (cu_physics = 1, 11, and 
99 only) 

 0 (default) no output 
 1 additional output 
convtrans_avglen_m 30 averaging time for convective 

transport output variables (in 
minutes; only use with 
cu_physics=3,5 and 93) 

cu_rad_feedback (max 
dom) 

.true. sub-grid cloud effect to the optical 
depth in radiation currently it 
works only for GF, G3, GD, and 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-93 

KF schemes; also need to set 
cu_diag = 1 for GF, G3, and 
GD schemes (default is .false. = 
off) 

isfflx  heat and moisture fluxes from the 
surface for real-data cases and 
when a PBL is used (only works 
with sf_sfclay_physics=1, 
5, 7, or 11)  
1 = fluxes are on 
0 = fluxes are off 

It also controls surface fluxes 
when diff_opt = 2 and km_opt  = 
3, and a PBL isn’t used 
0 =  constant fluxes defined by 
tke_drag_coefficient and 
tke_heat_flux 
1 =  use model-computed u* and 
heat and moisture fluxes 
2 =  use model-computed u* and 
specified heat flux by 
tke_heat_flux 

ideal_xland (new since 
V3.7) 

 sets XLAND for ideal cases with 
no input land-use run-time switch 
for wrf.exe physics_init 

 1 land 
 2 water 
ifsnow  snow-cover effects (only works for 

sf_surface_physics=1) 
 1 (default) with snow-cover effect;  
 0 without snow-cover effect 
icloud    (default) cloud effect to the optical 

depth in radiation (only works with 
ra_sw_physics=1,4 and 
ra_lw_physics=1,4); since 
V3.6 this also controls the cloud 
fraction options 

 1 (default) with cloud effect, and use 
cloud fraction option 1 (Xu-
Randall mehod) 

 0 without cloud effect 
 2 with cloud effect, and use cloud 

fraction option 2, 0/1 based on 
threshold 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-94 

(new since V3.7) 3 with cloud effect, and use cloud 
fraction option 3, a Sundqvist 
method (Sundqvist et al. 1989) 

swrad_scat 1 scattering tuning parameter; 
default 1 is 1.e-5 m-2 kg-1 (only for 
ra_sw_physics=1).  Increase 
for more scattering. 

surface_input_source  where landuse and soil category 
data come from 

 1 (default prior to V3.8) 
WPS/geogrid, but with dominant 
categories recomputed in real 

 2 GRIB data from another model 
(only if arrays 
VEGCAT/SOILCAT exist) 

 3 (default begining in V3.8) use 
dominant land and soil categories 
from WPS/geogrid 

pxlsm_smois_init 
(max_dom) 

 Pleim-Xu land-surface model soil 
moisture initialization option 

 0 from analysis 
 1 (default) from LANDUSE.TBL 

(SLMO, or moisture availability) 
num_land_cat  number of land categories in input 

data 
 24 (default prior to V3.8) for USGS 
 20 for MODIS 
 28 for USGS if including lake 

category 
 21 (default beginning with V3.8) for 

MODIS if including lake category 
 40 NLCD2006 (North America only) 
num_soil_cat 16 number of soil categories in input 

data 
usemonalb .true. use monthly albedo map instead of 

table values (recommended for 
sst_update=1) 

 .false. (default) use table values 
rdmaxalb .true. (default) use snow albedo from 

geogrid 
 .false. use snow albedo from table 
rdlai2d (data available to 
use this option since V3.6) 

.true. use LAI  (Leaf Area Index) from 
input data. If sst_update is 1, then 
LAI will also appear in wrflowinp 
file 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-95 

 .false. (default) use LAI from table 
seaice_threshold  100. 

(default value of 100 
since V3.5.1; was 271 

in earlier versions) 

If skin temp (TSK) is less than this 
value, water points are changed to 
sea ice. If water point + 5-layer 
slab scheme, set to land point and 
permanent ice; if water point + 
Noah scheme, set to land point, 
permanent ice, set temps from 2 m 
to surface, and set smois and sh2o.   
The default value was changed to 
100. From 271. in 3.5.1 to avoid 
mixed-up use with fractional 
seaice input. Used by 
sf_surface_physics = 
1,2,3,4,8 

sst_update  option to use time-varying SST, 
seaice, vegetation fraction, and 
albedo during a model simulation 
(set before running real.exe) 

 0 (default) no SST update 
 1 real.exe will create wrflowinp 

file(s) at the same time interval as 
the available input data.  These 
files contain SST, XICE, 
ALBEDO, and VEGFRA.  Also 
set auxinput4_inname = 
"wrflowinp_d<domain>", 
auxinput4_interval and (in 
V3.2) io_form_auxinput4 in 
namelist section &time_control 

tmn_update 1 update deep layer soil temperature, 
useful for long simulations (multi-
year runs; default is 0 = off) 

lagday 150 days over which tnm (deep layer 
soil temp) is computed using skin 
temperature 

sst_skin 1 calculate skin SST, useful for long 
simulations (multi-year runs; 
default is 0 = off) 

bucket_mm  bucket reset values for water 
accumulation (unit in mm), useful 
for long simulations (multi-year 
runs) 

 -1 (default) inactive 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-96 

bucket_j  bucket reset value for energy 
accumulations (unit in Joules); 
useful for long simulations (multi-
year runs) 

 -1 (default) inactive 
slope_rad (max_dom) 1 use slope-dependent radiation; for 

ra_sw_physics 
 0 (default) off 
topo_shading (max_dom) 1 applies neighboring-point shadow 

effects for ra_sw_physics 
 0 (default) off 
shadlen 25000 maximum length of orographic 

shadow (in meters); use with 
topo_shading=1 

sf_ocean_physics 
(replacing omlcall 
beginning with V3.5) 

  activate ocean model 

 0 off 
 1 activate a simple ocean mixed 

layer (oml) model 
(new since V3.5) 2 activate a 3D PWP ocean model 
omdt 1. 3D PWP time step (minutes).  It 

can be set t the same as the WRF 
time step in corresponding nested 
grids, but omdt should be no less 
than 1.0 minute. 

oml_hml0 
(for sf_ocean_physics=1) 

³ 0 initial ocean mixed layer depth 
value (m); constant everywhere 
(50 is default) 

 < 0 use input 
oml_gamma 
(for sf_ocean_physics=1) 

0.14 (K m-1) lapse rate in deep water 
(below the mixed layer) for oml  

oml_relaxation_time (new 
since V3.8) 

0. relaxation time (seconds) of mixed 
layer ocean model back to original 
values (e.g. value: 259200 sec - 3 
days) 

ocean_levels 
(for sf_ocean_physics=2) 

30 number of vertical levels in 3D 
ocean model 

isftcflx  alternative Ck (exchange 
coefficient for temp and moisture), 
Cd (drag coefficient for 
momentum) formulation for 
tropical storm application 

 0 (default) off for Ck  
 1 Donelan Cd + constant Z0q for Ck 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-97 

seaice_snowdepth_opt 
(new since V3.5) 

 method for treating snow depth on 
sea ice 

 0 snow depth on sea ice is bounded 
by seaice_snowdepth_min 
and seaice_snowdepth_max 

 1 snow depth on sea ice read in from 
input array SNOWSI (bounded by 
seaice_snowdepth_min and 
seaice_snodepth_max) 

 2 Donelan Cd + Garratt Ck 
fractional_seaice 1 treats seaice as a fractional field; 

works with 
sf_sfclay_physics = 
1,2,3,4,5,7 or 91 
Also set seaice_threshold=0. 

 0 (default) either ice or no ice flag 
seaice_albedo_opt (new 
since V3.4) 

 option to set albedo over sea ice 

 0 seaice albedo is a constant value 
from namelist option 
seaice_albedo_default 

 1 seaice albedo is a function of air 
temp, skin temp, and snow 

 2 seaice albedo read in from input 
variable ALBSI 

seaice_albedo_default 0.65 
(changed from 0.8) 

default value of seaice albedo for 
seaice_albedo_opt=0 

seaice_snowdepth_max 1.e10 maximum allowed accumulation 
of snow (m) on sea ice 

seaice_snowdepth_min 0.001 minimum snow depth (m) on sea 
ice 

seaice_thickness_opt  option for treating seaice thickness 
 0 seaice thickness is uniform value 

taken from namelist variable 
seaice_thickness_default 

 1 seaice_thickness is read in from 
input variable ICEDEPTH 

seaice_thickness_default 3.0 default value of seaice thickness 
for seaice_thickness_opt=0 

prec_acc_dt (max_dom) 0. bucket reset time interval between 
outputs for cumulus or grid-scale 
precipitation (in minutes).  If set 
>0, this will output 3 new 2d 
fields:  prec_acc_c, prec_acc_nc, 
and snow_acc_nc (descriptions of 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-98 

 1 PR92 based on maximum w, 
redistributes flashes within dBZ > 
20 (for convection resolved runs) 

 2 PR92 based on 20 dBZ top, 
redistributes flashes within dBZ > 
20 (for convection resolved runs) 

(New since V3.6.1) 3 Predicting the potential for 
lightning activity (based on Yair et 
al., 2010) 

these can be found in the 
Registry.EM_COMMON file) 

traj_opt (new since V3.5) 1 activate forward trajectories 
(default 0) 

num_traj 1000 (default) number of trajectories to 
be released 

* The following are options for the lake model 
sf_lake_physics 
(max_dom) (new since 
V3.6) 

1 lake model on (default is 0 = off) 

lakedepth_default 
(max_dom) 

50 (default) lake depth (in meters).  If 
there is no lake depth information 
in the input data, then lake depth is 
assumed to be 50m) 

lake_min_elev (max_dom) 5 (default) minimum elevation of 
lakes; may be used to determine 
whether a water point is a lake in 
the absence of a lake category.  If 
the landuse type includes 'lake' 
(i.e., Modis_lake andn 
USGS_LAKE); this variable is of 
no effects 

use_lakedepth (max_dom) 1 (default) option to use lake depth 
data. Lake depth data is available 
beginning in the V3.6 geogrid 
program. If the lake depth data was 
not processed, but this switch is set 
to 1, the program will stop and tell 
the user to go back to geogrid 
program.                                                   

lightning_option 
(max_dom)  (new since 
V3.5) 

 Lightning parameterization option 
to allow flash rate prediction 
without chemistry. Requires 
do_radar_ref on. 

 0 off 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-99 

 11 PR92 based on level of neutral 
buoyancy from convective 
parameterization (for scale where a 
CPS is used, intended for use at 10 
< dx < 50 km 

lightning_dt (max_dom) 
(new since V3.5) 

0. time interval (seconds) for calling 
lightning parameterization. Default 
uses model time step 

lightning_start_seconds 
(max_dom) (new since 
V3.5) 

0. start time for calling lightning 
parameterization. Recommends at 
least 10 minutes for spin-up 

flashrate_factor 
(max_dom) (new since 
V3.5) 

1.0 Factor to adjust the predicted 
number of flashes. Recommends 
1.0 for lightning_option = 11 
between dx=10 and 50 km. Manual 
tuning recommended for all other 
options independently for each 
nest. 

cellcount_method 
(max_dom) 

 method for counting storm cells. 
Used by CRM options 
(lightning_options=1,2) 

 0 model determines method used 

 0 Default method depending on 
lightning option, currently all 
options use iccg_method=2 by 
default 

 1 Constant everywhere, set with 
namelist options 
iccg_prescribed 
(num|den)#, default is 0./1. (all 
CG) 

 2 Coarsely prescribed 1995-1999 
NLDN/OTD climatology based on 
Boccippio et al. (2001) 

 1 tile-wide, appropriate for large 
domains 

 2 domain-wide, appropriate for sing-
storm domains 

cldtop_adjustment 
(max_dom) 

0. adjustment from LNB in km. Used 
by lightning_option=11. 
Default is 0, but recommends 2 km 

iccg_method (max_dom)  IC:CG partitioning method (IC: 
intra-cloud; CG: cloud-to-ground) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-100 

iccg_prescribed_num 
(max_dom) 

0. Numerator of user-specified 
prescribed IC:CG 

 

 3 Parameterization by Price and 
Rind (1993) based on cold-cloud 
depth 

 4 Gridded input via arrays 
iccg_in_(num|den) from wrfinput 
for monthly mapped ratios. Points 
with 0/0 values use ratio defined 
by iccg_prescribed_(num|den) 

iccg_prescribed_den 
(max_dom) 

1. Denominator of user-specified 
prescribed IC:CG 

For Wind Turbine Drag 
Parameterization 

  

windfarm_opt  (max_dom) 
(new since V3.3) 

1 simulates the effets of wind 
turbines in the atmospheric 
evolution (default is  0 = off) 

windfarm_ij (new since 
V3.3) 

 whether to use lat-lon or i-j 
coordinate as wind turbine 
locations 

 0 (default) the coordinates of the 
turbines are defined in terms of lat-
lon 

 1 the coordinates of the turbines are 
defined in terms of grid points 

hailcast_opt (max_dom) 0 whether to use the hailcasting 
option (=1 to turn on) 

&stoch  For Stochastic Kinetic-Energy 
Backscatter Scheme (SKEB; used 
to perturb a forecast) 

See pages 5-26 – 5-27 
rand_perturb (max_dom)  Whether to turn on random 

perturbations 
 0 (default) no random perturbations 
 1 create random perturbation field 
lengthscale_rand_pert 
(max_dom) 

500000 (default) perturbation correlation 
lengthscale (in meters) 

timescale_rand_pert 
(max_dom) 

21600 (default) temporal decorrelation of 
random field (in seconds) 

gridpt_stddev_rand_pert 
(max_dom) 

0.03 (default) standard deviation of 
random perturbation field at each 
grid point 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-101 

stddev_cutoff_rand_pert 
(max_dom) 

3.0 (default) cutoff tails of 
perturbation pattern above this 
threshold standard deviation 

rand_pert_vertstruc  vertical structure for random 
perturbation field 

 0 (default) constant 
 1 random phase with tilt 
nens 1 (default) seed for random number 

stream.  For ensemble forecasts 
this parameter needs to be different 
for each member.  The seed is a 
function of initial start time to 
ensure different random number 
streams are created for forecasts 
starting from different intial times.  
Changing this seed changes the 
random number streams for all 
activated stochastic 
parameterization schemes. 

iseed_rand_pert 17  (default) seed for random number 
stream for rand_perturb.  Will 
be combined with seed nens, 
signifying ensemble member 
number and initial start time to 
ensure different random number 
streams are created for forecasts 
starting from different initial times 
and for different ensemble 
members. 

* The following are stochastically perturbed physical tendencies (SPPT) (sppt=1) 
sppt (max_dom)  Whether to turn on stochastically 

perturbed physics tendencies 
(SPPT) 

 0 (default) off 
 1 on 
lengthscale_sppt 
(max_dom) 

150000 (default) random perturbation 
lengthscale (in meters) 

timescale_sppt (max_dom) 21600 (default) temporal decorrelation of 
random field (in seconds) 

gridpt_stddev_sppt 
(max_dom) 

0.5 (default) standard deviation of 
random perturbation field at each 
grid point 

stddev_cutoff_sppt 
(max_dom) 

2.0 (default) cutoff tails of 
perturbation pattern above this 
threshold standard deviation 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-102 

nens 1 (default) seed for random number 
stream.  For ensemble  forecasts 
this parameter needs to be different 
for each member. The seed is a 
function of initial start time to 
ensure different random number 
streams for forecasts starting from 
different initial times. Changing 
this seed changes the random 
number streams for all activated 
stochastic parameterization 
schemes. 

iseed_sppt 53 (default) seed for random number 
stream for sppt.  Will be 
combined with parameter nens, 
signifying ensemble member 
number and initial start time to 
ensure different random number 
streams for forecasts starting from 
different initial times and for 
different ensemble members. 

* The following are for stochastic kinetic-energy backscatter scheme (SKEBS) (skebs=1) 
skebs (max_dom)  Whether to turn on the stochastic 

kinetic-energy backscatter scheme 
(SKEBS) 

*Note: this replaces the namelist 
parameter stoch_forc_opt 
which was used up to V3.6.  Latter 
is still maintained, but obsolete 

 0 (default) no stochastic 
parameterization 

 1 stochastic kinetic-energy 
backscatter scheme (SKEBS) 
turned on 

tot_backscat_psi 
(max_dom) 

1.0E-05 (default) total backscattered 
dissipation rate for streamfunction; 
controls amplitude of rotational 
wind perturbations (in m2/s2) 

tot_backscat_t (max_dom) 1.0E (default) total backscattered 
dissipation rate for potential 
temperature; controls amplitude of 
potential temperature perturbations 
( in m2/s2) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-103 

ztau_psi 10800.0 (default) decorrelation time (in 
seconds) for streamfunction 
perturbations 

ztau_t 10800.0 (default) decorrelation time (in 
seconds) for potential temperature 
perturbations 

rexponent_psi -1.83 (default for a kinetic-energy 
forcing spectrum with slope -5/3) 
spectral slope for streamfunction 
perturbations 

rexponent_t -1.83 (default for a potential energy 
forcing spectrum with slope -
1.832) spectral slope of potential 
temperature perturbations 

kminforc 1 (default) minimal forcing 
wavenumber in longitude for 
streamfunction perturbations 

lminforc 1 (default) minimal forcing 
wavenumber in latitude for 
streamfunction perturbations 

kminforct 1 (default) minimal forcing 
wavenumber in longitude for 
potential temperature perturbations 

lminforct 1 (default) minimal forcing 
wavenumber in latitude for 
potential temperature perturbations 

kmaxforc 1000000 (default is maximal possible 
wavenumbers determined by 
number of gridpoints in longitude) 
maximal forcing wavenumber in 
longitude for streamfunction 
perturbations 

lmaxforc 1000000 (default is maximal possible 
wavenumbers determined by 
number of gridpoints in latitude) 
maximal forcing wavenumber in 
latitude for streamfunction 
perturbations 

kmaxforct 1000000 (default is maximal possible 
wavenumbers determined by 
number of gridpoints in longitude) 
maximal forcing wavenumber in 
longitude for potential temperature 
perturbations 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-104 

lmaxforct 1000000 (default is maximal possible 
wavenumbers determined by 
number of gridpoints in latitude) 
maximal forcing wavenumber in 
latitude for potential temperature 
perturbations 

zsigma2_eps 0.0833 (default) noise variance in 
autoregressive process defining 
streamfunction perturbations 

zsigma2_eta 0.0833 (default) noise variance in 
autoregressive process defining 
potential temperature perturbations 

skebs_vertstruc (max_dom)  defines the vertical structure of 
random pattern generator 

*Note:  this replaces the namelist 
parameter 
stoch_vertstruc_opt which 
was used up to V3.6.  Latter is still 
maintained, but obsolete 

 0 (default) constand vertical 
structure of random pattern 
generator 

 1 random phase vertical structure 
with westward tilt 

nens 1 (default) Seed for random number 
stream for both stochastic 
schemes. For ensemble forecasts 
this parameter needs to be different 
for each member. The seed is a 
function of initial start time to 
ensure different random number 
streams for forecasts starting from 
different initial times. Changing 
this seed changes the random 
number streams for all activated 
stochastic parameterization 
schemes 

iseed_skebs 811 (default) seed for random number 
stream for skebs.  Will be 
combined with seed nens, 
signifying ensemble member 
number and initial start time to 
ensure different random number 
streams for forecasts starting from 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-105 

different initial times and for 
different ensemble members 

* The following are for stochastically perturbed parameter scheme (SPP) (spp=1) 
spp (max_dom)  whether to turn on stochastically 

perturbed parameter scheme (SPP) 
for GF convection schemes, 
MYNN boundary layer scheme, 
and RUC LSM 

 0 (default) off 
 1 on 
spp_conv (max_dom)  whether to perturb parameters of 

GF convective scheme 
 0 (default) off 
 1 on 
lengthscale_spp_conv 
(max_dom) 

150000 (default) perturbation length scale 
(in meters) 

timescale_spp_conv 
(max_dom) 

21600 (default) temporal decorrelation of 
random field (in seconds) 

gridpt_stddev_spp_conv 
(max_dom) 

0.3 (default) standard deviation of 
random perturbation feild at each 
grid point 

stddev_cutoff_spp_conv 
(max_dom) 

3.0 (default) cutoff tails of 
perturbation pattern above this 
threshold standard deviation 

iseed_spp_conv 171 (default) seed for random number 
stream for spp_conv 

spp_pbl (max_dom)  whether to perturb parameters of 
MYNN convection scheme 

 0 (default) off 
 1 on 
lengthscale_spp_pbl 
(max_dom) 

700000 (default) perturbation length scale 
(in meters) 

timescale_spp_pbl 
(max_dom) 

21600 (default) temporal decorrelation of 
random field (in seconds) 

gridpt_stddev_spp_pbl 
(max_dom) 

0.15 (default) standard deviation of 
random perturbation field at each 
gridpoint 

stddev_cutoff_spp_pbl 
(max_dom) 

2.0 (default) cutoff tails of 
perturbation pattern above this 
threshold standard deviation 

iseed_spp_pbl 217 (default) seed for random number 
stream for spp_pbl 

spp_lsm (max_dom)  whether to perturb parameters of 
RUC LSM 

 0 (default) off 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-106 

 1 on 
lengthscale_spp_lsm 
(max_dom) 

50000 (default) perturbation length scale 
(in meters) 

timescale_spp_lsm 
(max_dom) 

86400 (default) temporal decorrelation of 
random field (in seconds) 

gridpt_stddev_spp_lsm 
(max_dom) 

0.3 (default) standard deviation of 
random perturbation field at each 
grid point 

stddev_cutoff_spp_lsm 
(max_dom) 

3.0 (default) cutoff tails of 
perturbation pattern above this 
threshold standard deviation 

iseed_spp_lsm 317 (default) seed for random number 
stream for spp_lsm 

nens 1 (default) Seed for random number 
stream for both stochastic 
schemes. For ensemble forecasts 
this parameter needs to be different 
for each member. The seed is a 
function of initial start time to 
ensure different random number 
streams for forecasts starting from 
different initial times. Changing 
this seed changes the random 
number streams for all activated 
stochastic parameterization 
schemes 

&noah_mp  Options for NoahMP LSM 
dveg  dynamic vegetation option 
 1 off [LAI (Leaf Area Index) from 

table; FVEG (veg fraction) = 
shdfac (model variable for veg 
fraction)] 

 2  on (LAI predicted; FVEG 
calculated) 

 3 off (LAI from table; FVEG 
calculated) 

 4 (default) off (LAI from table; 
FVEG = maximum veg. fraction) 

(new since V3.7) 5 on (LAI predicted; FVEG = 
maximum veg. fraction) 

 6 on; use FVEG - SHDFAC from 
input 

 7 off; use input LAI; use FVEG - 
SHDFAC from input 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-107 

 8 off; use input LAI; calculate 
FVEG 

 9 off; use input LAI; use maximum 
vegetation fraction 

 10 crop model on; use maximum 
vegetation fraction 

opt_crs  stomatal resistance option 
 1 (default) Ball-Berry 
 2 Jarvis 
opt_sfc  surface layer drag coefficient 

calculation 
 1 (default) Monin-Obukhov 
 2 original Noah  
(option removed in 3.7) 3 MYJ consistent 
(option removed in 3.7) 4 YSU consistent 
opt_btr  soil moisture factor for stomatal 

resistance 
 1 Noah 
 2 CLM 
 3 SSiB 
opt_run  Noah-MP runoff and groundwater 

option 
 1 TOPMODEL with groundwater 
 2 TOPMODEL with equilibrium 

water table 
 3 (default) original surface and 

subsurface runoff (free drainage) 
 4 BATS  (Biosphere-Atmosphere 

Transfer Scheme) surface and 
subsurface runoff (free drainage) 

opt_frz  supercooled liquid water option 
 1 (default) no iteration 
 2 Koren's iteration 
opt_inf  soil permeability option 
 1 (default) linear effect, more 

permeable 
 2 non-linear effect, less permeable 
opt_rad  radiative transfer option 
 1 modified two-stream 
 2 two-stream applied to grid cell 
 3 (default) two-stream applied to 

vegetated fraction 
opt_alb  ground surface albedo option 
 1 BATS 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-108 

 2 (default) CLASS (Canadian Land 
Surface Scheme) 

opt_snf  precipitation partitioning between 
snow and rain 

 1 (default) Jordan (1991) 
 2 BATS; snow when SFCTMP < 

TFRZ+2.2 
 3 show when SFCTMP < TFRZ 
(new since V3.7) 4 use WRF precipitation partitioning 
opt_tbot  soil temp lower boundary 

condition 
 1 zero heat flux 
 2 (default) TBOT at 8 m from input 

file 
opt_stc  snow/soil temperature time scheme 
 1 (default) semi-implicit 
 2 fully-implicit 
opt_gla (new since V3.8)  Noah-MP glacier treatment option 
 1 (default) includes phase change 
 2 slab ice (Noah) 
opt_rsf (new since V3.8)  Noah-MP surface evaporation 

resistence option 
 1 Sakaguchi and Zeng 2009 
 2 Sellers 1992 
 3 adjusted Sellers to decrease 

RSURF for wet soil 
 4 option 1 for non-snow; rsurf = 

rsurf_snow for snow (set in 
MPTABLE -added in V3.8) 

(new since V3.7) 3 semi-implicit where Ts uses snow 
cover fraction 

   
&fdda   options for grid, obs and spectral 

nudging 
(For Grid Nudging)   
grid_fdda (max_dom) 0 (default) off 
 1 grid analysis nudging on 
 2 spectral analysis nudging option 
gfdda_inname "wrffdda_d<domain>

" 
name of fdda input file that will be 
produced when running real 

gfdda_interval_m 
(max_dom) 

360 time interval (in mins) between 
analysis times 

gfdda_end_h (max_dom) 6 time (hr) to stop nudging after the 
start of the forecast 

io_form_gfdda  analysis data format  



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-109 

 2 netCDF format 
 4 PHD5 format 
 5 GRIB1 format 
 10 GRIB2 format 
 11 pnetCDF format 
fgdt (max_dom) 0 calculation frequency (in mins) for 

anlaysis nudging; 0=every time 
step (which is recommended) 

if_no_pbl_nudging_uv 
(max_dom) 

0 (default) nudging in the PBL 

 1 no nudging of u and v in the PBL 
if_no_pbl_nudging_t 
(max_dom) 

0 (default) nudging in the PBL 

 1 no nudging of temp in the PBL 
if_no_pbl_nudging_q 
(max_dom) 

0 (default) nudging in the PBL 

 1 no nudging of qvapor in the PBL 
if_zfac_uv (max_dom) 0 (default) nudge u and v in all 

layers 
 1 limit nudging to levels above 

k_zfac_uv 
k_zfac_uv 10 model level below which nudging 

is switched off for u and v 
if_zfac_t (max_dom) 0 (default) nudge temp in all layers 
 1 limit nudging to levels above 

k_zfac_t 
k_zfac_t 10 model level below which nudging 

is switched off for temp 
if_zfac_q (max_dom) 0 (default) nudge qvapor in all layers 
 1 limit nudging to levels above 

k_zfac_q 
k_zfac_q 10 model level below which nudging 

is switched off for qvapor 
guv (max_dom) 0.0003 nudging coefficient for u and v (s-

1) 
gt (max_dom) 0.0003 nudging coefficient for temp (s-1) 
gq (max_dom) 0.0003 nudging coefficient for qvaopr (s-1) 
if_ramping 0 (default) nudging ends as a step 

function 
 1 ramping nudging down at the end 

of the period 
dtramp_min 0. time (min) for ramping function;  
grid_sfdda (max_dom)  surface fdda switch 
 0 (default) off 
 1 nudging selected surface fields 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-110 

(new since V3.8) 2 FASDAS (flux-adjusted surface 
data assimilation system) 

sgfdda_inname "wrfsfdda_d<domain
>" 

defined name for surface nuding 
input file (from program obsgrid) 

sgfdda_interval_m 
(max_dom) 

360 time interval (in mins) between 
surface analsysis times 

sgfdda_end_h (max_dom) 6 time (in hours) to stop surface 
nudging after start of the forecast 

io_form_sgfdda 2 surface analysis format 
(2=netCDF) 

guv_sfc (max_dom) 0.0003 nudging coefficient for u and v (s-

1) 
gt_sfc (max_dom) 0.0003 nudging coefficient for temp (s-1) 
gq_sfc (max_dom) 0.0003 nudging coefficient for qvapor (s-1) 
rinblw (max_dom) 0. radius of influence used to 

determine the confidence (or 
weights) for the analysis, which is 
based on the distance between the 
grid point to the nearest obs.  The 
analysis without nearby 
observation is used at a reduced 
weight. 

(For Spectral Nudging)   
fgdtzero (max_dom) 1 nudging tendencies are set to zero 

in between fdda calls 
 0 (default) not active 
if_no_pbl_nudging_ph 
(max_dom) 

1 no nudging of ph in the PBL 

 0 (default) nudging of ph in the PBL 
if_zfac_ph (max_dom) 0 (default) nudge ph in all layers 
 1 limit nudging to levels above 

k_zfac_ph 
k_zfac_ph 10 model level below which nudging 

is switched off for water ph  
gph (max_dom) 0.0003 nudging coefficient for ph (s-1) 
dk_zfac_uv (max_dom) 1 depth in k between k_zfac_uv 

to dk_zfac_uv where nuding 
increases linearly to full strength 

dk_zfac_t (max_dom)  1 depth in k between k_zfac_t to 
dk_zfac_t where nuding 
increases linearly to full strength 

dk_zfac_ph (max_dom) 1 depth in k between k_zfac_ph 
to dk_zfac_ph where nuding 
increases linearly to full strength 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-111 

xwavenum 3 top wave number to nudge in x-
direction (0 is default) 

ywavenum 3 top wave number to nudge in y-
direction (0 is default) 

(For Obs Nudging)   
obs_nudge_opt (max_dom) 1 obs-nudging fdda on for each 

domain (default is 0=off); also 
must set 
auxinput11_interval and 
auxinput11_end_h under  
&time_control  

max_obs 0 max number of observations used 
on a domain during any given time 
windown (default is 0) 

(max_dom) 0. obs nudging start time (min) 
fdda_end (max_dom) 0. obs nudging end time (min) 
obs_nudge_wind 
(max_dom) 

1 nudge wind on 

 0 (default) off 
obs_coef_wind (max_dom) 0 nudging coefficient for wind (s-1) 
obs_nudge_temp 
(max_dom) 

0 set to =1 to nudge temperatures 
(default is 0=off) 

obs_coef_temp (max_dom) 0 nudging coefficient for temp (s-1) 
obs_nudge_mois 
(max_dom) 

0 set to =1 to nudge water vapor 
mixing ratio (default is 0=off) 

obs_coef_mois (max_dom) 6.e-4 nudging coefficient for water 
vapor mixing ratio (s-1) 

obs_rinxy (max_dom) 0. horizontal radius of influence (km;  
obs_rinsig 0 vertical radius of influence in eta  
obs_twindo (max_dom) 0.666667 half-period time window over 

which an observation will be used 
for nudging (hrs) 

obs_npfi 0 frequency in coarse grid timesteps 
for diagnostic prints 

obs_ionf (max_dom) 1 frequency in coarse grid timesteps 
for obs input and err calc 

obs_idynin 1 for dynamic initialization using a 
ramp-down function to gradually 
turn off the FDDA before the pure 
forecast (default is 0=off) 

obs_dtramp 0. time period (mins) over which the 
nudging is ramped down from one 
to zero 

obs_prt_max 1000 maximum allowed obs entries in 
diagnostic printout 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-112 

obs_prt_freq (max_dom) 1000 frequency in obs index for 
diagnostic printout 

obs_ipf_in4dob .true. print obs input diagnostics (default 
is .false.=off) 

obs_ipf_errob .true. print obs error diagnostics (default 
is .false.=off) 

obs_ipf_nudob .true. print obs nudge diagnostics 
(default is .false.=off) 

obs_ipf_init .true. (default) enable obs printed 
warning messages 

obs_no_pbl_nudge_uv 
(max_dom) 

1 no wind-nudging within the PBL 

 0 (default) wind-nudging within the 
PBL 

obs_no_pbl_nudge_t 
(max_dom) 

1 no temperature-nudging within the 
PBL 

 0 (default) temperature-nudging 
within the PBL 

obs_no_pbl_nudge_q 
(max_dom)  

1 no moisture-nudging within the 
PBL 

 0 (default) no moisture-nudging 
within the PBL 

obs_nudgezfullr1_uv 50 Vertical influence full weight 
height for LML obs, regime 1, 
winds 

obs_nudgezrampr1_uv 50 vertical influence ramp-to-zero 
height for LML obs, regime 1, 
winds 

obs_nudgezfullr2_uv 50 Vertical influence full weight 
height for LML obs, regime 2, 
winds 

obs_nudgezrampr2_uv 50 vertical influence ramp-to-zero 
height for LML obs, regime 2, 
winds 

obs_nudgezfullr4_uv -5000 Vertical influence full weight 
height for LML obs, regime 4, 
winds 

obs_nudgezrampr4_uv 50 Vertical influence ramp-to-zero 
height for LML obs, regime 4, 
winds 

obs_nudgezfullr1_t 50 Vertical influence full weight 
height for LML obs, regime 1, 
temperature 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-113 

obs_nudgezrampr1_t 50 Vertical influence ramp-to-zero 
height for LML obs, regime 1, 
temperature 

obs_nudgezfullr2_t 50 Vertical influence full weight 
height for LML obs, regime 2, 
temperature 

obs_nudgezrampr2_t 50 Vertical influence ramp-to-zero 
height for LML obs, regime 2, 
temperature 

obs_nudgezfullr4_t -5000 Vertical influence full weight 
height for LML obs, regime 4, 
temperature 

obs_nudgezrampr4_t 50 Vertical influence ramp-to-zero 
height for LML obs, regime 4, 
temperature 

obs_nudgezfullr1_q 50 Vertical influence full weight 
height for LML obs, regime 1, 
temperature 

obs_nudgezrampr1_q 50 Vertical influence ramp-to-zero 
height for LML obs, regime 1, 
temperature 

obs_nudgezfullr2_q 50 Vertical influence full weight 
height for LML obs, regime 2, 
temperature 

obs_nudgezrampr2_q 50 Vertical influence ramp-to-zero 
height for LML obs, regime 2, 
temperature 

obs_nudgezfullr4_q -5000 Vertical influence full weight 
height for LML obs, regime 4, 
temperature 

obs_nudgezrampr4_q 50 Vertical influence ramp-to-zero 
height for LML obs, regime 4, 
temperature 

obs_nudgefullmin 50 minimum depth (m) through which 
vertical influence function remains 
1.0 

obs_nudgezrampmin 50 minimum depth (m) through which 
vert infl fcn decreases from 1 to 0 

obs_nudgezmax 3000 max depth (m) in which vert infl 
function is non-zero 

obs_sfcfact 1.0 scale factor applied to time 
window for surface obs 

obs_sfcfacr 1.0 scale factor applied to horiz radius 
of influence for surface obs 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-114 

obs_dpsmx 7.5 max pressure change (cb) allowed 
within horiz radius of influence 

obs_sfc_scheme_horiz  horizontal spreading scheme for 
surface obs 

 0 (default) WRF scheme  
 1 original MM5 scheme 
obs_sfc_scheme_vert  vertical spreading scheme for 

surface obs 
 0 (default) regime vif scheme  
 1 original scheme (simple scheme) 
obs_max_sndng_gap 20 max allowed pressure gap between 

soundings for interpolation (cb) 
obs_scl_neg_qv_innov 
(new since V3.6) 

0 0: default behavior 
1: prevent nudging toward 
negative Qv 

   
&dynamics  Diffusion, damping options, 

advection options 
rk_ord  time-integration scheme option 
 2 Runge-Kutta 2nd order  
 3 (default/recommended) Runge-

Kutta 3rd order 
diff_opt (max_dom)  turbulence and mixing option 
 0 no turbulence or explicit spatial 

numerical filters (km_opt is 
ignored) 

 1 (default) evaluates 2nd order 
diffusion term on coordinate 
surfaces, uses kvdif for vertical 
diffusion unless PBL option is 
used, may be used with km_opt 
= 1 (recommended for real-data 
case) and 4  

 2 evaluates mixing terms in physical 
space (stress form) (x,y,z); 
turbulence parameterization is 
chosen by specifying km_opt 

km_opt (max_dom)  eddy coefficient option 
 1 (default) constant (use khdif and 

kvdif) 
 2 1.5 order TKE closure (3D) ** Not 

recommended for DX > 2 km 
 3 Smagorinsky first order closure 

(3D) **Not recommended for DX 
> 2 km 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-115 

 4 horizontal Smagorinsky first order 
closure (recommended for real-
data case) 

diff_6th_opt (max_dom)  6th-order numerical diffusion 
 0 (default) no 6th-order diffusion  
 1 6th-order numerical diffusion 
 2 6th-order numerical diffusion, but 

prohibit up-gradient diffusion 
diff_6th_factor (max_dom) 0.12 6th-order numerical diffusion non-

dimensional rate (max value 1.0 
corresponds to complete removal 
of 2dx wave in one timestep) 

damp_opt  upper-level damping flag 
 0 (default) no damping 
 1 with diffusive damping; maybe 

used for real-data cases 
(dampcoef nondimensional ~ 
0.01 to 0.1) 

 2 with Rayleigh damping 
(dampcoef inverse time scale 
[1/s], e.g. 0.003) 

 3 with Rayleigh damping 
(dampcoef inverse time scale 
[1/s], e.g. 0.2; for real-data cases) 

use_theta_m (new since 
V3.7) 

1 uses theta(1+1.61Qv); (default 
0=off) 

use_q_diabatic (new since 
V3.7) 

1 includes QV and QC tendencies in 
advection;  this helps to produce 
correct solution in an idealized 
'moist benchmark' test case (Bryan, 
2014).  In real data testing, time 
step needs to be reduced to 
maintain a stable solution (default 
0=off) 

c_s (max_dom) (new since 
V3.7) 

0.25 (default) Smagorinsky coeff 

c_k (max_dom) (new since 
V3.7) 

0.15 (default) TKE coeff 

zdamp (max_dom) 5000 damping depth (m) from model top 
dampcoef (max_dom) 0. damping coefficient (see 

damp_opt) 
w_damping  vertical velocity damping flag (for 

operational use) 
 0 (default) no damping  
 1 with damping 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-116 

base_pres 100000 base state surface pressure (Pa); 
real only., not recommended to 
change. 

base_temp 290. base state temperature (K); real 
only 

base_lapse 50. real-data ONLY, lapse rate (K), 
not recommended to change 

iso_temp 200. 

(default value 
changed to 200 in 

V3.5) 

isothermal temperature in 
statosphere; enables model to be 
extended to 5 mb; real only. 
Default value changed to 200 since 
V3.5 

base_pres_strat (New since 
V3.6.1) 

0. 
(default value set to 0 

mb in V3.7) 

real data, em ONLY, base state 
pressure (Pa) at bottom of the 
stratosphere, US Standard 
atmosphere 55 hPa.  

base_lapse_strat (new since 
V3.6.1) 

-11. (default) real-data; em ONLY, 
base state lapse rate (dT/d(lnP)) in 
stratosphere, approx to US 
standard atmosphere -12K 

use_baseparm_fr_nml .false. for backward compatibility; to use 
with old wrfinput file produced 
prior to V3.4 

use_input_w (new since 
V3.3.1) 

. false. whether to use vertical velocity 
from input file 

khdif (max_dom) 0. horizontal diffusion constant 
(m2/s) 

kvdif (max_dom) 0. vertical diffusion constant (m2/s) 
smdiv (max_dom) 0.1 divergence damping (0.1 is 

typical) 
emdiv (max_dom) 0.01 external-mode filter coef for mass 

coordinate model (0.01 is typical 
for real-data cases) 

epssm (max_dom) 0.1 time off-centering for vertical 
sound waves 

non-hydrostatic 
(max_dom) 

.true. (default) running the model in non-
hydrostatic mode 

 .false. running the model in hydrostatic 
mode 

pert_coriolis (max_dom) .false. coriolis only acts on wind 
perturbation (only for idealized) 

top_lid (max_dom) .false. zero vertical motion at top of 
domain (only for idealized) 

mix_full_fields .false. used with diff_opt = 2; value 
of .true. is recommended, except 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-117 

for highly idealized numerical 
tests; damp_opt must not be =1 
if .true. is chosen; .false. means 
subtract 1D base-state profile 
before mixing (only for idealized) 

mix_isotropic (max_dom) 0 (default) anistropic 
vertical/horizontal diffusion 

 1 isotropic; for km_opt = 2, 3 
mix_upper_bound 
(max_dom) 

0.1 non-dimensional upper limit for 
diffusion coefficients; for km_opt 
= 2, 3 

h_mom_adv_order 
(max_dom) 

5 horizontal momentum advection 
order; 5 (default) = 5th, etc. 

v_mom_adv_order 
(max_dom) 

3 vertical momentum advection 
order; 3 (default) = 3rd, etc. 

h_sca_adv_order 
(max_dom) 

5 horizontal scalar advection order; 5 
(default) = 5th, etc 

v_sca_adv_order 
(max_dom) 

3 vertical scalar advection order; 3 
(default) = 3rd, etc. 

time_step_sound 
(max_dom) 

4 number of sound steps per 
timestep (if using a time_step 
much larger than 6*DX (in km), 
increase number of sound steps 
(default is 0) 

moist_adv_opt (max_dom)  advection options for moisture 
 0 simple 
 1 (default) positive-definite 
 2 monotonic 
 3 5th-order WENO (Weighted 

Essentially Non-Oscillatory) 
(new since V3.4) 4 5th-order WENO with positive 

definite 
scalar_adv_opt (max_dom)  advection options for scalars 
 0 simple 
 1 (default) positive-definite 
 2 monotonic 
 3 5th-order WENO 
 4 5th-order WENO with positive 

definite 
tke_adv_opt (max_dom)  advection options for TKE 
 0 simple 
 1 (default) positive-definite 
 2 monotonic 
 3 5th-order WENO 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-118 

 4 5th-order WENO with positive 
definite 

chem_adv_opt (max_dom)  advection options for chem 
variables 

 0 simple 
 1 (default) positive definite 
 2 monotonic 
 3 5th-order WENO 
 4 5th-order WENO with positive 

definite 
tracer_adv_opt (max_dom)  advection options for tracer 

variables 
 0 simple 
 1 (default) positive definite 
 2 monotonic 
 3 5th-order WENO 
 4 5th-order WENO with positive 

definite 
momentum_adv_opt   advection options for momentum 
 1 (default) standard 
(new since V3.4) 3 5th-order WENO 
tke_drag_coefficient 
(max_dom) 

0 surface drag coefficient (Cd, 
dimensionless) for diff_opt = 
2 only 

tke_heat_flux (max_dom) 0 surface thermal flux (H/rho*cp), K 
ms-1, for diff_opt = 2 only 

fft_filter_lat 91. the latitude above which the polar 
filter is turned on (degrees) for 
global model; -45 is a reasonable 
latitude to start using polar filters 

coupled_filtering (new 
since V3.7) 

.true. (default) mu coupled scalar arrays 
are run through the polar filters 

pos_def (new since V3.7) .false. (default) remove negative values 
of scalar arrays by setting 
minimum value to zero 

swap_pole_with_next_j 
(new since V3.7) 

.false. (default) replace the entire j=1 
(jds-1) with the values from j=2 
(jds-2) 

actual_distance_average 
(new since V3.7) 

.false. (default) average the field at each i 
location in the j-loop with a 
number of grid points based on a 
map-factor ratio 

gwd_opt  1 gravity wave drag option; use 
when grid size > 10 km (default is 
0=off) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-119 

do_avgflx_em (max_dom) 1 outputs time-averaged mass-
coupled advective velocities 
(default is 0 = off) 

do_avgflx_cugd 
(max_dom) 

1 outputs time_averaged convective 
mass-fluxes from the Grell-
Devenyi ensemble scheme (default 
is 0 = off; only takes effect if 
do_avgflx_em =1, and 
cu_physics = 93 

sfs_opt (max_dom)  nonlinear backscatter and 
anisotrophy (NBA) 

 0 (default) off 
 1 NBA, using diagnostic stress terms 

(km_opt = 2, 3 for scalars) 
 2 NBA, using tke-based stress terms 

(km_opt = 2, 3 needed) 
m_opt (max_dom) 1 adds output of Mij stress terms 

when NBA is not used (default is 0 
= off) 

tracer_opt (max_dom) 2 activates 8 pre-defined tracers in 
the Registry (default is 0 = off) 

rad_nudge 1 option to nudge toward initial 
sounding in idealized TC case 
(default is 0 = off) 

   
&bdy_control  boundary condition control 
spec_bdy_width 5 total number of rows for specified 

boundary value nudging (real only) 
spec_zone 1 number of points in specified zone 

(specified b.c. option; real only) 
relax_zone 4 number of points in relaxation 

zone (spec b.c. option; real only) 
specified  .true. specified boundary condition; only 

can be used for domain 1 (default 
is .false.; real only) 

spec_exp 0. exponential multiplier for 
relaxation zone ramp for specified 
= .true.; default is 0. = linear ramp; 
0.33 = ~3*DX exp decay factor 
(real only) 

periodic_x (max_dom) .true. periodic boundary conditions in x-
direction (default is .false.) 

symmetric_xs (max_dom) .true. symmetric boundary conditions at 
x start (west; default is .false.) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-120 

symmetric_xe (max_dom) .true. symmetric boundary conditions at 
x end (east; default is .false.) 

open _xs (max_dom) .true. open boundary conditions at x start 
(west; default is .false.) 

open _xe (max_dom) .true. open boundary conditions at x end 
(east; default is .false.) 

periodic_y (max_dom) .true. periodic boundary conditions in y-
direction (default is .false.) 

symmetric_ys (max_dom) .true. symmetric boundary conditions at 
y start (south; default is .false.) 

symmetric_ye (max_dom) .true. symmetric boundary conditions at 
y end (north; default is .false.) 

open_ys (max_dom) .true. open boundary conditions at y start 
(south; default is .false.) 

open_ye (max_dom) .true. open boundary conditions at y end 
(north; default is .false.) 

nested (max_dom) .false., .true., .true. nested boundary conditions (must 
be set to .true for nests) 

polar (max_dom) .true. polar boundary condition (v=0 at 
polarward-most v-point) for global 
application (default is .false.) 

constant_bc  .true. constant boundary condition used 
with DFI (default is .false.) 

spec_bdy_final_mu (new 
since V3.7) 

1 call spec_bdy_final for mu (default 
is 0=off); this may cause different 
restart results in V3.8 

have_bcs_moist 
(max_dom) (new since 
V3.5.1) 

.false. do not use microphysics variables 
in boundary file in model run after 
ndown (default) 

 .true. use microphysics variables in 
boundary file 

have_bcs_scalar 
(max_dom) (new since 
V3.5.1) 

.false. do not use scalar variables in 
boundary file in model run after 
ndown (default) 

 .true. use scalar variables in boundary 
file 

   
&namelist_quilt  options for asynchronized I/O for 

MPI applications 
nio_tasks_per_group 0 (default) no quilting 
 >0 # of processors used for IO 

quilting per IO group 
nio_groups 1 default; may be set to higher value 

for nesting IO or history and restart 
IO 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-121 

   
&grib2   
background_proc_id 255 (default); background generating 

process identifier, typically defined 
by the originating center to 
identify the background data that 
was used in creating the data; this 
is octet 13 of Section 4 in the grib2 
message 

forecast_proc_id 255 (default) analysis or generating 
forecast process identifier, 
typically defined by the originating 
center to identify the forecast 
process that was used to generate 
the data; this is octet 14 of Section 
4 in the grib2 message 

production_status 255 (default) production status of 
processed data in the grib2 
message; see Code Table 1.3 of the 
grib2 manual; this is octect 20 of 
Section 1 in the grib2 record. 

compression  the compression method to encode 
the output grib2 message; only 
jpeg2000 and PNG are supported. 

 40 (default) for jpeg2000  
 41 PNG 
   
&dfi_control  digital filter options control (does 

not yet support nesting) 
dfi_opt 0 (default) no digital filter 

initialization 
 1 digital filter launch (DFL) 
 2 diabatic DFI (DDFI) 
 3 (recommended) twice DFI (TDFI) 
dfi_nfilter 0 uniform filter 
 1 Lanczos filter 
 2 Hamming filter 
 3 Blackman filter 
 4 Kaiser filter 
 5 Potter filter 
 6 Dolph window filter 
 7 (default; recommended) Dolph 

filter 
 8 recursive high-order filter 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-122 

dfi_write_filtered_input .true. whether to write wrfinput file with 
filtered model state before 
beginning forecast 

dfi_write_dfi_history .false. whether to write wrfout files 
during filtering integration 

dfi_cutoff_seconds 3600 cutoff period (s) for the filter; 
should not be longer than the filter 
window 

dfi_time_dim 1000 maximum number of time steps for 
filtering period; this value can be 
larger than necessary 

  for a model that starts from 
2001061112, the below setup 
specifies 1 hour backward 
integration 

dfi_bckstop_year 2001 4-digit year of stop time for 
backward DFI integration 

dfi_bckstop_month 06 2-digit month of stop time for 
backward DFI integration 

dfi_bckstop_day 11 2-digit day of stop time for 
backward DFI integration 

dfi_bckstop_hour 11 2-digit hour of stop time for 
backward DFI integration 

dfi_bckstop_minute 00 2-digit minute of stop time for 
backward DFI integration 

dfi_bckstop_second 00 2-digit second of stop time for 
backward DFI integration 

  for a model that starts at 
2001061112, the below setup 
specifies 30 minutes of forward 
integration 

dfi_fwdstop_year 2001 4-digit year of stop time for 
forward DFI integration 

dfi_fwdstop_month 06 2-digit month of stop time for 
forward DFI integration 

dfi_fwdstop_day 11 2-digit day of stop time for 
forward DFI integration 

dfi_fwdstop_hour 12 2-digit hour of stop time for 
forward DFI integration 

dfi_fwdstop_minute 30 2-digit minute of stop time for 
forward DFI integration 

dfi_fwdstop_second 00 2-digit second of stop time for 
forward DFI integration 

dfi_radar 0 DFI radar data assimilation switch 
   



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-123 

&scm  for the single-column model 
(SCM) option only 

scm_force 0 (default) single column forcing 
turned off 

 1 single column forcing on 
scm_force_dx 4000. DX for SCM forcing (m) 
num_force_layers 8 number of SCM input forcing 

layers 
scm_lu_index 2 SCM landuse category (2 = 

dryland, cropland, and pasture; 
others can be found in the 
LANDUSE.TBL) 

scm_isltyp 4 SCM soil category (4 = silt loam; 
others can be found in the 
SOILPARM.TBL) 

scm_vegfra 0.5 SCM vegetation fraction 
scm_canwat 0.0 SCM canopy water (kg m-2) 
scm_lat 36.605 SCM latitude 
scm_lon -97.485 SCM longitude 
scm_th_adv .true. turn on theta advection in SCM 
scm_wind_adv .true. turn on wind advection in SCM 
scm_qv_adv .true. turn on moisture advection in SCM 
scm_vert_adv .true. turn on vertical advection in SCM 
scm_ql_adv .true. turn on liquid advection in SCM 

(default is .false. = off) 
num_force_soil_layers 5 number of SCM soil forcing layers 
scm_soilt_force .true. turn on soil temperature forcing in 

SCM (default is .false. = off) 
scm_soilq_force .true. turn on soil moisture forcing in 

SCM (default is .false. = off) 
scm_force_th_largescale .true. turn on large-scale theta forcing in 

SCM (default is .false. = off) 
scm_force_qv_largescale .true. turn on large-scale qv forcing in 

SCM (default is .false. = off) 
scm_force_ql_largescale .true. turn on large-scale ql forcing in 

SCM (default is .false. = off) 
scm_force_wind_largescale .true. turn on large-scale wind forcing in 

SCM (default is .false. = off) 
   
&tc  controls for tc_em.exe only 
insert_bogus_storm .false. T/F for inserting a bogus tropical 

storm 
remove_storm .false. T/F for only removing the original 

TC 
num_storm 1 number of bogus TC 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-124 

latc_loc -999. center latitude of the bogus TC 
lonc_loc -999. center longitude of the bogus TC 
vmax_meters_per_second 
(max_dom) 

-999. wind max of bogus storm (m s-1) 

rmax -999. maximum radius outward from 
storm center of bogus TC 

vmax_ratio (max_dom) -999. ratio for representative maximum 
winds, 0.75 for 45 km grid, and 0.9 
for 15 kim grid 

rankine_lid -999. top pressure limit for the TC bogus 
scheme 

   
&diags 
(new since V3.4.1) 

 output fields on pressure levels 
Also need to set 
auxhist23_outname=”wrfpress_d<
domain>_<date>” 
io_form_auxhist23 = 2, 
auxhist23_interval = 180, 180, 
frames_per_auxhist23 = 100, 100, 

p_lev_diags 0 0/1 whether to output pressure 
level diagnostics 

num_press_levels 4 Number of pressure levels 
press_levels (max_plevs) 0 Pressure levels in Pa 
use_tot_or_hyd_p 2 1: use total pressure 

2: use hydrostatic pressure 
z_lev_diags (new since 
V3.7.1) 

0 switch to vertically interpolate 
diagnostics to z-levels; (default is 
off) 

num_z_levels (new since 
V3.7.1) 

0 number of height levels to 
interpolate to 

z_levels (new since V3.7.1) 0 list of height values (m) to 
interpolate data to; positive 
numbers are for height above mean 
sea level (i.e., a flight level), 
negative numbers are for level 
above ground 

p_lev_missing -999. Missing value below ground 
   
&afwa (new since V3.6) 
Cannot be used with 
OpenMP 

  

afwa_diag_opt (max_dom) 0 (default) AFWA diagnostic opton 
(1 = on) 

afwa_ptype_opt 
(max_dom) 

0 (default) precip type option (1 = 
on) 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-125 

 
 

afwa_vil_opt (max_dom) 0 (default) vertical int liquid option 
(1 = on) 

afwa_radar_opt 
(max_dom)   

0 (default) radar option (1 = on) 

afwa_severe_opt 
(max_dom)   

0 (default) severe weather option (1 
= on) 

afwa_icing_opt (max_dom) 0 (default) icing option (1 = on) 
afwa_vis_opt (max_dom) 0 (default) visibility option (1 = on) 
afwa_cloud_opt 
(max_dom) 

0 (default) cloud option (1 = on) 

afwa_therm_opt 
(max_dom) (new since 
V3.6.1) 

0 thermal indices option (default is 
0=off) 

afwa_turb_opt (max_dom) 
(new since V3.6.1) 

0 turbulence option (default is 0=off) 

afwa_buoy_opt (max_dom) 
(new since V3.6.1) 

0 buoyancy option (default is 0=off) 

afwa_ptype_ccn_tmp 264.15 (default) CCN temperature for 
precipitation type calculation 

afwa_ptype_tot_melt 50 (default) total melting energy for 
precipitation type calculation 

 1 (default) hail 
 0  graupel 
progn (max_dom) (new 
since V3.7) 

0 (default) switch to use mix-activate 
scheme (only for Morrison, 
WDM6, WDM5, and 
NSSL_2MOMCCN/NSSL_2MOM 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-126 

WRF Output Fields 

List of Fields 

The following is an edited output list from the netCDF command 'ncdump -h'. Note that 
valid output fields will depend on the model options used. If the fields have zero values, 
then the fields are not computed by the model options selected. 

ncdump -h wrfout_d<domain>_<date> 
  

   netcdf wrfout_d01_2000-01-24_12:00:00 
 
dimensions: 
 Time = UNLIMITED ; // (1 currently) 
 DateStrLen = 19 ; 
 west_east = 73 ; 
 south_north = 60 ; 
 bottom_top = 29 ; 
 bottom_top_stag = 30 ; 
 soil_layers_stag = 4 ; 
 west_east_stag = 74 ; 
 south_north_stag = 61 ; 
 
variables: 
 char Times(Time, DateStrLen) ; 
 float LU_INDEX(Time, south_north, west_east) ; 
  LU_INDEX:description = "LAND USE CATEGORY" ; 
  LU_INDEX:units = "" ; 
 float ZNU(Time, bottom_top) ; 
  ZNU:description = "eta values on half (mass) levels" ; 
  ZNU:units = "" ; 
 float ZNW(Time, bottom_top_stag) ; 
  ZNW:description = "eta values on full (w) levels" ; 
  ZNW:units = "" ; 
 float ZS(Time, soil_layers_stag) ; 
  ZS:description = "DEPTHS OF CENTERS OF SOIL LAYERS" ; 
  ZS:units = "m" ; 
 float DZS(Time, soil_layers_stag) ; 
  DZS:description = "THICKNESSES OF SOIL LAYERS" ; 
  DZS:units = "m" ; 
 float U(Time, bottom_top, south_north, west_east_stag) ; 
  U:description = "x-wind component" ; 
  U:units = "m s-1" ; 
 float V(Time, bottom_top, south_north_stag, west_east) ; 
  V:description = "y-wind component" ; 
  V:units = "m s-1" ; 
 float W(Time, bottom_top_stag, south_north, west_east) ; 
  W:description = "z-wind component" ; 
  W:units = "m s-1" ; 
 float PH(Time, bottom_top_stag, south_north, west_east) ; 
  PH:description = "perturbation geopotential" ; 
  PH:units = "m2 s-2" ; 
 float PHB(Time, bottom_top_stag, south_north, west_east) ; 
  PHB:description = "base-state geopotential" ; 
  PHB:units = "m2 s-2" ; 
 float T(Time, bottom_top, south_north, west_east) ; 
  T:description = "perturbation potential temperature (theta-t0)" ; 
  T:units = "K" ; 
 float MU(Time, south_north, west_east) ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-127 

  MU:description = "perturbation dry air mass in column" ; 
  MU:units = "Pa" ; 
 float MUB(Time, south_north, west_east) ; 
  MUB:description = "base state dry air mass in column" ; 
  MUB:units = "Pa" ; 
 float NEST_POS(Time, south_north, west_east) ; 
  NEST_POS:description = "-" ; 
  NEST_POS:units = "-" ; 
 float P(Time, bottom_top, south_north, west_east) ; 
  P:description = "perturbation pressure" ; 
  P:units = "Pa" ; 
 float PB(Time, bottom_top, south_north, west_east) ; 
  PB:description = "BASE STATE PRESSURE" ; 
  PB:units = "Pa" ; 
 float FNM(Time, bottom_top) ; 
  FNM:description = "upper weight for vertical stretching" ; 
  FNM:units = "" ; 
 float FNP(Time, bottom_top) ; 
  FNP:description = "lower weight for vertical stretching" ; 
  FNP:units = "" ; 
 float RDNW(Time, bottom_top) ; 
  RDNW:description = "inverse d(eta) values between full (w) levels" ; 
  RDNW:units = "" ; 
 float RDN(Time, bottom_top) ; 
  RDN:description = "inverse d(eta) values between half (mass) levels" ; 
  RDN:units = "" ; 
 float DNW(Time, bottom_top) ; 
  DNW:description = "d(eta) values between full (w) levels" ; 
  DNW:units = "" ; 
 float DN(Time, bottom_top) ; 
  DN:description = "d(eta) values between half (mass) levels" ; 
  DN:units = "" ; 
 float CFN(Time) ; 
  CFN:description = "extrapolation constant" ; 
  CFN:units = "" ; 
 float CFN1(Time) ; 
  CFN1:description = "extrapolation constant" ; 
  CFN1:units = "" ; 
 float P_HYD(Time, bottom_top, south_north, west_east) ; 
       P_HYD:description = "hydrostatic pressure" ; 
       P_HYD:units = "Pa" ; 
 float Q2(Time, south_north, west_east) ; 
  Q2:description = "QV at 2 M" ; 
  Q2:units = "kg kg-1" ; 
 float T2(Time, south_north, west_east) ; 
  T2:description = "TEMP at 2 M" ; 
  T2:units = "K" ; 
 float TH2(Time, south_north, west_east) ; 
  TH2:description = "POT TEMP at 2 M" ; 
  TH2:units = "K" ; 
 float PSFC(Time, south_north, west_east) ; 
  PSFC:description = "SFC PRESSURE" ; 
  PSFC:units = "Pa" ; 
 float U10(Time, south_north, west_east) ; 
  U10:description = "U at 10 M" ; 
  U10:units = "m s-1" ; 
 float V10(Time, south_north, west_east) ; 
  V10:description = "V at 10 M" ; 
  V10:units = "m s-1" ; 
 float RDX(Time) ; 
  RDX:description = "INVERSE X GRID LENGTH" ; 
  RDX:units = "" ; 
 float RDY(Time) ; 
  RDY:description = "INVERSE Y GRID LENGTH" ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-128 

  RDY:units = "" ; 
 float RESM(Time) ; 
  RESM:description = "TIME WEIGHT CONSTANT FOR SMALL STEPS" ; 
  RESM:units = "" ; 
 float ZETATOP(Time) ; 
  ZETATOP:description = "ZETA AT MODEL TOP" ; 
  ZETATOP:units = "" ; 
 float CF1(Time) ; 
  CF1:description = "2nd order extrapolation constant" ; 
  CF1:units = "" ; 
 float CF2(Time) ; 
  CF2:description = "2nd order extrapolation constant" ; 
  CF2:units = "" ; 
 float CF3(Time) ; 
  CF3:description = "2nd order extrapolation constant" ; 
  CF3:units = "" ; 
 int ITIMESTEP(Time) ; 
  ITIMESTEP:description = "" ; 
  ITIMESTEP:units = "" ; 
 float XTIME(Time) ; 
  XTIME:description = "minutes since simulation start" ; 
  XTIME:units = "" ; 
 float QVAPOR(Time, bottom_top, south_north, west_east) ; 
  QVAPOR:description = "Water vapor mixing ratio" ; 
  QVAPOR:units = "kg kg-1" ; 
 float QCLOUD(Time, bottom_top, south_north, west_east) ; 
  QCLOUD:description = "Cloud water mixing ratio" ; 
  QCLOUD:units = "kg kg-1" ; 
 float QRAIN(Time, bottom_top, south_north, west_east) ; 
  QRAIN:description = "Rain water mixing ratio" ; 
  QRAIN:units = "kg kg-1" ; 
 float LANDMASK(Time, south_north, west_east) ; 
  LANDMASK:description = "LAND MASK (1 FOR LAND, 0 FOR WATER)" ; 
  LANDMASK:units = "" ; 
 float TSLB(Time, soil_layers_stag, south_north, west_east) ; 
  TSLB:description = "SOIL TEMPERATURE" ; 
  TSLB:units = "K" ; 
 float SMOIS(Time, soil_layers_stag, south_north, west_east) ; 
  SMOIS:description = "SOIL MOISTURE" ; 
  SMOIS:units = "m3 m-3" ; 
 float SH2O(Time, soil_layers_stag, south_north, west_east) ; 
  SH2O:description = "SOIL LIQUID WATER" ; 
  SH2O:units = "m3 m-3" ; 
 float SEAICE(Time, south_north, west_east) ; 
  SEAICE:description = "SEA ICE FLAG" ; 
  SEAICE:units = "" ; 
 float XICEM(Time, south_north, west_east) ; 
  XICEM:description = "SEA ICE FLAG (PREVIOUS STEP)" ; 
  XICEM:units = "" ; 
 float SFROFF(Time, south_north, west_east) ; 
  SFROFF:description = "SURFACE RUNOFF" ; 
  SFROFF:units = "mm" ; 
 float UDROFF(Time, south_north, west_east) ; 
  UDROFF:description = "UNDERGROUND RUNOFF" ; 
  UDROFF:units = "mm" ; 
 int IVGTYP(Time, south_north, west_east) ; 
  IVGTYP:description = "DOMINANT VEGETATION CATEGORY" ; 
  IVGTYP:units = "" ; 
 int ISLTYP(Time, south_north, west_east) ; 
  ISLTYP:description = "DOMINANT SOIL CATEGORY" ; 
  ISLTYP:units = "" ; 
 float VEGFRA(Time, south_north, west_east) ; 
  VEGFRA:description = "VEGETATION FRACTION" ; 
  VEGFRA:units = "" ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-129 

 float GRDFLX(Time, south_north, west_east) ; 
  GRDFLX:description = "GROUND HEAT FLUX" ; 
  GRDFLX:units = "W m-2" ; 
 float SNOW(Time, south_north, west_east) ; 
  SNOW:description = "SNOW WATER EQUIVALENT" ; 
  SNOW:units = "kg m-2" ; 
 float SNOWH(Time, south_north, west_east) ; 
  SNOWH:description = "PHYSICAL SNOW DEPTH" ; 
  SNOWH:units = "m" ; 
 float RHOSN(Time, south_north, west_east) ; 
  RHOSN:description = " SNOW DENSITY" ; 
  RHOSN:units = "kg m-3" ; 
 float CANWAT(Time, south_north, west_east) ; 
  CANWAT:description = "CANOPY WATER" ; 
  CANWAT:units = "kg m-2" ; 
 float SST(Time, south_north, west_east) ; 
  SST:description = "SEA SURFACE TEMPERATURE" ; 
  SST:units = "K" ; 
 float SSTSK(Time, south_north, west_east) ; 
       SSTSK:description = "SKIN SEA SURFACE TEMPERATURE" ; 
       SSTSK:units = "K" ; 
 float MAPFAC_M(Time, south_north, west_east) ; 
  MAPFAC_M:description = "Map scale factor on mass grid" ; 
  MAPFAC_M:units = "" ; 
 float MAPFAC_U(Time, south_north, west_east_stag) ; 
  MAPFAC_U:description = "Map scale factor on u-grid" ; 
  MAPFAC_U:units = "" ; 
 float MAPFAC_V(Time, south_north_stag, west_east) ; 
  MAPFAC_V:description = "Map scale factor on v-grid" ; 
  MAPFAC_V:units = "" ; 
 float MAPFAC_MX(Time, south_north, west_east) ; 
  MAPFAC_MX:description = "Map scale factor on mass grid, x direction" ; 
  MAPFAC_MX:units = "" ; 
 float MAPFAC_MY(Time, south_north, west_east) ; 
  MAPFAC_MY:description = "Map scale factor on mass grid, y direction" ; 
  MAPFAC_MY:units = "" ; 
 float MAPFAC_UX(Time, south_north, west_east_stag) ; 
  MAPFAC_UX:description = "Map scale factor on u-grid, x direction" ; 
  MAPFAC_UX:units = "" ; 
 float MAPFAC_UY(Time, south_north, west_east_stag) ; 
  MAPFAC_UY:description = "Map scale factor on u-grid, y direction" ; 
  MAPFAC_UY:units = "" ; 
 float MAPFAC_VX(Time, south_north_stag, west_east) ; 
  MAPFAC_VX:description = "Map scale factor on v-grid, x direction" ; 
  MAPFAC_VX:units = "" ; 
 float MF_VX_INV(Time, south_north_stag, west_east) ; 
  MF_VX_INV:description = "Inverse map scale factor on v-grid, x direction" 
  MF_VX_INV:units = "" ; 
 float MAPFAC_VY(Time, south_north_stag, west_east) ; 
  MAPFAC_VY:description = "Map scale factor on v-grid, y direction" ; 
  MAPFAC_VY:units = "" ; 
 float F(Time, south_north, west_east) ; 
  F:description = "Coriolis sine latitude term" ; 
  F:units = "s-1" ; 
 float E(Time, south_north, west_east) ; 
  E:description = "Coriolis cosine latitude term" ; 
  E:units = "s-1" ; 
 float SINALPHA(Time, south_north, west_east) ; 
  SINALPHA:description = "Local sine of map rotation" ; 
  SINALPHA:units = "" ; 
 float COSALPHA(Time, south_north, west_east) ; 
  COSALPHA:description = "Local cosine of map rotation" ; 
  COSALPHA:units = "" ; 
 float HGT(Time, south_north, west_east) ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-130 

  HGT:description = "Terrain Height" ; 
  HGT:units = "m" ; 
 float HGT_SHAD(Time, south_north, west_east) ; 
  HGT_SHAD:description = "Height of orographic shadow" ; 
  HGT_SHAD:units = "m" ; 
 float TSK(Time, south_north, west_east) ; 
  TSK:description = "SURFACE SKIN TEMPERATURE" ; 
  TSK:units = "K" ; 
 float P_TOP(Time) ; 
  P_TOP:description = "PRESSURE TOP OF THE MODEL" ; 
  P_TOP:units = "Pa" ; 
 float T00(Time) ; 
       T00:description = "BASE STATE TEMPERATURE" ; 
       T00:units = "K" ; 
 float P00(Time) ; 
       P00:description = "BASE STATE PRESURE" ; 
       P00:units = "Pa" ; 
 float TLP(Time) ; 
       TLP:description = "BASE STATE LAPSE RATE" ; 
       TLP:units = "" ;         
 float TISO(Time) ; 
        TISO:description = "TEMP AT WHICH THE BASE T TURNS CONST" ; 
        TISO:units = "K" ; 
 float MAX_MSTFX(Time) ; 
  MAX_MSTFX:description = "Max map factor in domain" ; 
  MAX_MSTFX:units = "" ; 
 float MAX_MSTFY(Time) ; 
  MAX_MSTFY:description = "Max map factor in domain" ; 
  MAX_MSTFY:units = "" ; 
 float RAINC(Time, south_north, west_east) ; 
  RAINC:description = "ACCUMULATED TOTAL CUMULUS PRECIPITATION" ; 
  RAINC:units = "mm" ; 
float RAINSH(Time, south_north, west_east) ; 
       RAINSH:description = "ACCUMULATED SHALLOW CUMULUS PRECIPITATION" ; 
       RAINSH:units = "mm" ; 
 float RAINNC(Time, south_north, west_east) ; 
  RAINNC:description = "ACCUMULATED TOTAL GRID SCALE PRECIPITATION" ; 
  RAINNC:units = "mm" ; 
 float PRATEC(Time, south_north, west_east) ; 
  PRATEC:description = "PRECIP RATE FROM CUMULUS SCHEME" ; 
  PRATEC:units = "mm s-1" ; 
 float RAINCV(Time, south_north, west_east) ; 
  RAINCV:description = "TIME-STEP CUMULUS PRECIPITATION" ; 
  RAINCV:units = "mm" ; 
 float SNOWNC(Time, south_north, west_east) ; 
  SNOWNC:description = "ACCUMULATED TOTAL GRID SCALE SNOW AND ICE" ; 
  SNOWNC:units = "mm" ; 
 float GRAUPELNC(Time, south_north, west_east) ; 
  GRAUPELNC:description = "ACCUMULATED TOTAL GRID SCALE GRAUPEL" ; 
  GRAUPELNC:units = "mm" ; 
 float SWDOWN(Time, south_north, west_east) ; 
  SWDOWN:description = "DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE" ; 
  SWDOWN:units = "W m-2" ; 
 float GLW(Time, south_north, west_east) ; 
  GLW:description = "DOWNWARD LONG WAVE FLUX AT GROUND SURFACE" ; 
  GLW:units = "W m-2" ; 
float SWNORM(Time, south_north, west_east) ; 
       SWNORM:description = "NORMAL SHORT WAVE FLUX AT GROUND SURFACE" ; 
       SWNORM:units = "W m-2" ; 
 float OLR(Time, south_north, west_east) ; 
  OLR:description = "TOA OUTGOING LONG WAVE" ; 
  OLR:units = "W m-2" ; 
 float XLAT(Time, south_north, west_east) ; 
  XLAT:description = "LATITUDE, SOUTH IS NEGATIVE" ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-131 

  XLAT:units = "degree_north" ; 
 float XLONG(Time, south_north, west_east) ; 
  XLONG:description = "LONGITUDE, WEST IS NEGATIVE" ; 
  XLONG:units = "degree_east" ; 
 float XLAT_U(Time, south_north, west_east_stag) ; 
  XLAT_U:description = "LATITUDE, SOUTH IS NEGATIVE" ; 
  XLAT_U:units = "degree_north" ; 
 float XLONG_U(Time, south_north, west_east_stag) ; 
  XLONG_U:description = "LONGITUDE, WEST IS NEGATIVE" ; 
  XLONG_U:units = "degree_east" ; 
 float XLAT_V(Time, south_north_stag, west_east) ; 
  XLAT_V:description = "LATITUDE, SOUTH IS NEGATIVE" ; 
  XLAT_V:units = "degree_north" ; 
 float XLONG_V(Time, south_north_stag, west_east) ; 
  XLONG_V:description = "LONGITUDE, WEST IS NEGATIVE" ; 
  XLONG_V:units = "degree_east" ; 
 float ALBEDO(Time, south_north, west_east) ; 
  ALBEDO:description = "ALBEDO" ; 
  ALBEDO:units = "-" ; 
 float ALBBCK(Time, south_north, west_east) ; 
  ALBBCK:description = "BACKGROUND ALBEDO" ; 
  ALBBCK:units = "" ; 
 float EMISS(Time, south_north, west_east) ; 
  EMISS:description = "SURFACE EMISSIVITY" ; 
  EMISS:units = "" ; 
 float NOAHRES(Time, south_north, west_east) ; 
       NOAHRES:description = "RESIDUAL OF THE NOAH SURFACE ENERGY BUDGET" ; 
       NOAHRES:units = "W m{-2}" ; 
 float TMN(Time, south_north, west_east) ; 
  TMN:description = "SOIL TEMPERATURE AT LOWER BOUNDARY" ; 
  TMN:units = "K" ; 
 float XLAND(Time, south_north, west_east) ; 
  XLAND:description = "LAND MASK (1 FOR LAND, 2 FOR WATER)" ; 
  XLAND:units = "" ; 
float ZNT(Time, south_north, west_east) ; 
       ZNT:description = "TIME-VARYING ROUGHNESS LENGTH" ; 
       ZNT:units = "m" ; 
 float UST(Time, south_north, west_east) ; 
  UST:description = "U* IN SIMILARITY THEORY" ; 
  UST:units = "m s-1" ; 
 float PBLH(Time, south_north, west_east) ; 
  PBLH:description = "PBL HEIGHT" ; 
  PBLH:units = "m" ; 
 float HFX(Time, south_north, west_east) ; 
  HFX:description = "UPWARD HEAT FLUX AT THE SURFACE" ; 
  HFX:units = "W m-2" ; 
 float QFX(Time, south_north, west_east) ; 
  QFX:description = "UPWARD MOISTURE FLUX AT THE SURFACE" ; 
  QFX:units = "kg m-2 s-1" ; 
 float LH(Time, south_north, west_east) ; 
  LH:description = "LATENT HEAT FLUX AT THE SURFACE" ; 
  LH:units = "W m-2" ; 
 float SNOWC(Time, south_north, west_east) ; 
  SNOWC:description = "FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)" ; 
  SNOWC:units = "" ; 
int SAVE_TOPO_FROM_REAL(Time) ; 
       SAVE_TOPO_FROM_REAL:description = "1=original topo from real/0=topo 
                 modified by WRF" ; 
     SAVE_TOPO_FROM_REAL:units = "flag" ;  

 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-132 

List of Global Attributes  

 
// global attributes:  

:TITLE = " OUTPUT FROM WRF V3.6 MODEL" ; 
  :START_DATE = "2000-01-24_12:00:00" ; 
  :SIMULATION_START_DATE = "2000-01-24_12:00:00" ; 
  :WEST-EAST_GRID_DIMENSION = 74 ; 
  :SOUTH-NORTH_GRID_DIMENSION = 61 ; 
  :BOTTOM-TOP_GRID_DIMENSION = 28 ; 
  :DX = 30000.f ; 
  :DY = 30000.f ; 

:STOCH_FORCE_OPT = 0 ; 
:GRIDTYPE = "C" ; 

 :DIFF_OPT = 1 ; 
:KM_OPT = 4 ; 

       :DAMP_OPT = 0 ; 
       :DAMPCOEF = 0.2f ; 
       :KHDIF = 0.f ; 
       :KVDIF = 0.f ; 
       :MP_PHYSICS = 3 ; 
       :RA_LW_PHYSICS = 1 ; 
       :RA_SW_PHYSICS = 1 ; 
       :SF_SFCLAY_PHYSICS = 1 ; 
       :SF_SURFACE_PHYSICS = 2 ; 
       :BL_PBL_PHYSICS = 1 ; 
       :CU_PHYSICS = 1 ; 

:SF_LAKE_PHYSICS = 0 ; 
:SURFACE_INPUT_SOURCE = 1 ; 
:SST_UPDATE = 0 ; 
:GRID_FDDA = 0 ; 
:GFDDA_INTERVAL_M = 0 ; 
:GFDDA_END_H = 0 ; 
:GRID_SFDDA = 0 ; 
:SGFDDA_INTERVAL_M = 0 ; 
:SGFDDA_END_H = 0 ; 
:HYPSOMETRIC_OPT = 2 ; 
:SF_URBAN_PHYSICS = 0 ; 
:SHCU_PHYSICS = 0 ; 
:MFSHCONV = 0 ; 
:FEEDBACK = 1 ; 
:SMOOTH_OPTION = 0 ; 
:SWRAD_SCAT = 1.f ; 
:W_DAMPING = 0 ; 
:DT = 180.f ; 
:RADT = 30.f ; 
:BLDT = 0.f ; 
:CUDT = 5.f ; 
:AER_OPT = 0 ; 
:SWINT_OPT = 0 ; 
:AER_TYPE = 1 ; 
:AER_AOD550_OPT = 1 ; 
:AER_ANGEXP_OPT = 1 ; 
:AER_SSA_OPT = 1 ; 
:AER_ASY_OPT = 1 ; 
:AER_AOD550_VAL = 0.12f ; 
:AER_ANGEXP_VAL = 1.3f ; 
:AER_SSA_VAL = 0.f ; 
:AER_ASY_VAL = 0.f ; 
:MOIST_ADV_OPT = 1 ; 
:SCALAR_ADV_OPT = 1 ; 
:TKE_ADV_OPT = 1 ; 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-133 

:DIFF_6TH_OPT = 0 ; 
:DIFF_6TH_FACTOR = 0.12f ; 
:OBS_NUDGE_OPT = 0 ; 
:BUCKET_MM = -1.f ; 
:BUCKET_J = -1.f ; 
:PREC_ACC_DT = 0.f ; 
:SF_OCEAN_PHYSICS = 0 ; 
:ISFTCFLX = 0 ; 
:ISHALLOW = 0 ; 
:ISFFLX = 1 ; 
:ICLOUD = 1 ; 
:ICLOUD_CU = 0 ; 
:TRACER_PBLMIX = 1 ; 
:SCALAR_PBLMIX = 0 ; 
:GRAV_SETTLING = 0 ; 
:DFI_OPT = 0 ; 

  :WEST-EAST_PATCH_START_UNSTAG = 1 ; 
  :WEST-EAST_PATCH_END_UNSTAG = 73 ; 
  :WEST-EAST_PATCH_START_STAG = 1 ; 
  :WEST-EAST_PATCH_END_STAG = 74 ; 
  :SOUTH-NORTH_PATCH_START_UNSTAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_UNSTAG = 60 ; 
  :SOUTH-NORTH_PATCH_START_STAG = 1 ; 
  :SOUTH-NORTH_PATCH_END_STAG = 61 ; 
  :BOTTOM-TOP_PATCH_START_UNSTAG = 1 ; 
  :BOTTOM-TOP_PATCH_END_UNSTAG = 27 ; 
  :BOTTOM-TOP_PATCH_START_STAG = 1 ; 
  :BOTTOM-TOP_PATCH_END_STAG = 28 ; 
  :GRID_ID = 1 ; 
  :PARENT_ID = 0 ; 
  :I_PARENT_START = 1 ; 
  :J_PARENT_START = 1 ; 
  :PARENT_GRID_RATIO = 1 ; 
  :DT = 180.f ; 
  :CEN_LAT = 34.83002f ; 
  :CEN_LON = -81.03f ; 
  :TRUELAT1 = 30.f ; 
  :TRUELAT2 = 60.f ; 
  :MOAD_CEN_LAT = 34.83002f ; 
  :STAND_LON = -98.f ; 
  :POLE_LAT = 90.f ; 
  :POLE_LON = 0.f ; 
  :GMT = 12.f ; 
  :JULYR = 2000 ; 
  :JULDAY = 24 ; 
  :MAP_PROJ = "Lambert Conformal"  ; 
  :MMINLU = "USGS" ; 
  :NUM_LAND_CAT = 24 ; 
  :ISWATER = 16 ; 
  :ISLAKE = -1 ; 
  :ISICE = 24 ; 
  :ISURBAN = 1 ; 
  :ISOILWATER = 14 ; 

 

Special WRF Output Variables 

The WRF model outputs the state variables defined in the Registry file, and these state 
variables are used in the model's prognostic equations. Some of these variables are 



MODEL 
 

 
WRF-ARW V3: User’s Guide 5-134 

perturbation fields; therefore the following definitions for reconstructing meteorological 
variables are necessary:  

total geopotential    PH + PHB 
total geopotential height in m    ( PH + PHB ) / 9.81 
total potential temperature in_ K    T + 300 
total pressure in mb    ( P + PB ) * 0.01 
wind compoments, grid relative    U, V 

surface pressure in Pa    psfc 

surface winds, grid relative    U10, V10 (valid at mass points) 

surface temperature and mixing ratio    T2, Q2 

  
The definitions for map projection options: 

map_proj =  1: Lambert Conformal 
   2: Polar Stereographic 
   3: Mercator 
   6: latitude and longitude (including global) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-1 

 

Chapter 6: WRF Data Assimilation (WRFDA) 

Table of Contents 

• Introduction	
• Installing	WRFDA	for	3DVAR	Run	

• Obtaining	WRFDA	Source	Code	

• Compile	WRFDA	and	Libraries	

• Clean	old	compilation	

• Installing	WRFPLUS	and	WRFDA	for	
4DVAR	Run	

• Running	Observation	Preprocessor	
(OBSPROC)	
• OBSPROC	for	3DVAR	

• OBSPROC	for	4DVAR	

• Running	WRFDA	
• Download	Test	Data	

• Run	3DVAR	test	case	

• Run	4DVAR	test	case	

• Radiance	Data	Assimilation	in	
WRFDA	
• Running	WRFDA	with	radiances	

• Reading	radiance	data	in	WRFDA	

• Radiative	Transfer	Models	

• Channel	Selection	

• Bias	Correction	

• Other	radiance	assimilation	options	

• Diagnostics	and	Monitoring	

• Radar	Data	Assimilation	in	WRFDA	
• Preparing	radar	observations	

• Running	WRFDA	for	radar	

assimilation	

• Reflectivity	assimilation	options	

• Null-echo	assimilation	options	

• Precipitation	Data	Assimilation	in	
WRFDA	4DVAR	
• Preparing	precipitation	

observations	

• Running	WRFDA	with	precipitation	

observations	

• Properly	linking	observation	files	

• Updating	WRF	Boundary	Conditions	
• Lateral	boundary	conditions	

• Cycling	with	WRF	and	WRFDA	

• WRFDA	4DVAR	with	lateral	

boundary	conditions	as	control	

variables	

• Background	Error	and	running	
GEN_BE	
• Quick-start	guide:	running	WRFDA	

with	different	BE	options	

• Background	error	options	in	

WRFDA	

• Generic	BE	option:	CV3	

• Domain-specific	background	error	

options:	Running	GEN_BE	

• GEN_BE	for	CV6	

• Additional	Background	Error	

options	

• WRFDA	Diagnostics	
• Generating	ensembles	with	

RANDOMCV	
• Hybrid	Data	Assimilation	in	WRFDA	

• 3DEnVar	

• 4DEnVar	

• Dual-resolution	hybrid	

• Hybrid	namelist	options	

• ETKF	Data	Assimilation	
• Additional	WRFDA	Options	

• Wind	speed/direction	assimilation	

• The	Weak	Penalty	Constraint	

option	

• Options	for	improving	surface	data	

assimilation	

• Description	of	Namelist	Variables	
• WRFDA	namelist	variables	

• OBSPROC	namelist	variables

 
 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-2 

Introduction 

Data assimilation is the technique by which observations are combined with an NWP 
product (the first guess or background forecast) and their respective error statistics to 
provide an improved estimate (the analysis) of the atmospheric (or oceanic, Jovian, etc.) 
state. Variational (Var) data assimilation achieves this through the iterative minimization 
of a prescribed cost (or penalty) function. Differences between the analysis and 
observations/first guess are penalized (damped) according to their perceived error. The 
difference between three-dimensional (3D-Var) and four-dimensional (4D-Var) data 
assimilation is the use of a numerical forecast model in the latter. 

The MMM Laboratory of NCAR supports a unified (global/regional, multi-model, 3/4D-
Var) model-space data assimilation system (WRFDA) for use by the NCAR staff and 
collaborators, and is also freely available to the general community, together with further 
documentation, test results, plans etc., from the WRFDA web-page 
(http://www2.mmm.ucar.edu/wrf/users/wrfda/index.html).  

Various components of the WRFDA system are shown in blue in the sketch below, 
together with their relationship with the rest of the WRF system. 

 

xb first guess, either from a previous WRF forecast or from WPS/real.exe output. 
xlbc lateral boundary from WPS/real.exe output. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-3 

xa analysis from the WRFDA data assimilation system. 
xf WRF forecast output. 
yo observations processed by OBSPROC.  (note: PREPBUFR input, radar, 

radiance, and rainfall data do not go through OBSPROC) 
B0 background error statistics from generic BE data (CV3) or gen_be. 
R observational and representative error statistics. 

In this chapter, you will learn how to install and run the various components of the 
WRFDA system. For training purposes, you are supplied with a test case, including the 
following input data:  

• observation files, 
• a netCDF background file (WPS/real.exe output, the first guess of the analysis) 
• background error statistics (estimate of errors in the background file).  
• This tutorial dataset can be downloaded from the WRFDA Users Page 

(http://www2.mmm.ucar.edu/wrf/users/wrfda/download/testdata.html), and will 
be described later in more detail. In your own work, however, you will have to 
create all these input files yourself. See the section “Running Observation 
Preprocessor” for creating your observation files. See the section “Background 
Error and running GEN_BE” for generating your background error statistics file, 
if you want to use cv_options=5, 6, or 7. 

Before using your own data, we suggest that you start by running through the WRFDA- 
related programs using the supplied test case. This serves two purposes: First, you can 
learn how to run the programs with data we have tested ourselves, and second you can 
test whether your computer is capable of running the entire data assimilation system. 
After you have done the tutorial, you can try running other, more computationally 
intensive case studies, and experimenting with some of the many namelist variables.  

WARNING: It is impossible to test every permutation of computer, compiler, number of 
processors, case, namelist option, etc. for every WRFDA release. The namelist options 
that are supported are indicated in the “WRFDA/var/README.namelist”, and these are the 
default options.  

Hopefully, our test cases will prepare you for the variety of ways in which you may wish 
to run your own WRFDA experiments. Please inform us about your experiences. 

As a professional courtesy, we request that you include the following references in any 
publication that uses any component of the community WRFDA system: 
 
Barker, D.M., W. Huang, Y.R. Guo, and Q.N. Xiao., 2004: A Three-Dimensional 
(3DVAR) Data Assimilation System For Use With MM5: Implementation and Initial 
Results. Mon. Wea. Rev., 132, 897-914. 
 
Huang, X.Y., Q. Xiao, D.M. Barker, X. Zhang, J. Michalakes, W. Huang, T. Henderson, 
J. Bray, Y. Chen, Z. Ma, J. Dudhia, Y. Guo, X. Zhang, D.J. Won, H.C. Lin, and Y.H. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-4 

Kuo, 2009: Four-Dimensional Variational Data Assimilation for WRF: Formulation and 
Preliminary Results. Mon. Wea. Rev., 137, 299–314. 
 
Barker, D., X.-Y. Huang, Z. Liu, T. Auligné, X. Zhang, S. Rugg, R. Ajjaji, A. Bourgeois, 
J. Bray, Y. Chen, M. Demirtas, Y.-R. Guo, T. Henderson, W. Huang, H.-C. Lin, J. 
Michalakes, S. Rizvi, and X. Zhang, 2012: The Weather Research and Forecasting 
Model's Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. 
Amer. Meteor. Soc., 93, 831–843. 

Running WRFDA requires a Fortran 90 compiler. The WRFDA system can be compiled 
on the following platforms: Linux (ifort, gfortran, pgf90), Macintosh (gfortran, ifort), 
IBM (xlf), and SGI Altix (ifort). Please let us know if this does not meet your 
requirements, and we will attempt to add other machines to our list of supported 
architectures, as resources allow. Although we are interested in hearing about your 
experiences in modifying compiler options, we do not recommend making changes to the 
configure file used to compile WRFDA. 

Installing WRFDA for 3DVAR Run 

a. Obtaining WRFDA Source Code 

Users can download the WRFDA source code from 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html. 

Note: Although the WRFDA package also contains the WRF source code, they can 
not be built together. WRF should be downloaded and compiled separately. 

After the tar file is unzipped (gunzip WRFDAV3.9.TAR.gz) and untarred (tar -xf 
WRFDAV3.9.TAR), the directory WRFDA should be created. This directory contains the 
WRFDA source, external libraries, and fixed files. The following is a list of the system 
components and content for each subdirectory:  

 
Directory Name Content 
var/da WRFDA source code  
var/run Fixed input files required by WRFDA, such 

as background error covariance,  
radiance-related files, CRTM coefficients 
and VARBC.in 

var/external 
 

Libraries needed by WRFDA, includes 
CRTM, BUFR, LAPACK, BLAS 

var/obsproc OBSPROC source code, namelist, and 
observation error files 

var/gen_be 
 

Source code of gen_be, the utility to create 
background error statistics files 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-5 

var/build Builds all .exe files. 
 

 

b. Compile WRFDA and Libraries 

Some external libraries (e.g., LAPACK, BLAS, and NCEP BUFR) are included in the 
WRFDA tar file. To compile the WRFDA code, the only mandatory library is the netCDF 
library. You should set an environment variable NETCDF to point to the directory where 
your netCDF library is installed 

> setenv NETCDF your_netcdf_path 

The source code for BUFRLIB 10.2.3 (with minor modifications) is included in the 
WRFDA tar file, and is compiled automatically. This library will be used for assimilating 
files in PREPBUFR and NCEP BUFR format. 

Starting with WRFDA version 3.8, AMSR2 data can be assimilated in HDF5 format, 
which requires the use of HDF5 libraries. If you wish to make use of this capability, you 
should ensure that HDF5 libraries are installed on your system (or download and install 
them yourself; the source code is available from https://www.hdfgroup.org/HDF5/). To 
use HDF5 in WRFDA, you should set the environment variable “HDF5” to the parent 
path of your HDF5 build: 

> setenv HDF5 your_hdf5_path 

The HDF5 path should contain the directories “include” and “lib”.  

For some platforms, you may have to also add the HDF5 “lib” directory to your 
environment variable LD_LIBRARY_PATH: 

> setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:your_hdf5_path/lib 

If satellite radiance data are to be used, a Radiative Transfer Model (RTM) is required. 
The current RTM versions that WRFDA supports are CRTM V2.2.3 and RTTOV V11.1–
11.3 .  

The CRTM V2.2.3 source code is included in the WRFDA tar file, and is compiled 
automatically. No action is needed from the user. 

If the user wishes to use RTTOV, download and install the RTTOV v11 library before 
compiling WRFDA. This library can be downloaded from 
http://nwpsaf.eu/deliverables/rtm/index.html. The RTTOV libraries must be compiled 
with the “emis_atlas” option in order to work with WRFDA; see the RTTOV 
“readme.txt” for instructions on how to do this. After compiling RTTOV (see the 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-6 

RTTOV documentation for detailed instructions), set the “RTTOV” environment variable 
to the path where the lib directory resides. For example, if the library files can be found 
in /usr/local/rttov11/gfortran/lib/librttov11.*.a, you should set RTTOV as: 

 
> setenv RTTOV /usr/local/rttov11/gfortran  

Note: Make sure the required libraries were all compiled using the same compiler 
that will be used to build WRFDA, since the libraries produced by one compiler may 
not be compatible with code compiled with another.  

Assuming all required libraries are available and the WRFDA source code is ready, you 
can start to build WRFDA using the following steps: 

Enter the WRFDA directory and run the configure script: 

> cd WRFDA 
> ./configure wrfda 

A list of configuration options should appear. Each option combines an operating system, 
a compiler type, and a parallelism option. Since the configuration script doesn’t check 
which compilers are actually installed on your system, be sure to select only among the 
options that you have available to you. The available parallelism options are single-
processor (serial), shared-memory parallel (smpar), distributed-memory parallel (dmpar), 
and distributed-memory with shared-memory parallel (sm+dm). However, shared-
memory (smpar and sm+dm) options are not supported as of WRFDA Version 3.9, 
so we do not recommend selecting any of these options. 

For example, on a Linux machine such as NCAR’s Yellowstone, the above steps will 
look similar to the following:  

checking for perl5... no 
checking for perl... found /usr/bin/perl (perl) 
Will use NETCDF in dir: /glade/apps/opt/netcdf/4.3.0/gnu/4.8.2/ 
Will use HDF5 in dir: /glade/u/apps/opt/hdf5/1.8.12/gnu/4.8.2/ 
PHDF5 not set in environment. Will configure WRF for use without. 
Will use 'time' to report timing information 
$JASPERLIB or $JASPERINC not found in environment, configuring to build without grib2 
I/O... 
------------------------------------------------------------------------ 
Please select from among the following Linux x86_64 options: 
 
  1. (serial)   2. (smpar)   3. (dmpar)   4. (dm+sm)   PGI (pgf90/gcc) 
  5. (serial)   6. (smpar)   7. (dmpar)   8. (dm+sm)   PGI (pgf90/pgcc): SGI MPT 
  9. (serial)  10. (smpar)  11. (dmpar)  12. (dm+sm)   PGI (pgf90/gcc): PGI accelerator 
 13. (serial)  14. (smpar)  15. (dmpar)  16. (dm+sm)   INTEL (ifort/icc) 
                                         17. (dm+sm)   INTEL (ifort/icc): Xeon Phi (MIC 
architecture) 
 18. (serial)  19. (smpar)  20. (dmpar)  21. (dm+sm)   INTEL (ifort/icc): Xeon (SNB with 
AVX mods) 
 22. (serial)  23. (smpar)  24. (dmpar)  25. (dm+sm)   INTEL (ifort/icc): SGI MPT 
 26. (serial)  27. (smpar)  28. (dmpar)  29. (dm+sm)   INTEL (ifort/icc): IBM POE 
 30. (serial)               31. (dmpar)                PATHSCALE (pathf90/pathcc) 
 32. (serial)  33. (smpar)  34. (dmpar)  35. (dm+sm)   GNU (gfortran/gcc) 
 36. (serial)  37. (smpar)  38. (dmpar)  39. (dm+sm)   IBM (xlf90_r/cc_r) 
 40. (serial)  41. (smpar)  42. (dmpar)  43. (dm+sm)   PGI (ftn/gcc): Cray XC CLE 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-7 

 44. (serial)  45. (smpar)  46. (dmpar)  47. (dm+sm)   CRAY CCE (ftn/cc): Cray XE and XC 
 48. (serial)  49. (smpar)  50. (dmpar)  51. (dm+sm)   INTEL (ftn/icc): Cray XC 
 52. (serial)  53. (smpar)  54. (dmpar)  55. (dm+sm)   PGI (pgf90/pgcc) 
 56. (serial)  57. (smpar)  58. (dmpar)  59. (dm+sm)   PGI (pgf90/gcc): -f90=pgf90 
 60. (serial)  61. (smpar)  62. (dmpar)  63. (dm+sm)   PGI (pgf90/pgcc): -f90=pgf90 
 64. (serial)  65. (smpar)  66. (dmpar)  67. (dm+sm)   INTEL (ifort/icc): HSW/BDW 
 68. (serial)  69. (smpar)  70. (dmpar)  71. (dm+sm)   INTEL (ifort/icc): KNL MIC 
 
Enter selection [1-71] : 34 
------------------------------------------------------------------------ 
 
Configuration successful!  
------------------------------------------------------------------------ 
... ... 

After entering the option that corresponds to your machine/compiler combination, the 
configure script should print the message “Configuration successful!” followed by a large 
amount of configuration information. Depending on your system, you may see a warning 
message mentioning that some Fortran 2003 features have been removed: this message is 
normal and can be ignored. However, if you see a message “One of compilers testing 
failed!  Please check your compiler”, configuration has probably failed, and you should 
make sure you have selected the correct option. 

After running the configuration script and choosing a compilation option, a 
configure.wrf file will be created. Because of the variety of ways that a computer can 
be configured, if the WRFDA build ultimately fails, there is a chance that minor 
modifications to the configure.wrf file may be needed.  

To compile WRFDA, type 

> ./compile all_wrfvar >& compile.out 

Successful compilation will produce 44 executables: 43 of which are in the var/build 
directory and linked in the var/da directory, with the 44th, obsproc.exe, found in the 
var/obsproc/src directory. You can list these executables by issuing the command: 

>ls -l var/build/*exe var/obsproc/src/obsproc.exe 
-rwxr-xr-x 1 user   885143 Apr  4 17:22 var/build/da_advance_time.exe 
-rwxr-xr-x 1 user  1162003 Apr  4 17:24 var/build/da_bias_airmass.exe 
-rwxr-xr-x 1 user  1143027 Apr  4 17:23 var/build/da_bias_scan.exe 
-rwxr-xr-x 1 user  1116933 Apr  4 17:23 var/build/da_bias_sele.exe 
-rwxr-xr-x 1 user  1126173 Apr  4 17:23 var/build/da_bias_verif.exe 
-rwxr-xr-x 1 user  1407973 Apr  4 17:23 var/build/da_rad_diags.exe 
-rwxr-xr-x 1 user  1249431 Apr  4 17:22 var/build/da_tune_obs_desroziers.exe 
-rwxr-xr-x 1 user  1186368 Apr  4 17:24 var/build/da_tune_obs_hollingsworth1.exe 
-rwxr-xr-x 1 user  1083862 Apr  4 17:24 var/build/da_tune_obs_hollingsworth2.exe 
-rwxr-xr-x 1 user  1193390 Apr  4 17:24 var/build/da_update_bc_ad.exe 
-rwxr-xr-x 1 user  1245842 Apr  4 17:23 var/build/da_update_bc.exe 
-rwxr-xr-x 1 user  1492394 Apr  4 17:24 var/build/da_verif_grid.exe 
-rwxr-xr-x 1 user  1327002 Apr  4 17:24 var/build/da_verif_obs.exe 
-rwxr-xr-x 1 user 26031927 Apr  4 17:31 var/build/da_wrfvar.exe 
-rwxr-xr-x 1 user  1933571 Apr  4 17:23 var/build/gen_be_addmean.exe 
-rwxr-xr-x 1 user  1944047 Apr  4 17:24 var/build/gen_be_cov2d3d_contrib.exe 
-rwxr-xr-x 1 user  1927988 Apr  4 17:24 var/build/gen_be_cov2d.exe 
-rwxr-xr-x 1 user  1945213 Apr  4 17:24 var/build/gen_be_cov3d2d_contrib.exe 
-rwxr-xr-x 1 user  1941439 Apr  4 17:24 var/build/gen_be_cov3d3d_bin3d_contrib.exe 
-rwxr-xr-x 1 user  1947331 Apr  4 17:24 var/build/gen_be_cov3d3d_contrib.exe 
-rwxr-xr-x 1 user  1931820 Apr  4 17:24 var/build/gen_be_cov3d.exe 
-rwxr-xr-x 1 user  1915177 Apr  4 17:24 var/build/gen_be_diags.exe 
-rwxr-xr-x 1 user  1947942 Apr  4 17:24 var/build/gen_be_diags_read.exe 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-8 

-rwxr-xr-x 1 user  1930465 Apr  4 17:24 var/build/gen_be_ensmean.exe 
-rwxr-xr-x 1 user  1951511 Apr  4 17:24 var/build/gen_be_ensrf.exe 
-rwxr-xr-x 1 user  1994167 Apr  4 17:24 var/build/gen_be_ep1.exe 
-rwxr-xr-x 1 user  1996438 Apr  4 17:24 var/build/gen_be_ep2.exe 
-rwxr-xr-x 1 user  2001400 Apr  4 17:24 var/build/gen_be_etkf.exe 
-rwxr-xr-x 1 user  1942988 Apr  4 17:24 var/build/gen_be_hist.exe 
-rwxr-xr-x 1 user  2021659 Apr  4 17:24 var/build/gen_be_stage0_gsi.exe 
-rwxr-xr-x 1 user  2012035 Apr  4 17:24 var/build/gen_be_stage0_wrf.exe 
-rwxr-xr-x 1 user  1973193 Apr  4 17:24 var/build/gen_be_stage1_1dvar.exe 
-rwxr-xr-x 1 user  1956835 Apr  4 17:24 var/build/gen_be_stage1.exe 
-rwxr-xr-x 1 user  1963314 Apr  4 17:24 var/build/gen_be_stage1_gsi.exe 
-rwxr-xr-x 1 user  1975042 Apr  4 17:24 var/build/gen_be_stage2_1dvar.exe 
-rwxr-xr-x 1 user  1938468 Apr  4 17:24 var/build/gen_be_stage2a.exe 
-rwxr-xr-x 1 user  1952538 Apr  4 17:24 var/build/gen_be_stage2.exe 
-rwxr-xr-x 1 user  1202392 Apr  4 17:22 var/build/gen_be_stage2_gsi.exe 
-rwxr-xr-x 1 user  1947836 Apr  4 17:24 var/build/gen_be_stage3.exe 
-rwxr-xr-x 1 user  1928353 Apr  4 17:24 var/build/gen_be_stage4_global.exe 
-rwxr-xr-x 1 user  1955622 Apr  4 17:24 var/build/gen_be_stage4_regional.exe 
-rwxr-xr-x 1 user  1924416 Apr  4 17:24 var/build/gen_be_vertloc.exe 
-rwxr-xr-x 1 user  2057673 Apr  4 17:24 var/build/gen_mbe_stage2.exe 
-rwxr-xr-x 1 user  2110993 Apr  4 17:32 var/obsproc/src/obsproc.exe  

The main executable for running WRFDA is da_wrfvar.exe. Make sure it has been 
created after the compilation: it is fairly common that all the executables will be 
successfully compiled except this main executable. If this occurs, please check the 
compilation log file carefully for any errors. 

The basic gen_be utility for the regional model consists of gen_be_stage0_wrf.exe, 
gen_be_stage1.exe, gen_be_stage2.exe, gen_be_stage2a.exe, 
gen_be_stage3.exe, gen_be_stage4_regional.exe, and gen_be_diags.exe. 

da_update_bc.exe is used for updating the WRF lower and lateral boundary conditions 
before and after a new WRFDA analysis is generated. This is detailed in the section on 
Updating WRF Boundary Conditions. 

da_advance_time.exe is a very handy and useful tool for date/time manipulation. Type 
$WRFDA_DIR/var/build/da_advance_time.exe to see its usage instructions. 

obsproc.exe is the executable for preparing conventional observations for assimilation 
by WRFDA. Its use is detailed in the section on Running Observation Preprocessor. 

If you plan on using CRTM for radiance assimilation, check 
$WRFDA_DIR/var/external/crtm_2.2.3/libsrc to ensure that libCRTM.a was 
generated. 

c. Clean old compilation 

To remove all object files and executables, type: 

./clean 

To remove all build files, including configure.wrf, type: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-9 

./clean -a 

The clean –a command is recommended if your compilation fails, or if the 
configuration file has been changed and you wish to restore the default settings.  

 

Installing WRFPLUS and WRFDA for 4DVAR Run 

If you intend to run WRFDA 4DVAR, it is necessary to have WRFPLUS installed. 
WRFPLUS contains the adjoint and tangent linear models based on a simplified WRF 
model, which includes a few simplified physics packages, such as surface drag, large 
scale condensation and precipitation, and cumulus parameterization.  

Note: if you intend to run both 3DVAR and 4DVAR experiments, it is not 
necessary to compile the code twice. The da_wrfvar.exe executable compiled 
for 4DVAR can be used for both 3DVAR and 4DVAR assimilation. 

To install WRFPLUS:  

• Get the WRFPLUS zipped tar file from 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/wrfplus.html 

• Unzip and untar the WRFPLUS file, then run the configure script 

> gunzip WRFPLUSV3.9.tar.gz  
> tar -xf WRFPLUSV3.9.tar  
> cd WRFPLUSV3 
> ./configure wrfplus 

As with 3D-Var, “serial” means single-processor, and “dmpar” means Distributed 
Memory Parallel (MPI). Be sure to select the same option for WRFPLUS as you will 
use for WRFDA. 

• Compile WRFPLUS 

> ./compile wrf >& compile.out 
> ls -ls main/*.exe  

If compilation was successful, you should see the WRFPLUS executable (named 
wrf.exe): 

53292 -rwxr-xr-x 1 user man 54513254 Apr  6 22:43 main/wrf.exe 

Finally, set the environment variable WRFPLUS_DIR to the appropriate directory: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-10 

>setenv WRFPLUS_DIR ${your_source_code_dir}/WRFPLUSV3 

To install WRFDA for the 4D-Var run: 

• If you intend to use RTTOV to assimilate radiance data, you will need to set the 
appropriate environment variable at compile time. See the previous 3DVAR 
section for instructions. 

>./configure 4dvar 

>./compile all_wrfvar >& compile.out 

>ls -ls var/build/*.exe var/obsproc/*.exe 

You should see the same 44 executables as are listed in the above 3DVAR section, 
including da_wrfvar.exe 

Running Observation Preprocessor (OBSPROC) 

The OBSPROC program reads observations in LITTLE_R format (a text-based format, in 
use since the MM5 era). We have provided observations for the tutorial case, but for your 
own applications, you will have to prepare your own observation files. Please see 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/free_data.html for the sources of some 
freely-available observations. Because the raw observation data files have many possible 
formats, such as ASCII, BUFR, PREPBUFR, MADIS (note: a converter for MADIS data 
to LITTLE_R is available on the WRFDA website: 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/madis.html), and HDF, the free data site also 
contains instructions for converting the observations to LITTLE_R format. To make the 
WRFDA system as general as possible, the LITTLE_R format was adopted as an 
intermediate observation data format for the WRFDA system, however, the conversion of 
the user-specific source data to LITTLE_R format is the user’s task. A more complete 
description of the LITTLE_R format, as well as conventional observation data sources 
for WRFDA, can be found by reading The LITTLE_R for WRFDA help page, the 
“Observation Pre-processing” tutorial found at  
http://www2.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2016_Aug/tutorial_presentations_summer_2016.html, or by 
referencing Chapter 7 of this User’s Guide. 

The purpose of OBSPROC is to: 

• Remove observations outside the specified temporal and spatial domains 
• Re-order and merge duplicate (in time and location) data reports 
• Retrieve pressure or height based on observed information using the hydrostatic 

assumption 
• Check multi-level observations for  vertical consistency and superadiabatic 

conditions 
• Assign observation errors based on a pre-specified error file 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-11 

• Write out the observation file to be used by WRFDA in ASCII or BUFR format 

The OBSPROC program (obsproc.exe) should be found under the directory 
$WRFDA_DIR/var/obsproc/src if “compile all_wrfvar” completed successfully. 

If you haven’t already, you should download the tutorial case, which contains example 
files for all the exercises in this User’s Guide. The case can be found at the WRFDA 
website (http://www2.mmm.ucar.edu/wrf/users/wrfda/download/testdata.html). 

a. OBSPROC for 3DVAR 

As an example, to prepare the observation file at the analysis time, all the observations in 
the range ±1h will be processed, which means that (in the example case) the observations 
between 23h and 1h are treated as the observations at 0h. This is illustrated in the 
following figure: 

 

OBSPROC requires at least 3 files to run successfully: 

 

• A namelist file (namelist.obsproc) 
• An observation error file (obserr.txt) 
• One or more observation files 
• Optionally, a table for specifying the elevation information for marine 

observations over the US Great Lakes (msfc.tbl) 

The files obserr.txt and msfc.tbl are included in the source code under var/obsproc. 
To create the required namelist file, we have provided an example file 
(namelist_obsproc.3dvar.wrfvar-tut) in the var/obsproc directory. Thus, proceed 
as follows. 

> cd $WRFDA_DIR/var/obsproc 
> cp namelist.obsproc.3dvar.wrfvar-tut namelist.obsproc 

Next, edit the namelist file, namelist.obsproc, to accommodate your experiments. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-12 

You will likely only need to change variables listed under records 1, 2, 6, 7, and 8. See 
$WRFDA_DIR/var/obsproc/README.namelist, or the section OBSPROC namelist 
variables for details. You should pay special attention to the record 7 and record 8 
variables: these will determine the domain for which observations will be written to the 
output observation file. Alternatively, if you do not wish to filter the observations 
spatially, you can set domain_check_h = .false. under &record4. 

If you are running the tutorial case, you should copy or link the sample observation file 
(ob/2008020512/obs.2008020512) to the obsproc directory. Alternatively, you can edit 
the namelist variable obs_gts_filename to point to the observation file’s full path. 

To run OBSPROC, type 

 > ./obsproc.exe >& obsproc.out 

Once obsproc.exe has completed successfully, you will see an observation data file, 
with the name formatted obs_gts_YYYY-MM-DD_HH:NN:SS.3DVAR, in the obsproc 
directory. For the tutorial case, this will be obs_gts_2008-02-05_12:00:00.3DVAR. 
This is the input observation file to WRFDA. It is an ASCII file that contains a header 
section (listed below) followed by observations. The meanings and format of 
observations in the file are described in the last six lines of the header section. 

TOTAL =   9066, MISS. =-888888., 
SYNOP =    757, METAR =   2416, SHIP  =    145, BUOY  =    250, BOGUS =      0, TEMP  =     
86,  
AMDAR =     19, AIREP =    205, TAMDAR=      0, PILOT =     85, SATEM =    106, SATOB =   
2556,  
GPSPW =    187, GPSZD =      0, GPSRF =      3, GPSEP =      0, SSMT1 =      0, SSMT2 =      
0,  
TOVS  =      0, QSCAT =   2190, PROFL =     61, AIRSR =      0, OTHER =      0,  
PHIC  =  40.00, XLONC = -95.00, TRUE1 =  30.00, TRUE2 =  60.00, XIM11 =   1.00, XJM11 =   
1.00, 
base_temp= 290.00, base_lapse=  50.00, PTOP  =  1000., base_pres=100000., 
base_tropo_pres= 20000., base_strat_temp=   215., 
IXC   =     60, JXC   =     90, IPROJ =      1, IDD   =      1, MAXNES=      1, 
NESTIX=     60,  
NESTJX=     90,  
NUMC  =      1,  
DIS   =  60.00,  
NESTI =      1,  
NESTJ =      1,  
INFO  = PLATFORM, DATE, NAME, LEVELS, LATITUDE, LONGITUDE, ELEVATION, ID. 
SRFC  = SLP, PW (DATA,QC,ERROR). 
EACH  = PRES, SPEED, DIR, HEIGHT, TEMP, DEW PT, HUMID (DATA,QC,ERROR)*LEVELS. 
INFO_FMT = (A12,1X,A19,1X,A40,1X,I6,3(F12.3,11X),6X,A40) 
SRFC_FMT = (F12.3,I4,F7.2,F12.3,I4,F7.3) 
EACH_FMT = (3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2)) 
#------------------------------------------------------------------------------# 
…… observations ……… 

Before running WRFDA, you may find it useful to learn more about various types of data 
that will be processed (e.g., their geographical distribution). This file is in ASCII format 
and so you can easily view it.  For a graphical view of the file's content, there are NCL 
scripts available which can display the distribution and type of observations. In the 
WRFDA Tools package (can be downloaded at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/tools.html), the relevant script is located at 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-13 

$TOOLS_DIR/var/graphics/ncl/plot_ob_ascii_loc.ncl. You will need to have 
NCL installed in your system to use this script; for more information on NCL, the NCAR 
Command Language, see http://www.ncl.ucar.edu/. 

b. OBSPROC for 4DVAR 

To prepare the observation file, for example, at the analysis time 0h for 4D-Var, all 
observations from 0h to 6h will be processed and grouped in 7 sub-windows (slot1 
through slot7) as illustrated in the following figure: 

 

NOTE: The “Analysis time” in the above figure is not the actual analysis time (0h). It 
indicates the time_analysis setting in the namelist file, which in this example is three 
hours later than the actual analysis time. The actual analysis time is still 0h. 

An example namelist (namelist_obsproc.4dvar.wrfvar-tut) has already been 
provided in the var/obsproc directory. Thus, proceed as follows: 

> cd $WRFDA_DIR/var/obsproc 
> cp namelist.obsproc.4dvar.wrfvar-tut namelist.obsproc 

In the namelist file, you need to change the following variables to accommodate your 
experiments. In this tutorial case, the actual analysis time is 2008-02-05_12:00:00, but 
in the namelist, time_analysis should be set to 3 hours later. The different values of 
time_analysis, num_slots_past, and time_slots_ahead contribute to the actual 
times analyzed. For example, if you set time_analysis = 2008-02-05_16:00:00, and set 
the num_slots_past = 4 and time_slots_ahead=2, the final results will be the same as 
before. 

Edit all the domain settings according to your own experiment; a full list of namelist 
options and descriptions can be found in the section Description of Namelist Variables. 
You should pay special attention to the record 7 and record 8 variables: these will 
determine the domain for which observations will be written to the output observation 
file. Alternatively, if you do not wish to filter the observations spatially, you can set 
domain_check_h = .false. under &record4. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-14 

If you are running the tutorial case, you should copy or link the sample observation file 
(ob/2008020512/obs.2008020512) to the obsproc directory. Alternatively, you can edit 
the namelist variable obs_gts_filename to point to the observation file’s full path. 

To run OBSPROC, type 

> obsproc.exe >& obsproc.out 

Once obsproc.exe has completed successfully, you will see 7 observation data files, 
which for the tutorial case are named 
 
obs_gts_2008-02-05_12:00:00.4DVAR  
obs_gts_2008-02-05_13:00:00.4DVAR 
obs_gts_2008-02-05_14:00:00.4DVAR 
obs_gts_2008-02-05_15:00:00.4DVAR 
obs_gts_2008-02-05_16:00:00.4DVAR 
obs_gts_2008-02-05_17:00:00.4DVAR 
obs_gts_2008-02-05_18:00:00.4DVAR 

They are the input observation files to WRF 4D-Var.  

Running WRFDA 

a. Download Test Data  

The WRFDA system requires three input files to run: 

 a) WRF first guess file, output from either WPS/real.exe (wrfinput) or a WRF 
forecast (wrfout) 

b) Observations (in ASCII format, PREPBUFR or BUFR for radiance) 

c) A background error statistics file (containing background error covariance) 

The following table summarizes the above info: 

Input Data Format Created By 

First Guess 
 NETCDF 

WRF Preprocessing System 
(WPS) and real.exe 

or WRF 

Observations ASCII 
(PREPBUFR also possible) 

Observation Preprocessor 
(OBSPROC) 

Background Error 
Statistics Binary WRFDA gen_be utility 

or generic CV3 

In the test case, you will store data in a directory defined by the environment variable 
$DAT_DIR. This directory can be in any location, and it should have read access. Type 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-15 

 > setenv DAT_DIR your_choice_of_dat_dir 

Here, your_choice_of_dat_dir is the directory where the WRFDA input data is stored.  

If you have not already done so, download the sample data for the tutorial case, valid at 
12 UTC 5th February 2008, from 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/testdata.html 

Once you have downloaded the WRFDAV3.9-testdata.tar.gz file to $DAT_DIR, extract 
it by typing 

 > gunzip WRFDAV3.9-testdata.tar.gz 
 > tar -xvf WRFDAV3.9-testdata.tar  

Now you should find the following four files under “$DAT_DIR” 

ob/2008020512/ob.2008020512      #  Observation data in “little_r” format 
rc/2008020512/wrfinput_d01       #  First guess file 
rc/2008020512/wrfbdy_d01       #  lateral boundary file 
be/be.dat          #  Background error file 
...... 

At this point you should have three of the input files (first guess, observations from 
OBSPROC, and background error statistics files in the directory $DAT_DIR) required to 
run WRFDA, and have successfully downloaded and compiled the WRFDA code. If this 
is correct, you are ready to run WRFDA. 

b. Run 3DVAR test case 

The data for the tutorial case is valid at 12 UTC 5 February 2008. The first guess comes 
from the NCEP FNL (Final) Operational Global Analysis data, passed through the WRF-
WPS and real.exe programs.  

To run WRF 3D-Var, first create and enter into a working directory (for example, 
$WRFDA_DIR/workdir), and set the environment variable WORK_DIR to this directory (e.g., 
setenv WORK_DIR $WRFDA_DIR/workdir). Then follow the steps below: 

> cd $WORK_DIR  
> cp $DAT_DIR/namelist.input.3dvar namelist.input 
> ln -sf $WRFDA_DIR/run/LANDUSE.TBL . 
> ln -sf $DAT_DIR/rc/2008020512/wrfinput_d01 ./fg 
> ln -sf $DAT_DIR/ob/2008020512/obs_gts_2008-02-05_12:00:00.3DVAR 
./ob.ascii (note the different name!) 
> ln -sf $DAT_DIR/be/be.dat .  
> ln -sf $WRFDA_DIR/var/da/da_wrfvar.exe . 

Now edit the file namelist.input, which is a very basic namelist for the tutorial test 
case, and is shown below.  

&wrfvar1 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-16 

var4d=false, 
print_detail_grad=false, 
/ 
&wrfvar2 
/ 
&wrfvar3 
ob_format=2, 
/ 
&wrfvar4 
/ 
&wrfvar5 
/ 
&wrfvar6 
max_ext_its=1, 
ntmax=50, 
orthonorm_gradient=true, 
/ 
&wrfvar7 
cv_options=5, 
/ 
&wrfvar8 
/ 
&wrfvar9 
/ 
&wrfvar10 
test_transforms=false, 
test_gradient=false, 
/ 
&wrfvar11 
/ 
&wrfvar12 
/ 
&wrfvar13 
/ 
&wrfvar14 
/ 
&wrfvar15 
/ 
&wrfvar16 
/ 
&wrfvar17 
/ 
&wrfvar18 
analysis_date="2008-02-05_12:00:00.0000", 
/ 
&wrfvar19 
/ 
&wrfvar20 
/ 
&wrfvar21 
time_window_min="2008-02-05_11:00:00.0000", 
/ 
&wrfvar22 
time_window_max="2008-02-05_13:00:00.0000", 
/ 
&time_control 
start_year=2008, 
start_month=02, 
start_day=05, 
start_hour=12, 
end_year=2008, 
end_month=02, 
end_day=05, 
end_hour=12, 
/ 
&fdda 
/ 
&domains 
e_we=90, 
e_sn=60, 
e_vert=41, 
dx=60000, 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-17 

dy=60000, 
/ 
&dfi_control 
/ 
&tc 
/ 
&physics 
mp_physics=3, 
ra_lw_physics=1, 
ra_sw_physics=1, 
radt=60, 
sf_sfclay_physics=1, 
sf_surface_physics=1, 
bl_pbl_physics=1, 
cu_physics=1, 
cudt=5, 
num_soil_layers=5, 
mp_zero_out=2, 
co2tf=0, 
/ 
&scm 
/ 
&dynamics 
/ 
&bdy_control 
/ 
&grib2 
/ 
&fire 
/ 
&namelist_quilt 
/ 
&perturbation 
/ 
 

No edits should be needed if you are running the tutorial case without radiance data. If 
you plan to use the PREPBUFR-format data, change the ob_format=1 in &wrfvar3 in 
namelist.input and link the data as ob.bufr,  
 

> ln -fs $DAT_DIR/ob/2008020512/gdas1.t12z.prepbufr.nr  ob.bufr 
 

Once you have changed any other necessary namelist variables, run WRFDA 3D-Var:  

> da_wrfvar.exe >& wrfda.log 

The file wrfda.log (or rsl.out.0000, if run in distributed-memory mode) contains 
important WRFDA runtime log information. Always check the log after a WRFDA run: 

*** VARIATIONAL ANALYSIS *** 
    WRFDA V3.9                                                                  
 
DYNAMICS OPTION: Eulerian Mass Coordinate 
   alloc_space_field: domain            1 ,             499448408  bytes allocated 
hybrid_opt =  0 
   
 Tile Strategy is not specified. Assuming 1D-Y 
WRF TILE   1 IS      1 IE     89 JS      1 JE     59 
WRF NUMBER OF TILES =   1 
Domain mapping info: 
map_proj =     1 
cen_lat   =    0.400000E+02 
cen_lon   =   -0.950000E+02 
truelat1  =    0.300000E+02 
truelat2  =    0.600000E+02 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-18 

start_lat =    0.207406E+02 
start_lon =   -0.119501E+03 
pole_lat  =    0.900000E+02 
dsm       =    0.600000E+02 
   
Set up observations (ob) 
   
Using ASCII format observation input 
   
Observation summary 
   ob time  1 
      sound                 86 global,      86 local 
      synop                750 global,     750 local 
      pilot                 85 global,      85 local 
      satem                105 global,     105 local 
      geoamv              2499 global,    2499 local 
      airep                221 global,     221 local 
      gpspw                187 global,     187 local 
      gpsrf                  3 global,       3 local 
      metar               2408 global,    2408 local 
      ships                140 global,     140 local 
      qscat               2126 global,    2126 local 
      profiler              61 global,      61 local 
      buoy                 247 global,     247 local 
      sonde_sfc             86 global,      86 local 
  
Set up background errors for regional application for cv_options =   5 
 
   
 
   Using the averaged regression coefficients for unbalanced part 
   
   cloud_cv_options =  0 
   WRFDA dry control variables are: psi, chi_u, t_u and ps_u 
   WRFDA Humidity control variable is rh 
 
 
   
Vertical truncation for psi    =  15(  99.00%) 
  
Vertical truncation for chi_u  =  20(  99.00%) 
  
Vertical truncation for t_u    =  29(  99.00%) 
  
Vertical truncation for rh     =  22(  99.00%) 
  
   
   Scaling: var, len, ds:   0.100000E+01   0.100000E+01   0.600000E+05 
   Scaling: var, len, ds:   0.100000E+01   0.100000E+01   0.600000E+05 
   Scaling: var, len, ds:   0.100000E+01   0.100000E+01   0.600000E+05 
   Scaling: var, len, ds:   0.100000E+01   0.100000E+01   0.600000E+05 
   Scaling: var, len, ds:   0.100000E+01   0.100000E+01   0.600000E+05 
Calculate innovation vector(iv) 
   
Minimize cost function using CG method 
   
Starting outer iteration :   1 
Starting cost function:  5.366048535905661D+04, Gradient=  8.134548965597619D+02 
For this outer iteration gradient target is:        8.134548965597618D+00 
---------------------------------------------------------------------- 
            Loop Iter Cost Function          Gradient               Step 
minimize_cg   1    0  5.366048535905661D+04  8.134548965597619D+02  0.000000000000000D+00 
minimize_cg   1    1  4.160895118661885D+04  4.087246011996226D+02  3.642548782952763D-02 
minimize_cg   1    2  3.684015367850271D+04  3.371798989064126D+02  5.709227119079368D-02 
minimize_cg   1    3  3.374263324064368D+04  2.579817263649239D+02  5.449050389717097D-02 
minimize_cg   1    4  3.163760162325043D+04  1.959172950097825D+02  6.325731144809946D-02 
minimize_cg   1    5  3.069560214937115D+04  1.426201418835412D+02  4.908345259881822D-02 
minimize_cg   1    6  2.994553670826729D+04  1.016946487735333D+02  7.375091679036799D-02 
minimize_cg   1    7  2.963703986213524D+04  8.614527420925806D+01  5.966017496500481D-02 
minimize_cg   1    8  2.944840596364260D+04  5.586889886231801D+01  5.083780846639206D-02 
minimize_cg   1    9  2.932974897428447D+04  4.810455663750825D+01  7.602966851781012D-02 
minimize_cg   1   10  2.925909806811914D+04  3.154639503336832D+01  6.106260102681394D-02 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-19 

minimize_cg   1   11  2.922595474924949D+04  2.511864257306522D+01  6.660801879172493D-02 
minimize_cg   1   12  2.920702117122884D+04  1.953264766296704D+01  6.001645744010778D-02 
minimize_cg   1   13  2.919536455912784D+04  1.421581370380062D+01  6.110547268188220D-02 
minimize_cg   1   14  2.918931706353119D+04  1.000448731094664D+01  5.984971814842433D-02 
minimize_cg   1   15  2.918568177329574D+04  7.457040724273403D+00  7.264059789587740D-02 
---------------------------------------------------------------------- 
  
Inner iteration stopped after   15 iterations 
  
Final:  15 iter, J= 2.918568177329574D+04, g= 7.457040724273385D+00 
---------------------------------------------------------------------- 
   
Diagnostics 
   Final cost function J       =     29185.68 
   
   Total number of obs.        =    37570 
   Final value of J            =     29185.68177 
   Final value of Jo           =     23086.99122 
   Final value of Jd           =         0.00000 
   Final value of Jb           =      6098.69056 
   Final value of Jc           =         0.00000 
   Final value of Je           =         0.00000 
   Final value of Jp           =         0.00000 
   Final value of Jl           =         0.00000 
   Final J / total num_obs     =         0.77683 
   Jb factor used(1)           =         1.00000 
   Jb factor used(2)           =         1.00000 
   Jb factor used(3)           =         1.00000 
   Jb factor used(4)           =         1.00000 
   Jb factor used(5)           =         1.00000 
   Jb factor used              =         1.00000 
   Je factor used              =         1.00000 
   VarBC factor used           =        10.00000 
   
*** WRF-Var completed successfully *** 

The file namelist.output.da (which contains the complete namelist settings) will be 
generated after a successful run of da_wrfvar.exe. The settings appearing in 
namelist.output.da, but not specified in your namelist.input, are the default values 
from $WRFDA_DIR/Registry/registry.var. 

After successful completion, wrfvar_output (the WRFDA analysis file, i.e. the new 
initial condition for WRF) should appear in the working directory along with a number of 
diagnostic files. Text files containing various diagnostics will be explained in the 
WRFDA Diagnostics section.  

To understand the role of various important WRFDA options, try re-running WRFDA by 
changing different namelist options. Some examples are listed below: 

1. Response of convergence criteria: 

Run the tutorial case with  

&wrfvar6 
eps = 0.0001, 
/ 

You may wish to compare various diagnostics with an earlier run.  



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-20 

2. Response of outer loop on minimization:  

      Run the tutorial case with 

&wrfvar6 
max_ext_its = 2, 
/ 

With this setting, the “outer loop” for the minimization procedure will be activated. You 
may wish to compare various diagnostics with an earlier run.  

Note that when running multiple outer loops with the CV3 background error option, you 
must specify the scaling factors which are called as1, as2, as3, as4, and as5. More details 
can be found in the section “Modifying CV3 length scales and variance”. 

3. Response of suppressing particular types of data in WRFDA: 

The types of observations that WRFDA gets to use actually depend on what is included 
in the observation file and the WRFDA namelist settings. For example, if you have 
SYNOP data in the observation file, you can suppress its usage in WRFDA by setting 
use_synopobs=false in record &wrfvar4 of namelist.input. It is OK if there are no 
SYNOP data in the observation file and use_synopobs=true. 

Turning on and off certain types of observations is widely used for assessing the impact 
of observations on data assimilations. 

Note: It is important to go through the default “use_*” settings in record &wrfvar4 in 
WRFDA/Registry/registry.var to know what observations are activated in default. 

For example, try making the WRFDA convergence criterion more stringent. This is 
achieved by reducing the value of “EPS” to e.g. 0.0001 by adding "EPS=0.0001" in the 
namelist.input record &wrfvar6. See the section Additional Background Error options 
for more namelist options. 

c. Run 4DVAR test case 

To run WRF 4D-Var, first create and enter a working directory, such as 
$WRFDA_DIR/workdir. Set the WORK_DIR environment variable (e.g. setenv WORK_DIR 
$WRFDA_DIR/workdir)  

For the tutorial case, the analysis date is 2008020512 and the test data directories are: 

> setenv DAT_DIR {directory where data is stored} 
> ls –lr $DAT_DIR 
ob/2008020512 
ob/2008020513 
ob/2008020514 
ob/2008020515 
ob/2008020516 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-21 

ob/2008020517 
ob/2008020518 
rc/2008020512 
be 

Note: WRFDA 4D-Var is able to assimilate conventional observational data, satellite 
radiance BUFR data, and precipitation data. The input data format can be PREPBUFR 
format data or ASCII observation data, processed by OBSPROC. 

Now follow the steps below: 

1) Link the executable file 

> cd $WORK_DIR 
> ln -fs $WRFDA_DIR/var/da/da_wrfvar.exe . 

2) Link the observational data, first guess, BE and LANDUSE.TBL, etc.  

> ln -fs $DAT_DIR/ob/2008020512/ob01.ascii ob01.ascii 
> ln -fs $DAT_DIR/ob/2008020513/ob02.ascii ob02.ascii 
> ln -fs $DAT_DIR/ob/2008020514/ob03.ascii ob03.ascii 
> ln -fs $DAT_DIR/ob/2008020515/ob04.ascii ob04.ascii 
> ln -fs $DAT_DIR/ob/2008020516/ob05.ascii ob05.ascii 
> ln -fs $DAT_DIR/ob/2008020517/ob06.ascii ob06.ascii 
> ln -fs $DAT_DIR/ob/2008020518/ob07.ascii ob07.ascii 
 
> ln -fs $DAT_DIR/rc/2008020512/wrfinput_d01 . 
> ln -fs $DAT_DIR/rc/2008020512/wrfbdy_d01 . 
> ln -fs wrfinput_d01 fg 
 
> ln -fs $DAT_DIR/be/be.dat . 
> ln -fs $WRFDA_DIR/run/LANDUSE.TBL . 
> ln -fs $WRFDA_DIR/run/GENPARM.TBL . 
> ln -fs $WRFDA_DIR/run/SOILPARM.TBL . 
> ln -fs $WRFDA_DIR/run/VEGPARM.TBL . 
> ln –fs $WRFDA_DIR/run/RRTM_DATA_DBL RRTM_DATA 

3) Copy the sample namelist 

> cp $DAT_DIR/namelist.input.4dvar namelist.input 

4) Edit necessary namelist variables, link optional files 

WRFDA 4D-Var has the capability to consider lateral boundary conditions as control 
variables as well during minimization. The namelist variable var4d_lbc=true turns on 
this capability. To enable this option, WRF 4D-Var needs not only the first guess at the 
beginning of the time window, but also the first guess at the end of the time window. 
 

> ln -fs $DAT_DIR/rc/2008020518/wrfinput_d01 fg02 
 
Please note: WRFDA beginners should not use this option until you have a good 
understanding of the 4D-Var lateral boundary conditions control. To disable this feature, 
make sure var4d_lbc in namelist.input is set to false. 
 
If you use PREPBUFR format data, set ob_format=1 in &wrfvar3 in namelist.input. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-22 

Because 12UTC PREPBUFR data only includes the data from 9UTC to 15UTC, for 4D-
Var you should include 18UTC PREPBUFR data as well: 
 

> ln -fs $DAT_DIR/ob/2008020512/gdas1.t12z.prepbufr.nr  ob01.bufr 
> ln -fs $DAT_DIR/ob/2008020518/gdas1.t18z.prepbufr.nr  ob02.bufr 
 

Edit namelist.input to match your experiment settings. The most important namelist 
variables related to 4D-Var are listed below. Please refer to README.namelist under the 
$WRFDA_DIR/var directory. A common mistake users make is in the time information 
settings. The rules are: analysis_date, time_window_min and start_xxx in 
&time_control should always be equal to each other; time_window_max and end_xxx 
should always be equal to each other; and run_hours is the difference between 
start_xxx and end_xxx, which is the length of the 4D-Var time window. 
 

&wrfvar1 
var4d=true, 
var4d_lbc=false, 
var4d_bin=3600, 
…… 
/ 
…… 
&wrfvar18 
analysis_date="2008-02-05_12:00:00.0000", 
/ 
…… 
&wrfvar21 
time_window_min="2008-02-05_12:00:00.0000", 
/ 
…… 
&wrfvar22 
time_window_max="2008-02-05_18:00:00.0000", 
/ 
…… 
&time_control 
run_hours=6, 
start_year=2008, 
start_month=02, 
start_day=05, 
start_hour=12, 
end_year=2008, 
end_month=02, 
end_day=05, 
end_hour=18, 
interval_seconds=21600, 
debug_level=0, 
/ 
…… 
 
 

5) Run WRF 4D-Var 

> cd $WORK_DIR 
> ./da_wrfvar.exe >& wrfda.log 
 

4DVAR is much more computationally expensive than 3DVAR, so running may take a 
while; you can set ntmax to a lower value so that WRFDA uses fewer minimization 
steps. You can also MPI with multiple processors to speed up the execution: 
 

> mpirun –np 4 ./da_wrfvar.exe >& wrfda.log & 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-23 

 
The “mpirun” command may be different depending on your machine. The output logs 
will be found in files named rsl.out.#### and rsl.error.#### for MPI runs. 
 
Please note: If you utilize the lateral boundary conditions option (var4d_lbc=true), in 
addition to the analysis at the beginning of the time window (wrfvar_output), the 
analysis at the end of the time window will also be generated as ana02, which will be 
used in subsequent updating of boundary conditions before the forecast. 

Radiance Data Assimilation in WRFDA 

This section gives a brief description for various aspects related to radiance assimilation 
in WRFDA. Each aspect is described mainly from the viewpoint of usage, rather than 
more technical and scientific details, which will appear in a separate technical report and 
scientific paper. Namelist parameters controlling different aspects of radiance 
assimilation will be detailed in the following sections. It should be noted that this section 
does not cover general aspects of the assimilation process with WRFDA; these can be 
found in other sections of chapter 6 of this user’s guide, or other WRFDA documentation. 

a. Running WRFDA with radiances 

In addition to the basic input files (LANDUSE.TBL, fg, ob.ascii, be.dat) mentioned 
in the “Running WRFDA” section, the following additional files are required for 
radiances: radiance data (typically in NCEP BUFR format), radiance_info files, 
VARBC.in (if you plan on using variational bias correction VARBC, as described in the 
section on bias correction), and RTM (CRTM or RTTOV) coefficient files.  
 
Edit namelist.input (Pay special attention to &wrfvar4, &wrfvar14, &wrfvar21, 
and &wrfvar22 for radiance-related options. A very basic namelist.input for running the 
radiance test case is provided in WRFDA/var/test/radiance/namelist.input) 
 
> ln -sf $DAT_DIR/gdas1.t00z.1bamua.tm00.bufr_d   ./amsua.bufr 
> ln -sf $DAT_DIR/gdas1.t00z.1bamub.tm00.bufr_d   ./amsub.bufr 
> ln -sf $WRFDA_DIR/var/run/radiance_info  ./radiance_info  # 
(radiance_info is a directory) 
> ln -sf $WRFDA_DIR/var/run/VARBC.in  ./VARBC.in 
(CRTM only)  > ln -sf $WRFDA_DIR/var/run/crtm_coeffs ./crtm_coeffs    
#(crtm_coeffs is a directory) 
(RTTOV only) > ln -sf your_RTTOV_path/rtcoef_rttov11/rttov7pred54L  
./rttov_coeffs     #   (rttov_coeffs is a directory) 
(HDF5 only) > ln –sf $WRFDA_DIR/var/run/leapsec.dat . 
 
See the following sections for more 
details on each aspect of radiance 
assimilation. 
 

Note: You can also specify the path of the “ 
crtm_coeffs” directory via the namelist; see 
the following section for more details 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-24 

b. Reading radiance data in WRFDA 

Currently, the ingest interface for NCEP BUFR radiance data is implemented in 
WRFDA. The radiance data are available through NCEP’s public ftp server 
(ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.${yyyymmddhh}) in near real-
time (with a 6-hour delay) and can meet requirements for both research purposes and 
some real-time applications. 
 
As of Version 3.9, WRFDA can read data from NOAA ATOVS instruments (HIRS, 
AMSU-A, AMSU-B and MHS), EOS Aqua instruments (AIRS, AMSU-A), DMSP 
instruments (SSMIS), METOP instruments (HIRS, AMSU-A, MHS, IASI), Meteosat 
instruments (SEVIRI), and JAXA GCOM-W1 instruments (AMSR2). Note that NCEP 
radiance BUFR files are separated by instrument names (i.e., one file for each type of 
instrument), and each file contains global radiance (generally converted to brightness 
temperature) within a 6-hour assimilation window, from multi-platforms. For running 
WRFDA, users need to rename NCEP corresponding BUFR files (table 1) to 
hirs3.bufr (including HIRS data from NOAA-15/16/17), hirs4.bufr (including 
HIRS data from NOAA-18/19, METOP-2), amsua.bufr (including AMSU-A data 
from NOAA-15/16/18/19, METOP-1 and -2), amsub.bufr (including AMSU-B data 
from NOAA-15/16/17), mhs.bufr (including MHS data from NOAA-18/19 and 
METOP-1 and -2), airs.bufr (including AIRS and AMSU-A data from EOS-AQUA) 
ssmis.bufr (SSMIS data from DMSP-16, AFWA provided) iasi.bufr (IASI data 
from METOP-1 and -2) and seviri.bufr (SEVIRI data from Meteosat 8-10) for 
WRFDA filename convention. Note that the airs.bufr file contains not only AIRS 
data but also AMSU-A, which is collocated with AIRS pixels (1 AMSU-A pixel 
collocated with 9 AIRS pixels). Users must place these files in the working directory 
where the WRFDA executable is run. It should also be mentioned that WRFDA reads 
these BUFR radiance files directly without the use of any separate pre-processing 
program. All processing of radiance data, such as quality control, thinning, bias 
correction, etc., is carried out within WRFDA. This is different from conventional 
observation assimilation, which requires a pre-processing package (OBSPROC) to 
generate WRFDA readable ASCII files. For reading the radiance BUFR files, WRFDA 
must be compiled with the NCEP BUFR library (see 
http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/). 
 

Table 1: NCEP and WRFDA radiance BUFR file naming convention 
 

NCEP BUFR file names WRFDA naming convention 
gdas1.t00z.airsev.tm00.bufr_d airs.bufr 
gdas1.t00z.1bamua.tm00.bufr_d amsua.bufr 
gdas1.t00z.1bamub.tm00.bufr_d amsub.bufr 
gdas1.t00z.atms.tm00.bufr_d atms.bufr 
gdas1.t00z.1bhrs3.tm00.bufr_d hirs3.bufr 
gdas1.t00z.1bhrs4.tm00.bufr_d hirs4.bufr 
gdas1.t00z.mtiasi.tm00.bufr_d iasi.bufr 
gdas1.t00z.1bmhs.tm00.bufr_d mhs.bufr 
gdas1.t00z.sevcsr.tm00.bufr_d seviri.bufr 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-25 

 
Namelist parameters are used to control the reading of corresponding BUFR files into 
WRFDA. For instance, USE_AMSUAOBS, USE_AMSUBOBS, USE_HIRS3OBS, 
USE_HIRS4OBS, USE_MHSOBS, USE_AIRSOBS, USE_EOS_AMSUAOBS, 
USE_SSMISOBS, USE_ATMSOBS, USE_IASIOBS, and USE_SEVIRIOBS control 
whether or not the respective file is read. These are logical parameters that are assigned to 
.FALSE. by default; therefore they must be set to .TRUE. to read the respective 
observation file. Also note that these parameters only control whether the data is read, not 
whether the data included in the files is to be assimilated. This is controlled by other 
namelist parameters explained in the next section. 
 
Sources for downloading these and other data can be found on the WRFDA website: 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/free_data.html. 

Other data formats 
Most of the above paragraphs describe NCEP BUFR data, but some of the satellite data 
supported by WRFDA are in alternate formats. Level-1R AMSR2 data from the JAXA 
GCOM-W1 satellite are available in HDF5 format, which requires compiling WRFDA 
with HDF5 libraries, as described in the “Compile WRFDA and Libraries” section.  
 
HDF5 file naming conventions are different than those for BUFR files. For AMSR2 data, 
WRFDA will look for two data files: L1SGRTBR.h5 (brightness temperature) and 
L2SGCLWLD.h5 (cloud liquid water). Only the brightness temperature file is mandatory 
(you will also need to copy or link the “leapsec.dat” file from WRFDA/var/run). If you 
have multiple data files for your assimilation window, you should name them 
L1SGRTBR-01.h5, L1SGRTBR-02.h5, etc. and L2SGCLWLD-01.h5, L2SGCLWLD-
02.h5, etc. 
 

c. Radiative Transfer Models 

The core component for direct radiance assimilation is to incorporate a radiative transfer 
model (RTM) into the WRFDA system as one part of observation operators. Two widely 
used RTMs in the NWP community, RTTOV (developed by ECMWF and UKMET in 
Europe), and CRTM (developed by the Joint Center for Satellite Data Assimilation 
(JCSDA) in US), are already implemented in the WRFDA system with a flexible and 
consistent user interface. WRFDA is designed to be able to compile with or without 
RTTOV by the definition of the “RTTOV” environment variable at compile time (see the 
“Compile WRFDA and Libraries” section). At runtime the user must select which RTM 
they intend to use via the namelist parameter RTM_OPTION (1 for RTTOV, the default, 
and 2 for CRTM). 
 
Both RTMs can calculate radiances for almost all available instruments aboard the 
various satellite platforms in orbit. An important feature of the WRFDA design is that all 
data structures related to radiance assimilation are dynamically allocated during running 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-26 

time, according to a simple namelist setup. The instruments to be assimilated are 
controlled at run-time by four integer namelist parameters: RTMINIT_NSENSOR (the 
total number of sensors to be assimilated), RTMINIT_PLATFORM (the platforms IDs 
array to be assimilated with dimension RTMINIT_NSENSOR, e.g., 1 for NOAA, 9 for 
EOS, 10 for METOP and 2 for DMSP), RTMINIT_SATID (satellite IDs array) and 
RTMINIT_SENSOR (sensor IDs array, e.g., 0 for HIRS, 3 for AMSU-A, 4 for AMSU-B, 
etc.). The full list of instrument triplets can be found in the table below: 
 

Instrument Satellite Format (PLATFORM, SATID, SENSOR) 
AIRS EOS-Aqua BUFR (9,2,11) 
AMSR2 GCOM-W1 HDF5 (29,1,63) 
AMSU-A EOS-Aqua BUFR (9,2,3) 
AMSU-A METOP-A BUFR (10,2,3) 
AMSU-A NOAA 15–19 BUFR (1,15–19,3) 
AMSU-B NOAA 15–17 BUFR (1,15–17,4) 
ATMS Suomi-NPP BUFR (17,0,19) 
HIRS-3 NOAA 15–17 BUFR (1,15–17,0) 
HIRS-4 METOP-A BUFR (10,2,0) 
HIRS-4 NOAA 18–19 BUFR (1,18–19,0) 
IASI METOP-A BUFR (10,2,16) 
MHS METOP-A BUFR (10,2,15) 
MHS NOAA 18–19 BUFR (1,18–19,15) 
MWHS FY-3A–FY-3B Binary (23,1–2,41) 
MWTS FY-3A–FY-3B Binary (23,1–2,40) 
SEVIRI Meteosat 8–10 BUFR (12,1–3,21) 
SSMIS DMSP 16–18 BUFR (2,16–18,10) 

 
Here’s an example of this section of the namelist for a user assimilating IASI 
observations from METOP-A, utilizing RTTOV as their RTM: 
 
&wrfvar14 
 rtminit_nsensor = 1 
 rtminit_platform = 10, 
 rtminit_satid = 2, 
 rtminit_sensor = 16, 
 rtm_option = 1, 
/ 
 
Here’s another example of this section of the namelist, this time for a user assimilating 
AMSU-A from NOAA 18–19 and EOS-Aqua, MHS from NOAA 18–19, and AIRS from 
EOS-Aqua, utilizing CRTM as their RTM: 
 
&wrfvar14 
 rtminit_nsensor = 6 
 rtminit_platform = 1, 1, 9, 1, 1, 9 
 rtminit_satid = 18, 19, 2, 18, 19, 2 
 rtminit_sensor = 3, 3, 3, 15, 15, 11 
 rtm_option = 2, 
/ 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-27 

 
The instrument triplets (platform, satellite, and sensor ID) in the namelist can be ranked 
in any order. More detail about the convention of instrument triples can be found in tables 
2 and 3 in the RTTOV v11 User’s Guide 
(http://nwpsaf.eu/deliverables/rtm/docs_rttov11/users_guide_11_v1.4.pdf) 
 
CRTM uses a different instrument-naming method, however, a conversion routine inside 
WRFDA is implemented such that the user interface remains the same for RTTOV and 
CRTM, using the same instrument triplet for both.  
 
When running WRFDA with radiance assimilation switched on, a set of RTM coefficient 
files need to be loaded. For the RTTOV option, RTTOV coefficient files are to be copied 
or linked to a sub-directory rttov_coeffs/ under the working directory. For the CRTM 
option, CRTM coefficient files are to be copied or linked to a sub-directory 
crtm_coeffs/ under the working directory, or the location of this directory can be 
specified in the namelist:  
 
&wrfvar14 
 crtm_coef_path = WRFDA/var/run/crtm_coeffs (Can be a relative or absolute path) 
/ 
 
Only coefficients for instruments listed in the namelist are needed. Potentially WRFDA 
can assimilate all sensors as long as the corresponding coefficient files are provided. In 
addition, necessary developments on the corresponding data interface, quality control, 
and bias correction are important to make radiance data assimilate properly; however, a 
modular design of radiance relevant routines already facilitates the addition of more 
instruments in WRFDA. 
 
The RTTOV package is not distributed with WRFDA, due to licensing restrictions. Users 
need to follow the instructions at http://nwpsaf.eu/site/software/rttov/ to download the RTTOV 
source code and supplement coefficient files and the emissivity atlas dataset. Only 
RTTOV v11 (11.1—11.3) can be used in WRFDA version 3.9, so if you have an older 
version of RTTOV you must upgrade. RTTOV v12 is not yet supported. 
 
As mentioned in a previous paragraph, the CRTM package is distributed with WRFDA, 
and is located in $WRFDA_DIR/var/external/crtm_2.2.3. The CRTM code in WRFDA 
is the same as the source code that users can download from 
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM, with only minor modifications (mainly for ease of 
compilation). 
 
To use one or both of the above radiative transfer models, you will have to set the 
appropriate environment variable(s) at compile time. See the section “Compile WRFDA 
and Libraries” for details. 

d. Channel Selection 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-28 

Channel selection in WRFDA is controlled by radiance ‘info’ files, located in the sub-
directory radiance_info, under the working directory. These files are separated by 
satellites and sensors; e.g., noaa-15-amsua.info, noaa-16-amsub.info, dmsp-16-
ssmis.info and so on. An example of 5 channels from noaa-15-amsub.info is shown 
below. The fourth column is used by WRFDA to control when to use a corresponding 
channel. Channels with the value “-1” in the fourth column indicate that the channel is 
“not assimilated,” while the value “1” means “assimilated.” The sixth column is used by 
WRFDA to set the observation error for each channel. Other columns are not used by 
WRFDA. It should be mentioned that these error values might not necessarily be optimal 
for your applications. It is the user’s responsibility to obtain the optimal error statistics 
for his/her own applications. 
 
Sensor channel IR/MW use idum  varch    polarization(0:vertical;1:horizontal) 
 
415 1 1 -1 0 0.5500000000E+01 0.0000000000E+00 
415 2 1 -1 0 0.3750000000E+01 0.0000000000E+00 
415 3 1  1 0 0.3500000000E+01 0.0000000000E+00 
415 4 1 -1 0 0.3200000000E+01 0.0000000000E+00 
415 5 1  1 0 0.2500000000E+01 0.0000000000E+00 

e. Bias Correction 

Satellite radiance is generally considered to be biased with respect to a reference (e.g., 
background or analysis field in NWP assimilation) due to systematic error of the 
observation itself, the reference field, and RTM. Bias correction is a necessary step prior 
to assimilating radiance data. There are two ways of performing bias correction in 
WRFDA. One is based on the Harris and Kelly (2001) method, and is carried out using a 
set of coefficient files pre-calculated with an off-line statistics package, which was 
applied to a training dataset for a month-long period. The other is Variational Bias 
Correction (VarBC).  Only VarBC is introduced here, and recommended for users 
because of its relative simplicity in usage. 

Variational Bias Correction 
To use VarBC, set the namelist option USE_VARBC to TRUE and have the VARBC.in file 
in the working directory. VARBC.in is a VarBC setup file in ASCII format. A template is 
provided with the WRFDA package ($WRFDA_DIR/var/run/VARBC.in). 
 
All VarBC input is passed through a single ASCII file called VARBC.in. Once WRFDA 
has run with the VarBC option switched on, it will produce a VARBC.out file in a similar 
ASCII format. This output file will then be used as the input file for the next assimilation 
cycle. 

VarBC Coldstart 
Coldstarting means starting the VarBC from scratch; i.e. when you do not know the 
values of the bias parameters. 
 
The coldstart is a routine in WRFDA. The bias predictor statistics (mean and standard 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-29 

deviation) are computed automatically and will be used to normalize the bias parameters. 
All coldstart bias parameters are set to zero, except the first bias parameter (= simple 
offset), which is set to the mode (=peak) of the distribution of the (uncorrected) 
innovations for the given channel. 
 
A threshold of a number of observations can be set through the namelist option 
VARBC_NOBSMIN (default = 10), under which it is considered that not enough 
observations are present to keep the coldstart values (i.e. bias predictor statistics and bias 
parameter values) for the next cycle. In this case, the next cycle will do another coldstart. 

Background constraint for bias parameters 
The background constraint controls the inertia you want to impose on the predictors (i.e. 
the smoothing in the predictor time series). It corresponds to an extra term in the 
WRFDA cost function. 
 
It is defined in the namelist via the option VARBC_NBGERR; the default value is 5000. 
This number is related to a number of observations; the bigger the number, the more 
inertia constraint. If these numbers are set to zero, the predictors can evolve without any 
constraint. 

Scaling factor 
The VarBC uses a specific preconditioning, which can be scaled through the namelist 
option VARBC_FACTOR (default = 1.0). 

Offline bias correction 
The analysis of the VarBC parameters can be performed "offline" ; i.e. independently 
from the main WRFDA analysis. No extra code is needed.  Just set the following 
MAX_VERT_VAR* namelist variables to be 0, which will disable the standard control 
variable and only keep the VarBC control variable. 
 
MAX_VERT_VAR1=0.0 
MAX_VERT_VAR2=0.0 
MAX_VERT_VAR3=0.0 
MAX_VERT_VAR4=0.0 
MAX_VERT_VAR5=0.0 
 

Freeze VarBC 
In certain circumstances, you might want to keep the VarBC bias parameters constant in 
time (="frozen"). In this case, the bias correction is read and applied to the innovations, 
but it is not updated during the minimization. This can easily be achieved by setting the 
namelist options: 
 
USE_VARBC=false 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-30 

FREEZE_VARBC=true 
 

Passive observations 
Some observations are useful for preprocessing (e.g. Quality Control, Cloud detection) 
but you might not want to assimilate them. If you still need to estimate their bias 
correction, these observations need to go through the VarBC code in the minimization. 
For this purpose, the VarBC uses a separate threshold on the QC values, called 
"qc_varbc_bad". This threshold is currently set to the same value as "qc_bad", but can 
easily be changed to any ad hoc value. 

f. Other radiance assimilation options 

RAD_MONITORING (30)  
Integer array of dimension RTMINIT_NSENSOR, 0 for assimilating mode, 1 for 
monitoring mode (only calculates innovation). 

  
THINNING 

Logical, TRUE will perform thinning on radiance data.  
 
THINNING_MESH (30) 

Real array with dimension RTMINIT_NSENSOR, values indicate thinning mesh 
(in km) for different sensors. 

  
QC_RAD 

Logical, controls if quality control is performed, always set to TRUE. 
  
WRITE_IV_RAD_ASCII 

Logical, controls whether to output observation-minus-background (O-B) files, 
which are in ASCII format, and separated by sensors and processors. 

  
WRITE_OA_RAD_ASCII 

Logical, controls whether to output observation-minus-analysis (O-A) files 
(including also O-B information), which are in ASCII format, and separated by 
sensors and processors. 

  
USE_ERROR_FACTOR_RAD 

Logical, controls use of a radiance error tuning factor file  
(radiance_error.factor) which is created with empirical values, or generated 
using a variational tuning method (Desroziers and Ivanov, 2001). 

  
ONLY_SEA_RAD 

Logical, controls whether only assimilating radiance over water.  
 
TIME_WINDOW_MIN 

String, e.g., "2007-08-15_03:00:00.0000", start time of assimilation time window 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-31 

 
TIME_WINDOW_MAX 

String, e.g., "2007-08-15_09:00:00.0000", end time of assimilation time window 
 
USE_ANTCORR (30) 

Logical array with dimension RTMINIT_NSENSOR, controls if performing 
Antenna Correction in CRTM. 

 
USE_CLDDET_MMR 

Logical, controls whether using the MMR scheme to conduct cloud detection for 
infrared radiance. 
 

USE_CLDDET_ECMWF 
Logical, controls whether using the ECMWF scheme to conduct cloud detection 
for infrared radiance. 
 

AIRS_WARMEST_FOV 
Logical, controls whether using the observation brightness temperature for AIRS 
Window channel #914 as criterion for GSI thinning. 
 

USE_CRTM_KMATRIX 
Logical, controls whether using the CRTM K matrix rather than calling CRTM 
TL and AD routines for gradient calculation. 
 

CRTM_CLOUD 
Logical, include cloud effects in CRTM calculations. 
Further information on this capability can be found in the following publication: 
 
Chun Yang, Zhiquan Liu, Jamie Bresch, Syed R. H. Rizvi, Xiang-Yu Huang and Jinzhong Min, 
2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of 
Hurricane Sandy with a limited-area data assimilation system. Tellus A, 68, 30917, 
doi:10.3402/tellusa.v68.30917. 
 

USE_RTTOV_KMATRIX 
Logical, controls whether using the RTTOV K matrix rather than calling RTTOV 
TL and AD routines for gradient calculation. 
 

RTTOV_EMIS_ATLAS_IR 
Integer, controls the use of the IR emissivity atlas. 
Emissivity atlas data (should be downloaded separately from the RTTOV web 
site) need to be copied or linked under a sub-directory of the working directory 
(emis_data) if RTTOV_EMIS_ATLAS_IR is set to 1. 
 

RTTOV_EMIS_ATLAS_MW 
Integer, controls the use of the MW emissivity atlas. 
Emissivity atlas data (should be downloaded separately from the RTTOV web 
site) need to be copied or linked under a sub-directory of the working directory 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-32 

(emis_data) if RTTOV_EMIS_ATLAS_MW is set to 1 or 2. 
 

 

g. Diagnostics and Monitoring 

Monitoring capability within WRFDA 
Run WRFDA with the rad_monitoring namelist parameter in record 
wrfvar14 in namelist.input.  

 
0 means assimilating mode. Innovations (O minus B) are calculated and data are 
used in minimization. 
1 means monitoring mode: innovations are calculated for diagnostics and 
monitoring. Data are not used in minimization. 
 
The value of rad_monitoring should correspond to the value of  
rtminit_nsensor. If rad_monitoring is not set, then the default value of 
0 will be used for all sensors. 

 

Outputting radiance diagnostics from WRFDA 
 

Run WRFDA with the following namelist options in record wrfvar14 in 
namelist.input. 
 
write_iv_rad_ascii  

Logical. TRUE to write out (observation-background, etc.) diagnostics 
information in plain-text files with the prefix ‘inv,’ followed by the 
instrument name and the processor id. For example, 01_inv_noaa-17-
amsub.0000 (01 is outerloop index, 0000 is processor index) 

 
write_oa_rad_ascii  

Logical. TRUE to write out (observation-background, observation-
analysis, etc.) diagnostics information in plain-text files with the prefix 
‘oma,’ followed by the instrument name and the processor id. For 
example, 01_oma_noaa-18-mhs.0001 

 
Each processor writes out the information for one instrument in one file in the 
WRFDA working directory. 

Radiance diagnostics data processing 
One of the 44 executables compiled as part of the WRFDA system is the file 
da_rad_diags.exe. This program can be used to collect the 01_inv* or 01_oma* 
files and write them out in netCDF format (one instrument in one file with prefix 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-33 

diags followed by the instrument name, analysis date, and the suffix .nc) for 
easier data viewing, handling and plotting with netCDF utilities and NCL scripts. 
See WRFDA/var/da/da_monitor/README for information on how to use this 
program. 

Radiance diagnostics plotting 
Two NCL scripts (available as part of the WRFDA Tools package, which can be 
downloaded at http://www2.mmm.ucar.edu/wrf/users/wrfda/download/tools.html) are used 
for plotting: $TOOLS_DIR/var/graphics/ncl/plot_rad_diags.ncl and 
$TOOLS_DIR/var/graphics/ncl/advance_cymdh.ncl. The NCL scripts can be 
run from a shell script, or run alone with an interactive ncl command (the NCL 
script and set the plot options must be edited, and the path of 
advance_cymdh.ncl, a date-advancing script loaded in the main NCL plotting 
script, may need to be modified). 

 
Steps (3) and (4) can be done by running a single ksh script (also in the WRFDA 
Tools package: $TOOLS_DIR/var/scripts/da_rad_diags.ksh) with proper 
settings. In addition to the settings of directories and what instruments to plot, 
there are some useful plotting options, explained below. 
 

setenv OUT_TYPE=ncgm ncgm or pdf 
pdf will be much slower than ncgm and generate 
huge output if plots are not split. But pdf has 
higher resolution than ncgm. 

setenv PLOT_STATS_ONLY=false true or false 
true: only statistics of OMB/OMA vs channels 
and OMB/OMA vs dates will be plotted. 
false: data coverage, scatter plots (before and after 
bias correction), histograms (before and after bias 
correction), and statistics will be plotted. 

setenv PLOT_OPT=sea_only all, sea_only, land_only 
setenv PLOT_QCED=false 
 

true or false 
true: plot only quality-controlled data 
false: plot all data 

setenv PLOT_HISTO=false true or false: switch for histogram plots 
setenv PLOT_SCATT=true true or false: switch for scatter plots 
setenv PLOT_EMISS=false true or false: switch for emissivity plots 
setenv PLOT_SPLIT=false true or false 

true: one frame in each file 
false: all frames in one file 

setenv PLOT_CLOUDY=false 
 

true or false 
true: plot cloudy data. Cloudy data to be plotted 
are defined by PLOT_CLOUDY_OPT (si or 
clwp), CLWP_VALUE, SI_VALUE settings. 

setenv PLOT_CLOUDY_OPT=si si or clwp 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-34 

clwp: cloud liquid water path from model 
si: scatter index from obs, for amsua, amsub and 
mhs only 

setenv CLWP_VALUE=0.2 only plot points with 
clwp >= clwp_value (when clwp_value > 0) 
clwp >  clwp_value (when clwp_value = 0) 

setenv SI_VALUE=3.0  
 

 Evolution of VarBC parameters 
 

NCL scripts (also in the WRFDA Tools package: 
$TOOLS_DIR/var/graphics/ncl/plot_rad_varbc_param.ncl and 
$TOOLS_DIR/var/graphics/ncl/advance_cymdh.ncl) are used for plotting the 
evolution of VarBC parameters. 

 

Radar Data Assimilation in WRFDA 

WRFDA has the ability to assimilate Doppler radar data, either for 3DVAR or 4DVAR 
assimilation. Both Doppler velocity and reflectivity can be assimilated, and there are 
several different reflectivity operator options available. 

a. Preparing radar observations 

Radar observations are read by WRFDA in a text-based format. This format is described 
in the radar tutorial presentation available on the WRFDA website 
(http://www2.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2015_Aug/docs/WRFDA_Radar.pdf). Because 
radar data comes in a variety of different formats, it is the user’s responsibility to convert 
their data into this format. For 3DVAR, these observations should be placed in a file 
named ob.radar. For 4DVAR, they should be placed in files named ob01.radar, 
ob02.radar, etc., with one observation file per time slot, as described in the earlier 
4DVAR section.  

b. Running WRFDA for radar assimilation 

Once your observations are prepared, you can run WRFDA the same as you would 
normally (see the previous sections on how to run either 3DVAR or 4DVAR). For 
guidance, there is an example 3DVAR case available for download at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/V38/wrfda_radar_testdata.tar.gz. 
 
Edit namelist.input and pay special attention to the radar options listed below. Further 
details on some of these options can be found in the following sections 
 
&wrfvar4 
use_radarobs true: radar observation files will be read by WRFDA 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-35 

use_radar_rv true: Assimilate radar velocity observations 
use_radar_rf true: Assimilate radar reflectivity using total mixing ratio 
use_radar_rhv true: Assimilate retrieved hydrometeors (qr, qs, qg) from radar reflectivity 
use_radar_rqv true: Assimilate estimated humidity (qv) from radar reflectivity 
/ 
… 
&wrfvar7 
cloud_cv_options 0 (default): no hydrometeor control variables 

1: use total water (water vapor+cloud liquid water+rain water) control variable 
3: use individual hydrometeor control variables (use_radar_rhv = true 
only) 

use_cv_w false (default): use ω (vertical velocity with respect to pressure) control variable 
true: use W (vertical velocity with respect to height) control variable.   
For cloud_cv_options = 3 only 

/ 
… 
&radar_da 
radar_non_precip_opt 0 (default): no null-echo assimilation 

1: KNU null-echo scheme 
radar_non_precip_rf Reflectivity flag value (dBz) in observation file indicating non-

precipitation echoes (default: -999.99) 
The following options apply for use_radar_rqv only: 
radar_non_precip_rh_w RH (%) with respect to water for non-precip retrieved Q_vapor (rqv) 

(default: 95) 
radar_non_precip_rh_i RH (%) with respect to ice for non-precip retrieved rqv (default: 85) 
cloudbase_calc_opt Option for calculating cloud-base height: below this height retrieved 

humidity will not be assimilated for the use_radar_rqv option 
0: fixed value of 1500 meters 
1 (default): KNU scheme 
2: NCAR scheme 

radar_saturated_rf rf value (dBz) used to indicate precipitation for rqv (default 25.0) 
radar_rqv_thresh1 rf value (dBz) used to scale down retrieved rqv (default 40.0) 
radar_rqv_thresh2 rf value (dBz) used to scale down retrieved rqv (default 50.0) 
radar_rqv_rh1 RH (%) for radar_saturated_rf < rf < radar_rqv_thresh1 (default 85) 
radar_rqv_rh2 RH (%) for radar_rqv_thresh1 < rf < radar_rqv_thresh2 (default 95) 
radar_rqv_h_lbound height (meters) lower bound for assimilating rqv (default -999.0) 
radar_rqv_h_ubound height (meters) upper bound for assimilating rqv (default -999.0) 

NOTE: both namelist settings radar_rqv_h_lbound and 
radar_rqv_h_ubound must be set and greater than zero for either to 
have an impact 

 

c. Reflectivity assimilation options 

There are two different options for assimilating radar reflectivity data. The first 
(use_radar_rf) directly assimilates the observed reflectivity using a reflectivity operator 
to convert the model rainwater mixing ratio into reflectivity and the total mixing ratio as 
the control variable, as described in Xiao and Sun, 2007 
(http://journals.ametsoc.org/doi/full/10.1175/MWR3471.1); this is the only option 
available in WRFDA prior to version 3.7.  For this option, the hydrometeors are 
partitioned using a warm rain scheme described in the above reference.  



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-36 

 
The second (use_radar_rhv) is a scheme described in Wang et al, 2013 
(http://journals.ametsoc.org/doi/full/10.1175/JAMC-D-12-0120.1), which assimilates rainwater 
mixing ratio that is estimated from radar reflectivity, described as an “indirect method” in 
the paper. This second option also includes an option (use_radar_rqv) that allows the 
assimilation of in-cloud humidity estimated from reflectivity using a method described in 
Wang et al, 2013. It also includes the assimilation of snow and graupel converted from 
reflectivity using formulas as described in Gao and Stensrud, 2012 
(http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0162.1). 
 
There are many tunable parameters that go along with the use_radar_rqv option, which 
retrieves a value of cloud humidity for assimilation. There are three possible options for 
cloud base height (below which cloud humidity will not be assimilated) as specified by 
cloudbase_calc_opt (0 is the previous default behavior and is not recommended). There 
are also a few thresholds for scaling the calculated cloud humidity by certain amounts, as 
well as an upper and lower altitude bound for assimilating cloud humidity. 

d. Null-echo assimilation options 

New for version 3.9, WRFDA includes the capability to assimilate null-echo observations 
(radar_non_precip_opt=1): reflectivity values with a set flag value 
(radar_non_precip_rf) will be assimilated as non-precipitation points. This can be an 
important radar assimilation technique, as normally you can not remove precipitation 
from your analysis without using the retrieved water vapor option (use_radar_rqv). This 
capability was developed by Ki-Hong Min from Kyungpook National University, South 
Korea (WRF Workshop abstract: 
http://www2.mmm.ucar.edu/wrf/users/workshops/WS2016/short_abstracts/P78.pdf). 

Precipitation Data Assimilation in WRFDA 4DVAR 

The assimilation of precipitation observations in WRFDA 4D-Var is described in this 
section. Currently, WRFPLUS has already included the adjoint and tangent linear codes 
of large-scale condensation and cumulus scheme, therefore precipitation data can be 
assimilated directly in 4D-Var. Users who are interested in the scientific detail of 4D-Var 
assimilation of precipitation should refer to related scientific papers, as this section is 
only a basic guide to running WRFDA Precipitation Assimilation. This section instructs 
users on data processing, namelist variable settings, and how to run WRFDA 4D-Var 
with precipitation observations. 

a. Preparing precipitation observations 

WRFDA 4D-Var can assimilate NCEP Stage IV radar and gauge precipitation data. 
NCEP Stage IV archived data are available on the NCAR CODIAC web page at: 
http://data.eol.ucar.edu/codiac/dss/id=21.093 (for more information, please see the NCEP Stage 
IV Q&A Web page at http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/QandA/). The original 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-37 

precipitation data are at 4-km resolution on a polar-stereographic grid. Hourly, 6-hourly 
and 24-hourly analyses are available. The following image shows the accumulated 6-h 
precipitation for the tutorial case. 

 
It should be mentioned that the NCEP Stage IV archived data is in GRIB1 format and it 
cannot be ingested into the WRFDA directly. A tool “precip_converter” is provided to 
reformat GRIB1 observations into the WRFDA-readable ASCII format. It can be 
downloaded from the WRFDA users page at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/precip_converter.tar.gz. The NCEP GRIB 
libraries, w3 and g2 are required to compile the precip_converter utility. These libraries 
are available for download from NCEP at http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/. The 
output file to the precip_converter utility is named in the format 
ob.rain.yyyymmddhh.xxh; The 'yyyymmddhh' in the file name is the ending hour of the 
accumulation period, and 'xx' (=01,06 or 24) is the accumulating time period. 
 
For users wishing to use their own observations instead of NCEP Stage IV, it is the user’s 
responsibility to write a Fortran main program and call subroutine writerainobs (in 
write_rainobs.f90) to generate their own precipitation data. For more information please 
refer to the README file in the precip_converter directory. 

b. Running WRFDA with precipitation observations 

WRFDA 4D-Var is able to assimilate hourly, 3-hourly and 6-hourly precipitation data. 
According to experiments and related scientific papers, 6-hour precipitation 
accumulations are the ideal observations to be assimilated, as this leads to better results 
than directly assimilating hourly data.�
 
The tutorial example is for assimilating 6-hour accumulated precipitation. In your 
working directory, link all the necessary files as follows, 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-38 

 
> ln -fs $WRFDA_DIR/var/da/da_wrfvar.exe . 
> ln -fs $DAT_DIR/rc/2008020512/wrfinput_d01 . 
> ln -fs $DAT_DIR/rc/2008020512/wrfbdy_d01 . 
> ln -fs $DAT_DIR/rc/2008020518/wrfinput_d01 fg02 (only necessary 
for var4d_lbc=true) 
> ln -fs wrfinput_d01 fg 
> ln -fs $DAT_DIR/be/be.dat . 
> ln -fs $WRFDA_DIR/run/LANDUSE.TBL . 
> ln -fs $WRFDA_DIR/run/RRTM_DATA_DBL ./RRTM_DATA 
> ln -fs $DAT_DIR/ob/2008020518/ob.rain.2008020518.06h ob07.rain 

 
Note: The reason why the observation ob.rain.2008020518.06h is linked as ob07.rain 
will be explained in section c. 
 
Edit namelist.input (you can start with the same namelist as for the 4dvar tutorial case) 
and pay special attention to &wrfvar1 and &wrfvar4 for precipitation-related options.  
 
&wrfvar1 
var4d true: Run WRFDA for 4DVAR. This is the only supported option for precipitation 

assimilation (default value is false) 
var4d_bin_rain length (seconds) of the precipitation assimilation window (default 3600). This can be 

different from var4d_bin, which controls the assimilation window for all other 
observation types 

/ 
… 
&wrfvar4 
use_rainobs true (default) : read precipitation data 
thin_rainobs true (default): thin precipitation observations 
thin_mesh_conv Size of thinning mesh (in km) for non-radiance observations, including precipitation 

observations (default value 20.0) 
/ 
 
Then, run 4D-Var in serial or parallel mode, 
 
            >./da_wrfvar.exe >& wrfda.log 
 

c. Properly linking observation files 

In section b, ob.rain.2008020518.06h is linked as ob07.rain. The number 07 is 
assigned according to the following rule:  
 

x=i*(var4d_bin_rain/var4d_bin)+1,  
 

Here, i is the sequence number of the observation��
for x<10, the observation file should be renamed as ob0x.rain;  
for x>=10, it should be renamed as obx.rain 
 
In the example above, 6-hour accumulated precipitation data is assimilated in 6-hour time 
window. In the namelist, values should be set at var4d_bin=3600 and 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-39 

var4d_bin_rain=21600, and there is one observation file (i.e., i=1) in the time window, 
Thus the value of x is 7. The file ob.rain.2008020518.06h should be renamed as 
ob07.rain. 
 
Let us take another example for how to rename observation files for 3-hourly 
precipitation data in 6-hour time window. The sample namelist is as follows,  
 

&wrfvar1 
var4d=true, 
var4d_lbc=true, 
var4d_bin=3600, 
var4d_bin_rain=10800, 
…… 
/ 
 

There are two observation files, ob.rain.2008020515.03h and 
ob.rain.2008020518.03h. For the first file (i=1) ob.rain.2008020515.03h, it should 
be renamed as ob04.rain,and the second file (i=2) renamed as ob07.rain. 

Updating WRF Boundary Conditions 

The ultimate goal of WRFDA is to combine a WRF file (wrfinput or wrfout) with 
observations and error information, in order to produce a “best guess” of the atmospheric 
state for your domain. While this “best guess” can be useful on its own for research 
purposes, it is often more useful as the initial conditions to a WRF forecast, so that the 
better initial conditions will ultimately provide a better forecast. 
 
A common use of WRF/WRFDA for research or realtime forecast purposes is by 
following these steps: 
 

1. Generate initial conditions for WRF (wrfinput) via WPS (as described in 
Chapter 3 of this users guide) and real.exe (as described in Chapter 5 of this 
users guide) 

2. Run WRFDA on this wrfinput to assimilate observations and produce a 
wrfvar_output file (a new, improved wrfinput) 

3. Run da_update_bc.exe to update the WRF lateral boundary 
conditions file created in step 1 (wrfbdy_d01) to be consistent with the 
new wrfinput_d01 file 

4. Run wrf.exe to produce a WRF forecast 
 
The highlighted step 3 will be described in the following section. 
 

a. Lateral boundary conditions 

When using a WRFDA analysis (wrfvar_output) to run a WRF forecast, it is essential 
that you update the WRF lateral boundary conditions (contained in the file 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-40 

wrfbdy_d01, created by real.exe) to match your new analysis. Domain-1 
(wrfbdy_d01) must be updated to be consistent with the new WRFDA initial condition 
(analysis). This is absolutely essential for domain 1; otherwise your forecast will have 
discontinuities and poor results at the boundary. For nested domains, domain-2, domain-
3, etc., the lateral boundary conditions are provided by their parent domains, so no lateral 
boundary update is needed for these domains. The update procedure is performed by the 
WRFDA utility called da_update_bc.exe, and after compilation can be found in 
$WRFDA_DIR/var/build. 

da_update_bc.exe requires three input files: the WRFDA analysis 
(wrfvar_output), the wrfbdy file from real.exe, and a namelist file: 
parame.in. To run da_update_bc.exe to update lateral boundary conditions, follow 
the steps below: 

> cd $WRFDA_DIR/var/test/update_bc 
> cp –p $DAT_DIR/rc/2008020512/wrfbdy_d01 .  

(IMPORTANT: make a copy of wrfbdy_d01, as the wrf_bdy_file will be 
overwritten by da_update_bc.exe) 

> vi parame.in 
&control_param 
 da_file            = '../tutorial/wrfvar_output' 
 wrf_bdy_file       = './wrfbdy_d01' 
 domain_id          = 1 
 debug              = .true. 
 update_lateral_bdy = .true. 
 update_low_bdy     = .false. 
 update_lsm         = .false. 
 iswater            = 16 
 var4d_lbc          = .false. 
/ 
 
> ln –sf $WRFDA_DIR/var/da/da_update_bc.exe . 
> ./da_update_bc.exe 

 
At this stage, you should have the files wrfvar_output and wrfbdy_d01 in your 
WRFDA working directory. They are the WRFDA updated initial and boundary 
condition files for any subsequent WRF model runs. To use, link a copy of 
wrfvar_output and wrfbdy_d01 to wrfinput_d01 and wrfbdy_d01, respectively, in 
your WRF working directory. 
 
You should also see two additional output files: fort.11 and fort.12. These contain 
information about the changes made to wrfbdy_d01. 
 
Note: The above instructions for updating lateral boundary conditions do not apply for 
child domains (wrfinput_d02, wrfinput_d03, etc.). This is because the lateral boundary 
conditions for these domains come from the respective parent domains, so update_bc is 
not necessary after running WRFDA when a child domain is used as the first guess. 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-41 

b. Cycling with WRF and WRFDA 

While the above procedure is useful, often for realtime applications it is better to run a 
so-called “cycling” forecast. In a WRF/WRFDA cycling system, rather than using WPS 
to generate the initial conditions for your assimilation/forecast, the output from a 
previous forecast is used. In this way, information from previous observations can be 
used to improve the current “first guess” of the atmosphere, ultimately resulting in an 
even better analysis and forecast. The procedure for cycling is as follows:  
 

1. For your initial forecast time (T1), generate initial and boundary conditions 
for WRF (wrfinput and wrfbdy_d01) via WPS (as described in Chapter 3 of 
this users guide) and real.exe (as described in Chapter 5 of this users guide) 

2. Run WRFDA on this wrfinput to assimilate observations to produce a 
wrfvar_output file (a new, improved wrfinput) 

3. Run da_update_bc.exe to update the WRF lateral boundary conditions 
file created in step 1 (wrfbdy_d01) to be consistent with the new 
wrfinput file 

4. Run wrf.exe to produce a WRF forecast (wrfout) for the next forecast time 
(T2) 

5. Repeat step 1 for the next forecast time (T2) to produce initial and boundary 
conditions for WRF (wrfinput and wrfbdy_d01) via WPS and real.exe 

6. Run da_update_bc.exe to update the lower boundary conditions of 
the WRF forecast file (wrfout) with data from the wrfinput file 
generated in step 5. 

7. Run WRFDA on this wrfout file to assimilate observations and produce a 
wrfvar_output file (a new, improved wrfinput for the next WRF forecast) 

8. Run da_update_bc.exe again to update the WRF boundary conditions 
file created in step 5 (wrfbdy_d01) to be consistent with the new 
wrfinput file 

9. Run wrf.exe to produce a WRF forecast (wrfout) for the next forecast time 
(T2) 

10. Repeat steps 5-9 for the next forecast time(s) ad infinitum (T3, T4, T5…) 
 
In cycling mode, as you can see above, the program da_update_bc.exe is used for 
two distinct purposes: prior to running WRFDA it updates the lower boundary conditions 
of the WRF forecast file that is used as the first guess for WRFDA, then after running 
WRFDA it updates the lateral boundary conditions file (wrfbdy_d01) to be consistent 
with the WRFDA output (a new, improved wrfinput for the next WRF forecast). The 
use of da_update_bc.exe to update the lateral boundary conditions was covered in 
the previous section, and this section will cover the second use: using 
da_update_bc.exe to update the lower boundary conditions. 
 
The reason that this additional step is necessary for cycling forecasts: While a WRF 
forecast integrates atmospheric variables forward in time, it does not update certain lower 
boundary conditions, such as vegetation fraction, sea ice, snow cover, etc, which are 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-42 

important for both forecasts and data assimilation. For short periods of time, this is not a 
problem, as these fields do not tend to evolve much over the course of a few days. 
However, for a cycling forecast that runs for weeks, months, or even years, it is essential 
to update these fields regularly from the initial condition files through WPS. 
 
To do this, prior to the assimilation process, the first guess file needs to be updated based 
on the information from the wrfinput file, generated by WPS/real.exe at analysis time. 
You should run da_update_bc.exe with the following namelist options: 
 
 da_file            = './fg' 
 wrf_input          = './wrfinput_d01' 
 update_lateral_bdy = .false. 
 update_low_bdy     = .true.  
 iswater            = 16 

Note: “iswater” (water point index) is 16 for USGS LANDUSE and 17 for MODIS LANDUSE. 
 
This creates a lower-boundary updated first guess (da_file will be overwritten by 
da_update_bc with updated lower boundary conditions from wrf_input). Then, after 
WRFDA has finished, run da_update_bc.exe again with the following namelist options: 
 
 da_file            = './wrfvar_output' 
 wrf_bdy_file       = './wrfbdy_d01' 
 update_lateral_bdy = .true. 
 update_low_bdy     = .false. 
  
This updates the lateral boundary conditions (wrf_bdy_file will be overwritten by 
da_update_bc with lateral boundary conditions from da_file). 

As mentioned previously, lateral boundary conditions for child domains (wrfinput_d02, 
wrfinput_d03, etc.) come from the respective parent domains, so update_bc is not 
necessary after running WRFDA. However, in a cycling procedure, the lower boundaries 
in each of the nested domains’ WRFDA analysis files still need to be updated. In these 
cases, you must set the namelist variable, domain_id > 1 (default is 1 for domain 1) and 
provide the appropriate wrfinput file (wrf_input = './wrfinput_d02' for domain 2, 
for instance). 

c. WRFDA 4DVAR with lateral boundary conditions as control variables 

 
If you activate the var4d_lbc option in a WRF 4D-Var run, in addition to the above-
mentioned files you will also need the ana02 file from the WRFDA working directory. In 
parame.in, set var4d_lbc to TRUE and use “da_file_02” to point to the location of 
the ana02 file. 
 
da_file_02         = './ana02' 
var4d_lbc          = .true. 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-43 

Background Error and running GEN_BE 

Quick-start guide: running WRFDA with different BE options 

To run WRFDA with the generic CV3 option, simply link the provided be.dat file in the 
var/run directory: 
 

> cp –p $WRFDA_DIR/var/run/be.dat.cv3 $WORK_DIR/be.dat  
 
To run WRFDA with any other option, you will have to run GEN_BE first. GEN_BE 
takes a series of forecasts initialized at different times, and compares the forecasts that 
are valid at the same time (e.g., compare a 24-hour forecast initialized at 00Z with a 12-
hour forecast initialized at 12Z) to get an estimate of the background error statistics. 
 
You will use the wrapper script gen_be_wrapper.ksh to run GEN_BE. For instructions 
on how to set up your experiment to run GEN_BE, reference the test case as described in 
the section “Domain-specific background error options: Running GEN_BE” below. 

 

Background error options in WRFDA 

Users have four choices to define the background error covariance (BE). We call them 
CV3, CV5, CV6, and CV7. Each of these has different properties, which are outlined in 
the table below: 
 
 

CV option Data source Control variables cv_options = 
CV3 Provided be.dat file ψ, χu, Tu, q, Ps,u 3 
CV5 GEN_BE ψ, χu, Tu, RHs, Ps,u 5 
CV6 GEN_BE ψ, χu, Tu, RHs,u, Ps,u 6 
CV7 GEN_BE u, v, T, RHs, Ps 7 

 
With CV3, the control variables are in physical space while with CV5, CV6, and CV7, 
the control variables are in eigenvector space. The major difference between these two 
kinds of BE is the vertical covariance; CV3 uses the vertical recursive filter to model the 
vertical covariance but the others use an empirical orthogonal function (EOF) to represent 
the vertical covariance. The recursive filters to model the horizontal covariance are also 
different with these BEs. We have not conducted the systematic comparison of the 
analyses based on these BEs. However, CV3 (a BE file provided with our WRFDA 
system) is a global BE and can be used for any regional domain, while CV5, CV6, and 
CV7 BE’s are domain-dependent, and so should be generated based on forecast or 
ensemble data from the same domain.  
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-44 

As summarized in the above table, CV5, CV6, and CV7 differ in the control variables 
they use. CV5 utilizes streamfunction (ψ), unbalanced velocity potential (χu), unbalanced 
temperature (Tu), pseudo relative humidity (RHs), and unbalanced surface pressure (Ps,u). 
The pseudo relative humidity is defined as Q/Qb,s, where Qb,s is the saturated specific 
humidity from the background field. For CV6 the moisture control variable is the 
unbalanced portion of the pseudo relative humidity (RHs,u). Additionally, CV6 introduces 
six additional correlation coefficients in the definition of the balanced part of analysis 
control variables. See the section GEN_BE for CV6 for more details on this option. 
Finally, CV7 uses a different set of control variables: u, v, temperature, pseudo relative 
humidity (RHs), and surface pressure (Ps). 
 

Generic BE option: CV3 

CV3 is the NCEP background error covariance. It is estimated in grid space by what has 
become known as the NMC method (Parrish and Derber 1992) . The statistics are 
estimated with the differences of 24 and 48-hour GFS forecasts with T170 resolution, 
valid at the same time for 357 cases, distributed over a period of one year. Both the 
amplitudes and the scales of the background error have to be tuned to represent the 
forecast error in the estimated fields. The statistics that project multivariate relations 
among variables are also derived from the NMC method. 
 
The variance of each variable, and the variance of its second derivative, are used to 
estimate its horizontal scales. For example, the horizontal scales of the stream function 
can be estimated from the variance of the vorticity and stream function. 
 
The vertical scales are estimated with the vertical correlation of each variable. A table is 
built to cover the range of vertical scales for the variables. The table is then used to find 
the scales in vertical grid units. The filter profile and the vertical correlation are fitted 
locally. The scale of the best fit from the table is assigned as the scale of the variable at 
that vertical level for each latitude. Note that the vertical scales are locally defined so that 
the negative correlation further away, in the vertical direction, is not included. 
 
Theoretically, CV3 BE is a generic background error statistics file which can be used for 
any case. It is quite straightforward to use CV3 in your own case. To use the CV3 BE file 
in your case, set cv_options=3 in &wrfvar7 in namelist.input in your working 
directory, and use the be.dat is located in WRFDA/var/run/be.dat.cv3. 

Modifying CV3 length scales and variance  
Because CV3 is a generic background error option, it is necessary to tune the default 
background error scale length and variance values for each experiment. These can be 
controlled at run time with a series of namelist variables described below. 
 
The scaling factors for CV3 are stored as an array of values for each individual control 
 variable: 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-45 

 as1: stream function 
 as2: unbalanced velocity potential 
 as3: unbalanced temperature 
 as4: pseudo relative humidity 
 as5: unbalanced surface pressure 
 
These variables are all 3-element vectors. The first element is the variance scaling factor. 
The second is the horizontal length scale factor. The third is the vertical length scale 
factor. So setting the default values in your namelist would look like this: 
 
 &wrfvar7 
  cv_options = 3, 
  as1     =  0.25,   1.00,   1.50, 
  as2     =  0.25,   1.00,   1.50, 
  as3     =  0.25,   1.00,   1.50, 
  as4     =  0.25,   1.00,   1.50, 
  as5     =  0.25,   1.00,   1.50, 
 / 
 
The first column is the variance, the second is the horizontal length scale factor, and the 
third is the vertical length scale factor. 
 
For multiple outer loops, the next 3 elements of each vector must be filled in. So for 2 
outer loops (max_ext_its=2), to use the default values, the namelist should look like this: 
 
 &wrfvar7 
  cv_options = 3, 
  as1     =  0.25,   1.00,   1.50,   0.25,   1.00,   1.50, 
  as2     =  0.25,   1.00,   1.50,   0.25,   1.00,   1.50, 
  as3     =  0.25,   1.00,   1.50,   0.25,   1.00,   1.50, 
  as4     =  0.25,   1.00,   1.50,   0.25,   1.00,   1.50, 
  as5     =  0.25,   1.00,   1.50,   0.25,   1.00,   1.50, 
 / 
 
Again, the first column is the variance, the second is the horizontal length scale factor, 
and the third is the vertical length scale factor for the first outer loop. The fourth column 
is the variance, the fifth is the horizontal length scale factor, and the sixth is the vertical 
length scale factor for the second outer loop. 
 
Continue in this manner for more outer loops. The values listed above are the default 
values, but can be adjusted for each individual experiment. 

Domain-specific background error options: Running GEN_BE 

To use CV5, CV6 or CV7 background error covariance, it is necessary to generate your 
domain-specific background error statistics with the gen_be utility. The default CV3 
background error statistics file, supplied with the WRFDA source code, can NOT be used 
with these control variable options. 
 
The main source code for the various gen_be stages can be found in WRFDA/var/gen_be. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-46 

The executables of gen_be should have been created when you compiled the WRFDA 
code (as described earlier). The scripts to run these codes are in 
WRFDA/var/scripts/gen_be. The user can run gen_be using the wrapper script 
WRFDA/var/scripts/gen_be/gen_be_wrapper.ksh.  
 
The input data for gen_be are WRF forecasts, which are used to generate model 
perturbations, used as a proxy for estimates of forecast error. For the NMC-method, the 
model perturbations are differences between forecasts (e.g. T+24 minus T+12 is typical 
for regional applications, T+48 minus T+24 for global) valid at the same time. 
Climatological estimates of background error may then be obtained by averaging these 
forecast differences over a period of time (e.g. one month). Given input from an 
ensemble prediction system (EPS), the inputs are the ensemble forecasts, and the model 
perturbations created are the transformed ensemble perturbations. The gen_be code has 
been designed to work with either forecast difference or ensemble-based perturbations. 
The former is illustrated in this tutorial example. 
 
It is important to include forecast differences valid at different parts of the day (for 
example, forecasts valid at 00Z and 12Z through the forecast period) to remove 
contributions from the diurnal cycle (i.e. do not run gen_be using model perturbations 
valid for a single time each day). 
 
The inputs to gen_be are netCDF WRF forecast output ("wrfout") files at specified 
forecast ranges. To avoid unnecessary large single data files, it is assumed that all 
forecast ranges are output to separate files. For example, if we wish to calculate BE 
statistics using the NMC-method with (T+24)-(T+12) forecast differences (default for 
regional) then by setting the WRF namelist.input options history_interval=720, 
and frames_per_outfile=1 we get the necessary output datasets. Then the forecast 
output files should be arranged as follows: directory name is the forecast initial time, time 
info in the file name is the forecast valid time. 2008020512/wrfout_d01_2008-02-
06_00:00:00 means a 12-hour forecast valid at 2008020600, initialized at 2008020512. 
 
Example dataset for a test case (90 x 60 x 41 gridpoints) can be downloaded from 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/testdata.html. Untar the 
gen_be_forecasts_20080205.tar.gz file. You will have: 
 
 >ls $FC_DIR 
 

-rw-r--r--  1   users  11556492 2008020512/wrfout_d01_2008-02-06_00:00:00 
-rw-r--r--  1   users  11556492 2008020512/wrfout_d01_2008-02-06_12:00:00 
-rw-r--r--  1   users  11556492 2008020600/wrfout_d01_2008-02-06_12:00:00 
-rw-r--r--  1   users  11556492 2008020600/wrfout_d01_2008-02-07_00:00:00 
-rw-r--r--  1   users  11556492 2008020612/wrfout_d01_2008-02-07_00:00:00 
-rw-r--r--  1   users  11556492 2008020612/wrfout_d01_2008-02-07_12:00:00 

 
In the above example, only 1 day (12Z 05 Feb to 12Z 06 Feb. 2008) of forecasts, every 
12 hours is supplied to gen_be_wrapper to estimate forecast error covariance. It is only 
for demonstration. The minimum number of forecasts required depends on the 
application, number of grid points, etc. Month-long (or longer) datasets are typical for the 
NMC-method. Generally, at least a 1-month dataset should be used. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-47 

 
Under WRFDA/var/scripts/gen_be, gen_be_wrapper.ksh is used to generate the BE 
data. The following variables need to be set to fit your case: 
 

export WRFVAR_DIR=/glade/p/work/wrfhelp/PRE_COMPILED_CODE/WRFDA 
export NL_CV_OPTIONS=5        # 5 for CV5, 7 for CV7 
export START_DATE=2008020612  # the first perturbation valid date 
export END_DATE=2008020700    # the last perturbation valid date 
export NUM_LEVELS=40          # e_vert - 1 
export BIN_TYPE=5             # How data is binned for calculating statistics 
export FC_DIR=/glade/p/work/wrfhelp/WRFDA_DATA/fc   # where wrf forecasts are 
export RUN_DIR=`pwd`/gen_be   # Where GEN_BE will run and output files 

 

Note: The START_DATE and END_DATE are perturbation valid dates. As shown in the 
forecast list above, when you have 24-hour and 12-hour forecasts initialized at 
2008020512, through 2008020612, the first and final forecast difference valid dates are 
2008020612 and 2008020700, respectively. 
 
Note: The forecast dataset should be located in $FC_DIR. Then type: 
 

> gen_be_wrapper.ksh 
 

Once the gen_be_wrapper.ksh run is completed, the be.dat can be found under the 
$RUN_DIR directory. 
 
To get a clear idea about what is included in be.dat, the script 
gen_be_plot_wrapper.ksh may be used.  This plots various data in be.dat; for 
example:  
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-48 

GEN_BE for CV6 

CV6 is a multivariate background error statistics option in WRFDA. It may be activated 
by setting the namelist variable cv_options=6. This option introduces six additional 
correlation coefficients in the definition of the balanced part of analysis control variables. 
Thus with this implementation, moisture analysis is multivariate, in the sense that 
temperature and wind may lead to moisture increments, and vice-versa. Further details 
may be seen at: http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/WRFDA_updated_for_cv6.pdf  

How to generate CV6 background error statistics for WRFDA 

CV6 background error statistics for WRFDA are generated by executing a top-level 
script, gen_be/wrapper_gen_mbe.ksh, residing under SCRIPTS_DIR via a suitable 
wrapper script. The rest of the procedure remains the same as with normal running of the 
gen_be utility. A successful run will create a be.dat file in the RUN_DIR directory.   



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-49 

How to run WRFDA with CV6 background error statistics 

After successfully generating the CV6 background error statistics file be.dat, the 
procedure for running WRFDA is straight-forward: Include cv_options=6 in the 
namelist.input file under the &wrfvar7 list of namelist options. 

How to tune CV6 background error statistics 

Below is a list of nine tuning parameters available in WRFDA; these can be specified under 
&wrfvar7 in the namelist. Default values for these variables are set as “1.0”. Setting 
corresponding values > 1.0 (< 1.0) will increase (decrease) the corresponding 
contributions: 

Variable name                             Description 
psi_chi_factor Parameter to control contribution of stream function in defining 

balanced part of velocity potential 
psi_t_factor Parameter to control contribution of stream function in defining 

balanced part of temperature 
psi_ps_factor Parameter to control contribution of stream function in defining 

balanced part of surface pressure 
psi_rh_factor Parameter to control contribution of stream function in defining 

balanced part of moisture 
chi_u_t_factor Parameter to control contribution of unbalanced part of velocity 

potential in defining balanced part of temperature 
chi_u_ps_factor Parameter to control contribution of unbalanced part of velocity 

potential in defining balanced part of surface pressure 
chi_u_rh_factor Parameter to control contribution of unbalanced part of velocity 

potential in defining balanced part of moisture 
t_u_rh_factor Parameter to control contribution of unbalanced part of 

temperature in defining balanced part of moisture 
ps_u_rh_factor Parameter to control contribution of unbalanced part of surface 

pressure in defining balanced part of moisture 
 
 

Additional Background Error options 

a. Single Observation response in WRFDA 

With the single observation test, you may get some ideas of how the background and 
observation error statistics work in the model variable space. A single observation test is 
done in WRFDA by setting num_pseudo=1, along with other pre-specified values in 
record &wrfvar15 and &wrfvar19 of namelist.input. 

With the settings shown below, WRFDA generates a single observation with a pre-



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-50 

specified innovation (Observation − First Guess) value at the desired location; e.g. at (in 
terms of grid coordinate) 23x23, level 14 for “U” observation with error characteristics 1 
m/s, and innovation size = 1.0 m/s.  

&wrfvar15 
num_pseudo = 1, 
pseudo_x = 23.0, 
pseudo_y = 23.0, 
pseudo_z = 14.0, 
pseudo_err = 1.0, 
pseudo_val = 1.0, 
/ 
&wrfvar19 
pseudo_var = 'u', 
/ 
 

You may wish to repeat this exercise for other observation types. “pseudo_var” can take 
any of the following values: 

Variable name Description Units 
u East-west wind m/s 
v North-south wind m/s 
t Temperature K 
p Pressure Pa 
q Water vapor mixing ratio unitless (kg/kg) 
qcw Water vapor mixing ratio unitless (kg/kg) 
qrn Rain water mixing ratio unitless (kg/kg) 
qci Cloud ice mixing ratio unitless (kg/kg) 
qsn Snow mixing ratio unitless (kg/kg) 
qgr Graupel mixing ratio unitless (kg/kg) 
tpw Total precipitable water cm 
ztd GPS zenith total delay cm 
ref GPS Refractivity Unitless 

b. Response of BE length scaling parameter 

Run the single observation test with the following additional parameters in record 
&wrfvar7 of namelist.input. 

&wrfvar7 
len_scaling1 = 0.5, # reduce psi length scale by 50% 
len_scaling2 = 0.5, # reduce chi_u length scale by 50% 
len_scaling3 = 0.5, # reduce T length scale by 50% 
len_scaling4 = 0.5, # reduce q length scale by 50% 
len_scaling5 = 0.5, # reduce Ps length scale by 50% 
/ 

Note: You may wish to try the response of an individual variable by setting one 
parameter at a time. Note the spread of analysis increment. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide 6-51 

c. Response of changing BE variance 

Run the single observation test with the following additional parameters in record 
&wrfvar7 of namelist.input. 

&wrfvar7 
var_scaling1 = 0.25,   # reduce psi variance by 75% 
var_scaling2 = 0.25,   # reduce chi_u variance by 75% 
var_scaling3 = 0.25,   # reduce T variance by 75% 
var_scaling4 = 0.25,   # reduce q variance by 75% 
var_scaling5 = 0.25,   # reduce Ps variance by 75% 
/ 

Note: You may wish to try the response of individual variable by setting one parameter at 
a time. Note the magnitude of analysis increments. 

WRFDA Diagnostics 

WRFDA produces a number of diagnostic files that contain useful information on how 
the data assimilation has performed. This section will introduce you to some of these 
files, and what to look for. 

After running WRFDA, it is important to check a number of output files to see if the 
assimilation appears sensible. The WRFDA package, which includes several useful 
scripts, may be downloaded from http://www2.mmm.ucar.edu/wrf/users/wrfda/download/tools.html 

The content of some useful diagnostic files are as follows: 

cost_fn and grad_fn: These files hold (in ASCII format) WRFDA cost and gradient 
function values, respectively, for the first and last iterations. If you run with 
calculate_cg_cost_fn=true and write_detail_grad_fn=true, however, these 
values will be listed for each iteration; this can be helpful for visualization purposes. The 
NCL script in the WRFDA TOOLS package located at 
var/graphics/ncl/plot_cost_grad_fn.ncl may be used to plot the content of 
cost_fn and grad_fn, if these files are generated with calculate_cg_cost_fn=true 
and write_detail_grad_fn=true. 



 

 

 

Note: Make sure that you remove the first two lines (header) in cost_fn and grad_fn 
before you plot.  You also need to specify the directory name for these two files.  

gts_omb_oma_01: It contains (in ASCII format) information on all of the observations 
used by the WRFDA run. Each observation has its observed value, quality flag, 
observation error, observation minus background (OMB), and observation minus analysis 
(OMA). This information is very useful for both analysis and forecast verification 
purposes. 

namelist.input:  This is the WRFDA input namelist file, which contains all the user-
defined non-default options. Any namelist-defined options that do not appear in this file 
should have their names checked against the values in 
$WRFDA_DIR/Registry/registry.var.  

namelist.output.da: A list of all the namelist options used. If an option was not 
specified in namelist.input, the default listed in the registry value will be used. 

rsl*: Files containing information for standard WRFDA output from individual 
processors when multiple processors are used. It contains a host of information on a 
number of observations, minimization, timings, etc. Additional diagnostics may be 
printed in these files by including various “print” WRFDA namelist options. To learn 
more about these additional “print” options, search for the “print_” string in 
$WRFDA_DIR/Registry/registry.var. 

statistics: Text file containing OMB (OI) and OMA (OA) statistics (minimum, 
maximum, mean and standard deviation) for each observation type and variable. This 
information is very useful in diagnosing how WRFDA has used different components of 
the observing system. Also contained are the analysis minus background (A-B) statistics, 
i.e. statistics of the analysis increments for each model variable at each model level. This 
information is very useful in checking the range of analysis increment values found in the 
analysis, and where they are in the WRF-model grid space. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-53 

The WRFDA analysis file is wrfvar_output. It is in WRF (netCDF) format. It will 
become the  input file wrfinput_d01 of any subsequent WRF run after lateral boundary 
and/or lower boundary conditions are updated by another WRFDA utility (See the section 
Updating WRF boundary conditions). 

An NCL script, $TOOLS_DIR/var/graphics/ncl/WRF-Var_plot.ncl, is provided in the 
tools package for plotting. You need to specify the analysis_file name, its full path, 
etc. Please see the in-line comments in the script for details. 

As an example, if you are aiming to display the U-component of the analysis at level 18, 
use the script WRF-Var_plot.ncl, and make sure the following pieces of codes are 
uncommented: 

var = "U" 
fg = first_guess->U 
an = analysis->U 
plot_data = an 

When you execute the following command from $WRFDA_DIR/var/graphics/ncl.  

  > ncl WRF-Var_plot.ncl 

The plot should look like: 

 

You may change the variable name, level, etc. in this script to display the variable of your 
choice at the desired eta level. 

Take time to look through the text output files to ensure you understand how WRFDA 
works. For example: 

How closely has WRFDA fit individual observation types? Look at the 
statistics file to compare the O-B and O-A statistics. 

How big are the analysis increments? Again, look in the statistics file to see 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-54 

minimum/maximum values of A-B for each variable at various levels. It will give 
you a feel for the impact of the input observation data you assimilated via 
WRFDA by modifying the input analysis first guess.  

How long did WRFDA take to converge? Does it really converge?  You will get 
the answers of all these questions by looking into the rsl.* -files, as it indicates 
the number of iterations taken by WRFDA to converge. If this is the same as the 
maximum number of iterations specified in the namelist (NTMAX), or its default 
value (=200) set in $WRFDA_DIR/Registry/registry.var, then it means that the 
analysis solution did not converge. If this is the case, you may need to increase 
the value of “NTMAX” and rerun your case to ensure that the convergence is 
achieved. On the other hand, a normal WRFDA run should usually converge 
within 100 iterations. If it still doesn’t converge in 200 iterations, that means there 
may be a problem in the observations or first guess. 

A good way to visualize the impact of assimilation of observations is to plot the analysis 
increments (i.e. analysis minus the first guess difference). Many different graphics 
packages (e.g. RIP4, NCL, GRADS etc) can do this.  

You need to modify this script to fix the full path for first_guess and analysis files. 
You may also use it to modify the display level by setting kl and the name of the variable 
to display by setting var. Further details are given in this script.  

If you are aiming to display the increment of potential temperature at level 18, after 
modifying $WRFDA_DIR/var/graphics/ncl/WRF-Var_plot.ncl, make sure the 
following pieces of code are uncommented: 

var = "T" 
fg = first_guess->T ;Theta- 300 
an = analysis->T    ;Theta- 300 
plot_data = an - fg 

When you execute the following command from WRFDA_DIR/var/graphics/ncl.  

> ncl WRF-Var_plot.ncl 

The plot created will look as follows: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-55 

 

Note: Larger analysis increments indicate a larger data impact in the corresponding 
region of the domain. 

Generating ensembles with RANDOMCV 

In addition to the variational methods previously mentioned, the WRFDA system 
supports both ensemble and hybrid ensemble/variational assimilation methods. To utilize 
these methods, having an ensemble of forecasts is necessary. WRFDA has a built-in 
method for generating ensemble initial conditions known as RANDOMCV. 
RANDOMCV works by adding random noise to the analysis in control variable space.  
 

a. Running WRFDA for RANDOMCV 

RANDOMCV is a capability of the main WRFDA executable, so you will run it by 
setting the following variables in namelist.input and then running da_wrfvar.exe as you 
would with any data assimilation run: 
 
&wrfvar5 
put_rand_seed true:  enter your own seed numbers to generate random background perturbations. 

The advantage of this setting is that the same seed numbers will always produce the 
same perturbation 
false: (default behavior) perturbations will be generated “randomly” and give new 
perturbations each time 

&wrfvar11 
seed_array1 First integer for seeding the random function (default: 1) 
seed_array2 Second integer for seeding the random function (default: 1) It is not necessary to 

change both seeds to get different perturbations 
&wrfvar17 
analysis_type Set this to ‘RANDOMCV’ to use the RANDOMCV capability 
 
When setting your own random seeds, a common good practice is to set the first seed as 
the experiment date/time in integer form, and the second seed as the ensemble member 
number. The seeds should not be set to zero. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-56 

 
Because the perturbations are made in control variable space, the general pattern of 
perturbations will depend on your background error. You should be able to use any 
background error option with RANDOMCV (CV3, CV5, CV6, or CV7). Additionally, 
this means you can control their magnitude and lengthscales by modifying the 
background error variance and length scaling variables respectively: 
 
For CV5, CV6, or CV7 
&wrfvar7 
var_scaling1 = 0.25,  # reduce psi perturbation magnitude by 75% 
var_scaling2 = 0.25,  # reduce chi_u perturbation magnitude by 75% 
var_scaling3 = 0.0,   # reduce T perturbation by 100% (there will be no 

T perturbation!) 
var_scaling4 = 2.0,   # increase q perturbation by 100% 
var_scaling5 = 1.0,   # Keep Ps perturbation magnitude the same 
len_scaling1 = 0.5,   # reduce psi perturbation length scale by 50% 
len_scaling2 = 0.5,   # reduce chi_u perturbation length scale by 50% 
len_scaling3 = 1.0,   # Keep T perturbation length scale the same 
len_scaling4 = 2.0,   # increase q perturbation length scale by 100% 
len_scaling5 = 1.5,   # increase Ps perturbation length scale by 50% 
/ 
 
For CV3, see the section “Modifying CV3 length scales and variance”. 
 

Hybrid Data Assimilation in WRFDA 

The WRFDA system also includes hybrid data assimilation techniques—both 3DEnVar 
and 4DEnVar (new for version 3.9), which is based on the previously-described 
variational capability. 
 
The difference between hybrid and variational schemes is that WRFDA 3DVAR and 
4DVAR rely solely on a static covariance model to specify the background errors, while 
the hybrid system uses a combination of static error covariances and ensemble-estimated 
error covariances to incorporate a flow-dependent estimate of the background error 
statistics. The following sections will give a brief introduction to using the hybrid system. 
Please refer to these papers for a detailed description of the methodology used in the 
WRFDA hybrid system: 
 

Xuguang Wang, Dale M. Barker, Chris Snyder, and Thomas M. Hamill, 2008: A 
hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: 
Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131. 
 
Xuguang Wang, Dale M. Barker, Chris Snyder, and Thomas M. Hamill, 2008: A 
Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: 
Real Observation Experiments. Mon. Wea. Rev., 136, 5132–5147. 

 
Four executables are used in the hybrid system. If you have successfully compiled the 
WRFDA system, the following executables will exist in the WRFDA/var/build directory: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-57 

 
WRFDA/var/build/gen_be_ensmean.exe 
WRFDA/var/build/gen_be_ep2.exe 
WRFDA/var/build/da_wrfvar.exe 
WRFDA/var/build/gen_be_vertloc.exe 
 
gen_be_ensmean.exe is used to calculate the ensemble mean, while gen_be_ep2.exe is 
used to calculate the ensemble perturbations. gen_be_vertloc.exe is used for vertical 
localization. As with 3DVAR/4DVAR, da_wrfvar.exe is the main WRFDA program. 
However, in this case, da_wrfvar.exe will run in hybrid mode. 

a. Running the hybrid system for 3DEnVar 

The procedure is the same as running 3DVAR, with the exception of some extra input 
files and namelist settings. The basic input files for WRFDA are LANDUSE.TBL, 
ob.ascii or ob.bufr (depending on which observation format you use), and be.dat 
(static background errors). Additional input files required for 3DEnVar are a single 
ensemble mean file (used as the fg for the hybrid application) and a set of ensemble 
perturbation files (used to represent flow-dependent background errors).  
 
A set of initial ensemble members must be prepared before the hybrid application can be 
started. The ensemble can be obtained from other ensemble model outputs, or you can 
generate them yourself. This can be done, for example, adding random noise to the initial 
conditions at a previous time and integrating each member to the desired time. A tutorial 
case with a test ensemble can be found at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/V38/wrfda_hybrid_etkf_testdata.tar.gz. In this 
example, the ensemble forecasts were initialized at 2015102612 and valid 2015102712.  
A hybrid analysis at 2015102712 will be performed using the ensemble valid 
2015102712 as input. Once you have the initial ensemble, the ensemble mean and 
perturbations can be calculated following the steps below: 
 
 
1) Set an environment variable for your working directory and your data directory 

> setenv WORK_DIR your_hybrid_path 
> setenv DAT_DIR your_data_path 
> cd $WORK_DIR 

2) Calculate the ensemble mean 
 

a) From your working directory, copy or link the ensemble forecasts to your 
working directory. The ensemble members are identified by the characters 
“.e###” at the end of the file name, where ### represents three-digit numbers 
following the valid time.  

> ln –sf $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-
27_12:00:00.e* . 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-58 

b) Provide two template files  (ensemble mean and variance files) in your working 
directory.  These files will be overwritten with the ensemble mean and variance as 
discussed below. 

> cp $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-
27_12:00:00.e001 ./wrfout_d01_2015-10-27_12:00:00.mean  
> cp $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-
27_12:00:00.e001 ./wrfout_d01_2015-10-27_12:00:00.vari  

c) Copy gen_be_ensmean_nl.nl (cp $DAT_DIR/Hybrid/gen_be_ensmean_nl.nl 
.) You will need to set the information in this script as follows: 

 
&gen_be_ensmean_nl 
directory = '.' 
filename = 'wrfout_d01_2015-10-27_12:00:00' 
num_members = 10 
nv = 7 
cv = 'U', 'V', 'W', 'PH', 'T', 'MU', 'QVAPOR' 
/ 
where directory is the folder containing the ensemble members and template files, 
filename is the name of the files before their suffixes (e.g., .mean, .vari, etc), 
num_members is the number of ensemble members you are using, nv is the number of 
variables, and cv is the name of variables used in the hybrid system. Be sure nv and 
cv are consistent! 

 
d) Link gen_be_ensmean.exe to your working directory and run it. 

> ln –sf  $WRFDA_DIR/var/build/gen_be_ensmean.exe .  
> ./gen_be_ensmean.exe 

Check the output files. wrfout_d01_2015-10-27_12:00:00.mean is the 
ensemble mean; wrfout_d01_2015-10-27_12:00:00.vari is the ensemble 
variance 

 
3) Calculate ensemble perturbations 
 

a) Create a sub-directory in which you will be working to create ensemble 
perturbations. 

 
> mkdir –p ./ep 
> cd ./ep  

 
b) Run gen_be_ep2.exe. The executable requires four command-line arguments 

(DATE, NUM_MEMBER, DIRECTORY, and FILENAME) as shown below for the tutorial 
example: 
 

> ln –sf $WRFDA_DIR/var/build/gen_be_ep2.exe  . 
> ./gen_be_ep2.exe  2015102712  10  .  ../wrfout_d01_2015-10-
27_12:00:00 

 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-59 

c) Check the output files. A list of binary files should now exist. Among them, 
tmp.e* are temporary scratch files that can be removed. 

 
4) Back in the working directory, create the input file for vertical localization.  This 

program requires one command-line argument: the number of vertical levels of the 
model configuration (same value as e_vert in the namelist; for the tutorial example, 
this should be 42). 

 
> cd $WORK_DIR 
> ln –sf $WRFDA_DIR/var/build/gen_be_vertloc.exe .  
> ./gen_be_vertloc.exe 42 

 
The output is ./be.vertloc.dat in your working directory. 
 
5) Run WRFDA in hybrid mode 
 

a) In your hybrid working directory, link all the necessary files and directories as 
follows:  

> ln -fs ./wrfout_d01_2015-10-27_12:00:00.mean ./fg  (first 
guess is the ensemble mean for this test case)  
> ln -fs $WRFDA_DIR/run/LANDUSE.TBL . 
> ln -fs $DAT_DIR/Hybrid/ob/2015102712/ob.ascii ./ob.ascii 
> ln -fs $DAT_DIR/Hybrid/be/be.dat ./be.dat  
> ln –fs $WRFDA_DIR/var/build/da_wrfvar.exe . 
> cp $DAT_DIR/Hybrid/namelist.input .  

b) Edit namelist.input, paying special attention to the following hybrid-related 
settings: 

&wrfvar7 
je_factor = 2.0 
/ 
&wrfvar16 
ensdim_alpha = 10  
alphacv_method = 2 
alpha_corr_type=3 
alpha_corr_scale = 500.0 
alpha_std_dev=1.000 
alpha_vertloc = .true. 
/  

c) Finally, execute the WRFDA file, running in hybrid mode 

> ./da_wrfvar.exe >& wrfda.log 

Check the output files; the output file lists are the same as when you run WRF 
3D-Var. 

 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-60 

b. Running the hybrid system for 4DEnVar 

The procedure for 4DEnVar is very similar to the procedure for 3DEnVar. Unlike 
4DVAR, 4DEnVar does not require WRFPLUS, the tangent linear/adjoint model. It is 
more analogous to the First Guess at Appropriate Time (FGAT) method than full 
4DVAR. Like FGAT, 4DEnVar requires multiple first guess files, one for each 
assimilation time window. In addition, you must have ensemble output for each of the 
first guess times, and generate ensemble perturbations from each of these sets of 
ensemble forecasts. 

To activate the 4DEnVar option, set the namelist variable use_4denvar=.true. 
under &wrfvar16. A tutorial case with a test ensemble can be found at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/V39/WRFDA_4denvar_test_data.tar.gz. In this 
example, the ensemble forecasts were initialized at 2005071512 and valid for 
2005071521—2005071603. The 4DEnVar hybrid analysis (wrfvar_output) will be valid 
for 2005071600. 

c. Dual-resolution hybrid 

WRFDA has an option for dual-resolution hybrid data assimilation, where a high-
resolution background can make use of a lower-resolution ensemble for extracting the 
flow-dependent contribution to the background error. The lower-resolution ensemble 
should be the parent domain of the higher-resolution child domain that the analysis is 
performed on. 

Performing dual-resolution hybrid assimilation is similar to the process for regular 
assimilation described above. The main difference is that you must include some settings 
in the &domains section of the namelist in a different way: The setting max_dom=2 must 
be used, and for each column of settings, the low-resolution domain settings must be 
listed first, even though the second column will be the domain on which assimilation is 
being performed. An example of the &domains namelist section is shown below; in this 
case, the low-resolution ensemble domain is 222x128 grid points at 45 km resolution, and 
the high-resolution analysis domain is 184x196 grid points at 15 km resolution: 

 
&domains 
 time_step            = 90, 
 max_dom              = 2, 
 s_we                 =   1,   1, 
 e_we                 = 222, 184, 
 s_sn                 =   1,   1, 
 e_sn                 = 128, 196, 
 s_vert               =   1,   1, 
 e_vert               =  45,  45, 
 dx                   = 45000, 15000, 
 dy                   = 45000, 15000, 
 grid_id              = 1,  2, 
 parent_id            = 0,  1, 
 i_parent_start       = 0, 89, 
 j_parent_start       = 0, 22, 
 parent_grid_ratio    = 1,  3, 
/ 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-61 

 
For further details about any of the above settings, see Chapter 5 of this User’s 

Guide. 
In addition to the above, you must set the namelist variable 

hybrid_dual_res=true, as well as providing a file named “fg_ens” in the working 
directory. This file can be any WRF input or wrfout file that has the same domain as the 
low-resolution ensemble; it is merely used for reading in mapping parameters for the 
low-resolution ensemble domain. 

The dual-resolution hybrid capability is described in more detail in the following 
publication: 

 
Schwartz, C. S., Z. Liu, X.-Y. Huang, 2015: Sensitivity of Limited-Area Hybrid 
Variational-Ensemble Analyses and Forecasts to Ensemble Perturbation 
Resolution. Mon. Wea. Rev. , 143, 3454-3477. 

 

d. Hybrid namelist options 

&wrfvar7  
je_factor  

ensemble covariance weighting factor. This factor controls the weighting 
component of ensemble and static covariances. The corresponding jb_factor = 
je_factor/(je_factor - 1).  

&wrfvar16  
use_4denvar  

.true. will activate 4DEnVar  
hybrid_dual_res  

.true. will activate dual-resolution mode 
ep_para_read  

Method for reading ensemble perturbation files 
0 (default): Serial read 
1: Parallel read. 

rden_bin  
bins for parallel reading of ensemble perturbation files. Default is 1. Lower 
numbers use more memory, but are faster. If memory use becomes too large, 
increase this value. 

ensdim_alpha  
the number of ensemble members. Hybrid mode is activated when ensdim_alpha 
is larger than zero  

alphacv_method  
2 (default): perturbations in model space (“u”,”v”,”t”,”q”,”ps”). Option 2 is 
extensively tested and recommended to use. 
1: perturbations in control variable space (“psi”,”chi_u”,”t_u”,”rh”,”ps_u”) 

alpha_corr_type  
correlation function. 1=Exponential; 2=SOAR; 3=Gaussian. 

alpha_corr_scale  



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-62 

hybrid covariance localization scale in km unit. Default value is 200.  
alpha_std_dev  

alpha standard deviation. Default value is 1.0  
alpha_vertloc  

true: use vertical localization 
false (default): no vertical localization  

ETKF Data Assimilation 

The WRFDA system also includes a ETKF assimilation technique. The ETKF system 
updates the ensemble perturbations. Please refer to Bishop et al. (2001) and Wang et al. 
(2003) for a detailed description of the methodology. The following section will give a 
brief introduction of some aspects of using the ETKF system. 

a. Source Code 

Three executables are used in the ETKF system. If you have successfully compiled the 
WRFDA system, you will see the following: 
 

WRFDA/var/build/gen_be_etkf.exe 
 
WRFDA/var/build/gen_be_addmean.exe 
 
WRFDA/var/build/da_wrfvar.exe 

 
The file gen_be_etkf.exe is used to update the ensemble perturbations, while 
gen_be_addmean.exe is used to combine the ensemble mean and the ensemble 
perturbations. As with 3D-Var/4D-Var, da_wrfvar.exe is the main WRFDA program. 
However, in this case, da_wrfvar.exe will create filtered observations and prepare 
formatted omb files for ETKF. 

b. Running the ETKF System 

The first procedure is to update the ensemble perturbations. A set of initial ensemble 
members must be prepared before the ETKF application can be started. The ensemble can 
be obtained from a previous ensemble forecast. A tutorial case with a test ensemble can 
be found at 
http://www2.mmm.ucar.edu/wrf/users/wrfda/download/V38/wrfda_hybrid_etkf_testdata.tar.gz. In this 
example, the ensemble forecasts were initialized at 2015102612 and valid 2015102712. 
ETKF will be performed using the ensemble valid 2015102712 as input. Once you have 
the initial ensemble, the ensemble perturbations can be updated by following the steps 
below: 
 
 
1)   Set environment variables for convenience 
 
      > setenv WORK_DIR_ETKF your_etkf_path 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-63 

      > setenv DAT_DIR your_data_path 
      > setenv WRFDA_DIR your_WRFDA_path 
      > cd $WORK_DIR_ETKF 
 
2)   Prepare the filtered observations 
 

a) In your ETKF working directory, make a subdirectory to prepare the filtered  
observations and link all the necessary files and directories as follows:  

   
   > mkdir obs_filter 

      > cd obs_filter 
      > ln -fs $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-
27_12:00:00.mean ./fg  (first guess is the ensemble mean)  
      > ln -fs $WRFDA_DIR/run/LANDUSE.TBL . 

    > ln -fs $DAT_DIR/Hybrid/ob/2015102712/ob.ascii ./ob.ascii 
      > ln -fs $DAT_DIR/Hybrid/be/be.dat ./be.dat  
      > ln -fs $WRFDA_DIR/var/build/da_wrfvar.exe . 
      > cp $DAT_DIR/ETKF/namelist.input . 
 
     b)   Edit namelist.input, paying special attention to the following 'QC-OBS'-related        
settings: 
 

    &wrfvar17 
    analysis_type                       = 'QC-OBS', 
    /  

 
     c)   Execute the WRFDA file, running in QC-OBS mode 
 

    > ./da_wrfvar.exe >& wrfda.log 
 
Check the output files; you should see a 'filtered_obs_01' file which contains the filtered 
observations.  
 
3)   Prepare omb files for ETKF 
 
   a)   In your ETKF working directory, make a subdirectory to prepare the omb files for 
each ensemble member and link all the necessary files and directories as follows: 
   

 > cd $WORK_DIR_ETKF 
 > mkdir -p omb/working.e001 
 > cd omb/working.e001 
 > ln -fs $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-

27_12:00:00.e001 ./fg  (first guess is the ensemble member)  
 > ln -fs $WRFDA_DIR/run/LANDUSE.TBL . 
 > ln -fs $WORK_DIR_ETKF/obs_filter/filtered_obs_01 ./ob.ascii  
 > ln -fs $DAT_DIR/Hybrid/be/be.dat ./be.dat  
 > ln -fs $WRFDA_DIR/var/build/da_wrfvar.exe . 
 > cp $DAT_DIR/ETKF/namelist.input . 

 
  b)   Edit namelist.input, paying special attention to the following 'VERIFY'-related 
settings: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-64 

 
 &wrfvar17 
 analysis_type                       = 'VERIFY', 
 /  

 
  c)   Execute the WRFDA file, running in VERIFY mode 
 

 > ./da_wrfvar.exe >& wrfda.log 
 
Check the output files. The output files are the same as when you run WRF 3D-Var 
(except wrfvar_output will NOT be created), and the 'ob.etkf.0*' files are omb files. 
 
  d)   Combine the ob.etkf.0* files and add the observation number in the head of 
ob.etkf.e0* 
 

 > cat ob.etkf.0* > ob.all 
 > wc -l ob.all > ob.etkf.e001 
 > cat ob.all >> ob.etkf.e001 

 
  e)   Likewise, prepare ob.etkf.e0* files for other ensemble members 
 
4)   Run ETKF 
 
  a)   Copy or link the ensemble mean and forecasts and ob.etkf.e0* files to your working  
directory and make a parameter directory to save the parameter files. 
 

 > cd $WORK_DIR_ETKF 
 > setenv PAR_DIR_ETKF $WORK_DIR_ETKF/param 
 > mkdir $PAR_DIR_ETKF 
 > ln -sf $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-

27_12:00:00.mean ./etkf_input 
 > ln -sf $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-

27_12:00:00.e001 ./etkf_input.e001 
... 
 > ln -sf $DAT_DIR/Hybrid/fc/2015102712/wrfout_d01_2015-10-

27_12:00:00.e010 ./etkf_input.e010 
 
 > ln -sf omb/working.e001/ob.etkf.e001 . 
... 
 > ln -sf omb/working.e010/ob.etkf.e010 . 

 
  b)   Provide template files. These files will be overwritten with the ensemble 
perturbations. 
 

 > cp $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-
27_12:00:00.e001 ./etkf_output.e001 

... 
 > cp $DAT_DIR/Hybrid/fc/2015102612/wrfout_d01_2015-10-

27_12:00:00.e010 ./etkf_output.e010 
 
  c)   Copy gen_be_etkf_nl.nl (cp $DAT_DIR/ETKF/gen_be_etkf_nl.nl .)  



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-65 

         You will need to set the information in this script as follows: 
 
   &gen_be_etkf_nl 
     num_members = 10, 
     nv = 7, 
     cv = 'U', 'V', 'W', 'PH', 'T', 'QVAPOR', 'MU', 
     naccumt1 = 20, 
     naccumt2 = 20, 
     nstartaccum1 = 1, 
     nstartaccum2 = 1, 
     nout = 1, 
     tainflatinput = 1, 
     rhoinput = 1, 
     infl_fac_file = '$PAR_DIR_ETKF/inflation_factor.dat', 
     infl_let_file = '$PAR_DIR_ETKF/inflation_letkf.dat', 
     eigen_val_file = '$PAR_DIR_ETKF/eigen_value.dat', 
     inno2_val_file = '$PAR_DIR_ETKF/innovation_value.dat', 
     proj2_val_file = '$PAR_DIR_ETKF/projection_value.dat', 
     infl_fac_TRNK = .false., 
     infl_fac_WG03 = .false., 
     infl_fac_WG07 = .true., 
     infl_fac_BOWL = .false., 
     letkf_flg=.false., 
     rand_filt = .false., 
     rnd_seed = 2015102712, 
     rnd_nobs = 5000 
     etkf_erro_max = 20. 
     etkf_erro_min = .00001 
     etkf_inno_max = 20. 
     etkf_inno_min = .00001 
     etkf_erro_flg = .true. 
     etkf_inno_flg = .true. 
     etkf_wrfda = .false. 
   / 
 
Important note: since environment variables are not parsed when reading namelists, you 
MUST manually change $PAR_DIR_ETKF to its actual value in the namelist 
 
 
Where the various namelist parameters are as follows: 

• num_members is the ensemble members size 
• nv is the number of variables 
• cv the name of variables 
• naccumt1 and naccumt1 are number of previous cycles used to accumulate for 

inflation and rho factor 
• nstartaccumt1 and nstartaccumt2 are not used for ordinary ETKF 
• nout is the cycle index 
• tainflatinput and rhoinput are prescribed factors for inflation and rho factor 
• infl_fac_file, eigen_val_file, inno2_val_file and proj2_val_file are 

files to save template parameters 
• infl_fac_TRNK, infl_fac_WG03, infl_fac_WG07, and infl_fac_BOWL are 

options for different adaptive inflation schemes 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-66 

• rand_filt, rnd_seed and rnd_nobs are options for using filtered observation 
and random observations 

• etkf_erro_max, etkf_erro_min, etkf_inno_max, etkf_inno_min, 
etkf_erro_flg, etkf_inno_flg, and etkf_wrfda are options to conduct further 
observation filtering.  

 
  d)   Link gen_be_etkf.exe to your working directory and run it. 
 
  > ln -sf  $WRFDA_DIR/var/build/gen_be_etkf.exe .  
  > ./gen_be_etkf.exe 
 
Check the output files. etkf_output.* files are updated ensemble perturbations. 

 
  
5)   Add updated ensemble perturbations to the ensemble mean to get new ensemble 
members 
 
  > cd $WORK_DIR_ETKF 
 
  a)   Copy add_mean_nl.nl (cp $DAT_DIR/ETKF/add_mean_nl.nl .)  
        You will need to set the information in this script as follows for each member: 
 
  &add_mean_nl 
  num_members = 10 
  cv          = 'U', 'V', 'W', 'PH', 'T', 'QVAPOR', 'MU' 
  nv          = 7 
  path        = '$WORK_DIR_ETKF' 
  file_mean   = 'etkf_input'  
  file_pert   = 'etkf_output.e001' (for each member, 
etkf_output.e0*...) 
 / 
 
Again, be sure to substitute the actual path in the place of $WORK_DIR_ETKF 
 
  b)   Run gen_be_addmean.exe. 
  
   > ln -sf $WRFDA_DIR/var/build/gen_be_addmean.exe  . 
   > ./gen_be_addmean.exe  
 
 Check the output files. etkf_output.e0* files are the new ensemble members. 

Additional WRFDA Options 

1. Wind speed/direction assimilation 

If observations containing wind speed/direction information are provided to WRFDA, 
you can assimilate these observations directly, rather than converting the wind to its u- 
and v-components prior to assimilation.  



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-67 

Wind speed/direction assimilation is controlled by the following namelist options: 

&wrfvar2 
wind_sd true: all wind values which are reported as speed/direction will be assimilated as 

such 
false: (default behavior) all wind obs are converted to u/v prior to assimilation 

wind_stats_sd  Assimilate wind in u/v format, but output speed/direction statistics 

The following settings only matter if check_max_iv=true (if innovation is greater than 
observation error times the error factor listed below, the observation will be rejected): 

&wrfvar2 
qc_rej_both true:  if either u or v (spd or dir) do not pass quality control, both obs are rejected 

false: (default behavior) qc on wind obs is handled individually 
&wrfvar5 
max_omb_spd Max absolute value of innovation for wind speed obs in m/s; greater than this and the 

innovation will be set to zero (default: 100.0) 
max_omb_dir Max absolute value of innovation for wind direction obs in degrees; greater than this 

and the innovation will be set to zero (default: 1000.0) 
max_error_spd Speed error factor (default: 5.0) 
max_error_dir Direction error factor (default: 5.0) 

The assimilation of wind speed/direction can also be controlled by observation type, 
using the following variables (note: setting wind_sd = .true. as above will override 
these individual settings): 

&wrfvar2 
wind_sd_airep Aircraft reports 
wind_sd_buoy Buoy reports 
wind_sd_geoamv Geostationary satellite atmospheric motion vectors 
wind_sd_metar  METAR reports 
wind_sd_mtgirs  Meteosat Third Generation  
wind_sd_pilot  Pilot reports 
wind_sd_polaramv  Polar satellite atmospheric motion vectors 
wind_sd_profiler  Wind profiler reports 
wind_sd_qscat  QuikScat reports 
wind_sd_ships  Ship reports 
wind_sd_sound  Sounding reports 
wind_sd_synop  Synoptic reports 
wind_sd_tamdar  TAMDAR reports 

 true:  wind values which are reported as speed/direction will be assimilated as such 
false: (default behavior) all wind obs are converted to u/v prior to assimilation 

 

Further details about this method can be found in the following publications: 

Huang, X.-Y., F. Gao, N. A. Jacobs, and H. Wang, 2013: Assimilation of wind 
speed and direction observations: a new formulation and results from idealised 
experiments. Tellus A, 65, 19936, doi:10.3402/tellusa.v65i0.19936. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-68 

Gao, Feng, Xiang-Yu Huang, Neil A. Jacobs, and Hongli Wang, 2015: 
Assimilation of wind speed and direction observations: results from real 
observation experiments. Tellus A, 67, 27132, doi:10.3402/tellusa.v67.27132. 

2. The Weak Penalty Constraint option 

For Version 3.8, a new “weak penalty constraint” (WPEC) option has been added to 
WRFDA which aims to enforce quasi-gradient balance on a WRFDA analysis. It was 
designed with the specific aim of improving assimilation of radar data within tropical 
cyclones, but may be useful for other weather phenomena of similar scales. It can be used 
with 3DVAR or hybrid 3DVAR (4DVAR is not compatible with this new capability).  

Further details about this method can be found in the following publication: 

Li, X., J. Ming, M. Xue, Y. Wang, and K. Zhao, 2015: Implementation of a 
dynamic equation constraint based on the steady state momentum equations 
within the WRF hybrid ensemble-3DVar data assimilation system and test with 
radar T-TREC wind assimilation for tropical Cyclone Chanthu (2010). J. 
Geophys. Res. Atmos., 120, 4017–4039, doi: 10.1002/2014JD022706. 

This new option is controlled by the following set of namelist options: 

&wrfvar12 
use_wpec true: enables the constraint term 

false: (default behavior) disables the constraint term 
wpec_factor The constraint’s weighting factor (1/Γ) as described in the paper 
balance_type 1 = geostrophic term 
 2 = cyclostrophic term 
 3 = geostrophic + cyclostrophic terms (default; recommended) 

3. Options for improving surface data assimilation 

There are a number of options in WRFDA that are specifically for surface observations 
(e.g. METAR, SYNOP). Surface observations should be handled especially cautiously, as 
their impact can vary widely based on vertical and horizontal resolution, as well as other 
factors. Adjusting the options listed below can help investigate the assimilation of surface 
observations, especially in mountainous terrain. 

&wrfvar11 
These two options work for BUOY, METAR, SHIP, and SYNOP observations, as well as surface-

level sounding and TAMDAR observations. 
sfc_assi_options 1 (default): surface observations will be assimilated based on the lowest 

model level first guess. Observations are not used when the elevation 
difference between the observing site and the lowest model level is larger 
than max_stheight_diff 
2: surface observations will be assimilated based on surface similarity 
theory in PBL. Innovations are computed based on 10-m wind, 2-m 
temperature and 2-m moisture. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-69 

max_stheight_diff Stations whose model-interpolated elevation is different from the actual 
observation elevation by greater than this value (default: 100.0) in meters 
will be rejected. 

 
The following options apply only for SYNOP observations 
sfc_hori_intp_options Specifies the method of interpolating the background to observation space 

1 (default): 4-point interpolation 
2: Chooses values from neighboring model gridpoint with smallest height 
difference (among land points: grid points over water will not be used). 

obs_err_inflate false (default): Observation error will be used as specified from 
observation files 
true: Inflate observation error values by a factor of 
e^(|Zdiff|/stn_ht_diff_scale) 

stn_ht_diff_scale If obs_err_inflate=true, observation error will be inflated by a 
factor of e^(|Zdiff|/stn_ht_diff_scale). Default is 200.0 
 

Description of Namelist Variables 

a. WRFDA namelist variables 

&wrfvar1 
Variable Name Default Value Description 
write_increments false .true.: write out a binary analysis increment file 
var4d false .true.: 4D-Var mode 
var4d_lbc true .true.: on/off for lateral boundary control in 4D-Var 
var4d_bin 3600 seconds, observation sub-window length for 4D-Var    
var4d_bin_rain 3600 seconds, precipitation observation sub-window 

length for 4D-Var  
multi_inc 0 > 0: multi-incremental run 
print_detail_radar false print_detail_xxx: output extra (sometimes can be 

too many) diagnostics for debugging; not 
recommended to turn these on for production runs 

print_detail_xa false 
print_detail_xb false 
print_detail_obs false 
print_detail_grad false .true.: to print out a detailed gradient of each 

observation type at each iteration 
check_max_iv_print true obsolete (used only by Radar) 
update_sfc_diags false .true.: update T2/Q2/U10/V10/TH2 with WRFDA 

re-diagnosed values. Use only with 
sf_sfclay_physics=91 in WRF 

 
&wrfvar2 
Variable Name Default Value Description 
analysis_accu 900 in seconds: if the time difference between the 

namelist date (analysis_date) and date info read-
in from the first guess is larger than analysis_accu, 
WRFDA will abort. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-70 

 
calc_w_increment false .true.:  the increment of the vertical velocity, W, will 

be diagnosed based on the increments of other 
fields.  
.false.: the increment of the vertical velocity W is 
zero if no W information is assimilated. 
If there is information on the W from observations 
assimilated, such as radar radial velocity, the W 
increments are always computed, whether 
calc_w_increment=true. or .false. 

wind_sd false true:  wind values which are reported as 
speed/direction will be assimilated as such 
false: (default behavior) all wind obs are converted 
to u/v prior to assimilation 

qc_rej_both false true:  if either u or v (spd or dir) do not pass quality 
control, both obs are rejected 
false: (default behavior) qc on wind obs is handled 
individually 

&wrfvar3 
Variable Name Default Value Description 
fg_format 1  1: fg_format_wrf_arw_regional (default) 

 3: fg_format_wrf_arw_global 
 4: fg_format_kma_global 
Options 3 and 4 are untested; use with caution! 
 

ob_format 2 1: read in NCEP PREPBUFR data from ob.bufr 
2: read in data from ob.ascii (default) 
 

ob_format_gpsro 2 1: read in GPSRO data from gpsro.bufr 
2: read in GPSRO data from ob.ascii (default) 
 

num_fgat_time 1 1: 3DVar 
> 1: number of time slots for FGAT and 4DVAR  

&wrfvar4 
Variable Name Default Value Description 
thin_conv true Turns on observation thinning for ob_format=1 

(NCEP PREPBUFR) only. thin_conv can be set to 
.false., but this is not recommended. 

thin_conv_ascii false Turns on observation thinning for ob_format=2 
(ASCII from OBSPROC) only. 

thin_mesh_conv  20. 
(max_instrumen
ts) 

km, each observation type can set its thinning mesh 
and the index/order follows the definition in 
WRFDA/var/da/da_control/da_control.f90 

use_synopobs true use_xxxobs - .true.: assimilate xxx obs if available 
.false.: do not assimilate xxx obs even available 

use_shipsobs true  



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-71 

use_metarobs true  
use_soundobs true  
use_pilotobs true  
use_airepobs true  
use_geoamvobs true  
use_polaramvobs true  
use_bogusobs true  
use_buoyobs true  
use_profilerobs true  
use_satemobs true  
use_gpspwobs true  
use_gpsztdobs false Note: unlike most use_*obs variables, the default 

for use_gpsztdobs is false. This is because PW and 
ZTD observations can not be assimilated 
simultaneously, so one of them must be false. 

use_gpsrefobs true  
use_qscatobs true  
use_radarobs false .true.: Assimilate radar data 
use_radar_rv false Assimilate radar velocity observations 
use_radar_rf false Assimilate radar reflectivity using original 

reflectivity operator (total mixing ratio) 
use_radar_rhv false Assimilate retrieved hydrometeors (qr, qs, qg) from 

radar reflectivity 
use_radar_rqv false Assimilate estimated humidity (qv) from radar 

reflectivity 
use_rainobs false .true.: Assimilate precipitation data 
thin_rainobs true .true.: perform thinning on precipitation data 
use_airsretobs true  
     ; use_hirs2obs, use_hirs3obs, use_hirs4obs, use_mhsobs, use_msuobs,  
     ; use_amsuaobs, use_amsubobs, use_airsobs, use_eos_amsuaobs, use_ssmisobs are 
     ; radiance-related variables that only control if corresponding BUFR files are read  
     ; into WRFDA or not, but do not control if the data is assimilated or not. Additional  
     ; variables have to be set in &wrfvar14 in order to assimilate radiance data. 
use_hirs2obs false .true.: read in data from hirs2.bufr 
use_hirs3obs false .true.: read in data from hirs3.bufr 
use_hirs4obs false .true.: read in data from hirs4.bufr 
use_mhsobs false .true.: read in data from mhs.bufr 
use_msuobs false .true.: read in data from msu.bufr 
use_amsuaobs false .true.: read in data from amsua.bufr 
use_amsubobs false .true.: read in data from amsub.bufr 
use_airsobs false .true.: read in data from airs.bufr 
use_eos_amsuaobs false .true.: read in data EOS-AMSUA data from  

airs.bufr 
use_ssmisobs false .true.: to read in data from ssmis.bufr 
use_atmsobs false .true.: to read in data from atms.bufr 
use_iasiobs false .true.: to read in data from iasi.bufr 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-72 

use_seviriobs false .true.: to read in data from seviri.bufr 
use_amsr2obs false .true.: to read in data from AMSR2 files (see section 

“Other data formats” for file names) 
use_obs_errfac false .true.: apply obs error tuning factors if errfac.dat is 

available for conventional data only 
&wrfvar5 
Variable Name Default Value Description 
check_max_iv true .true.: reject the observations whose innovations (O-

B) are  larger than a maximum value defined as a 
multiple of  the observation error for each 
observation. i.e., inv > (obs_error*factor) --> 
fails_error_max; the default maximum value is 5 
times the observation error ; the factor of 5 can be 
changed through max_error_* settings. 

max_error_t 5.0 maximum check_max_iv error check factor for t 
max_error_uv 5.0 maximum check_max_iv error check factor for u 

and v 
max_error_pw 5.0 maximum check_max_iv error check factor for 

precipitable water 
max_error_ref 5.0 maximum check_max_iv error check factor for gps 

refractivity 
max_error_q 5.0 maximum check_max_iv error check factor for 

specific humidity 
max_error_p 5.0 maximum check_max_iv error check factor for 

pressure 
max_error_thickness 5.0 maximum check_max_iv error check factor for 

thickness 
max_error_rv 5.0 maximum check_max_iv error check factor for 

radar radial velocity 
max_error_rf 5.0 maximum check_max_iv error check factor for 

radar reflectivity 
max_error_rain 5.0 maximum check_max_iv error check factor for 

precipitation 
max_error_spd 5.0 maximum check_max_iv error check factor for 

wind speed (wind_sd=.true. only) 
max_error_dir 5.0 maximum check_max_iv error check factor for 

wind direction (wind_sd=.true. only) 
put_rand_seed false For RANDOMCV: setting to “true” allows you to 

enter your own seed numbers (see &wrfvar11) to 
generate random background perturbations.  

&wrfvar6 (for minimization options) 
Variable Name Default Value Description 
max_ext_its 1 number of outer loops 
ntmax 200 

(max_ext_its) 
maximum number of iterations in an inner loop 
criterion (uses dimension: max_ext_its) 

eps 0.01 minimization convergence criterion (uses 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-73 

 (max_ext_its) dimension: max_ext_its); minimization stops when 
the norm of the gradient of the cost function 
gradient is reduced by a factor of eps. inner 
minimization stops either when the criterion is met 
or  when inner iterations reach ntmax. 

orthonorm_gradient false .true.: the gradient vectors are stored during the 
Conjugate Gradient for each iteration and used to re-
orthogonalize the new gradient. This requires extra 
storage of large vectors (each one being the size of 
the control variable) but results in a better 
convergence of the Conjugate Gradient after around 
20 iterations. 

&wrfvar7 
Variable Name Default Value Description 
cv_options 5 3: NCEP Background Error model 

5: NCAR Background Error model (default) 
6: Use of moisture-multivariate background error 
statistics (CV6) 
7: New NCAR Background Error model (CV7) 

cloud_cv_options 0 0: no hydrometeor/cloud control variables 
1: Q_total control variable 
3: Use individual cloud/hydrometeor control 
variables: Q_cloud, Q_rain, Q_ice, Q_snow, 
Q_graupel 

use_cv_w false true: turns on W (vertical velocity) as a control 
variable. Works for cloud_cv_options=3 only 

as1(3) 0.25, 1.0, 1.5 tuning factors for variance, horizontal and vertical 
scales for control variable 1 = stream function. For 
cv_options=3 only. 

as2(3) 0.25, 1.0, 1.5 tuning factors for variance, horizontal and vertical 
scales for control variable 2 - unbalanced potential 
velocity. For cv_options=3 only. 

as3(3) 0.25, 1.0, 1.5 tuning factors for variance, horizontal and vertical 
scales for control variable 3 - unbalanced 
temperature. For cv_options=3 only.  

as4(3)  0.25, 1.0, 1.5 tuning factors for variance, horizontal and vertical 
scales for control variable 4 - pseudo relative 
humidity. For cv_options=3 only.  

as5(3) 0.25, 1.0, 1.5 tuning factors for variance, horizontal and vertical 
scales for control variable 5 - unbalanced surface 
pressure. For cv_options=3 only.  

rf_passes 6 number of passes of recursive filter. 
var_scaling1 1.0 tuning factor of background error covariance for 

control variable 1 - stream function. For 
cv_options=5, 6, and 7 only. 

var_scaling2 1.0 tuning factor of background error covariance for  



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-74 

control variable 2 - unbalanced velocity potential. 
For cv_options=5, 6, and 7 only. 

var_scaling3 1.0 tuning factor of background error covariance for 
control variable 3 - unbalanced temperature. For 
cv_options=5, 6, and 7 only. 

var_scaling4 1.0 tuning factor of background error covariance for  
control variable 4 - pseudo relative humidity. For 
cv_options=5, 6, and 7 only. 

var_scaling5 1.0 tuning factor of background error covariance for  
control variable 5 - unbalanced surface pressure. For 
cv_options=5, 6, and 7 only. 

len_scaling1 1.0 tuning factor of scale-length for stream function. For 
cv_options=5, 6, and 7 only. 

len_scaling2 1.0 tuning factor of scale-length for unbalanced velocity 
potential. For cv_options=5, 6, and 7 only. 

len_scaling3 1.0 tuning factor of scale-length for unbalanced 
temperature. For cv_options=5, 6, and 7 only. 

len_scaling4 1.0 tuning factor of scale-length for pseudo relative 
humidity. For cv_options=5, 6, and 7 only. 

len_scaling5 1.0 tuning factor of scale-length for unbalanced surface 
pressure. For cv_options=5, 6, and 7 only. 

je_factor 1.0 ensemble covariance weighting factor 
&wrfvar8 not used 
 
&wrfvar9 (for program tracing) 
Variable Name Default Value Description 
stdout 6 unit number for standard output 
stderr 0 unit number for error output 
trace_unit 7 Unit number for tracing output.  Note that units 10 

and 9 are reserved for reading namelist.input and 
writing namelist.output respectively. 

trace_pe 0 Currently, statistics are always calculated for all 
processors, and output by processor 0. 

trace_repeat_head 10 the number of times any trace statement will 
produce output for any particular routine. This stops 
overwhelming trace output when a routine is called 
multiple times. Once this limit is reached a 'going 
quiet' message is written to the trace file, and no 
more output is produced from the routine, though 
statistics are still gathered. 

trace_repeat_body 10 see trace_repeat_head description 
trace_max_depth 30 define the deepest level to which tracing writes 

output 
trace_use false .true.: activate tracing. Tracing gives additional 

performance diagnostics (calling tree, local routine 
timings, overall routine timings, & memory usage). 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-75 

It does not change results, but does add runtime 
overhead. 

trace_use_frequent false .true.: activate tracing for all subroutines, even 
frequently called ones. Adds significant runtime 
overhead 

trace_use_dull false  
trace_memory true .true.: calculate allocated memory using a mallinfo 

call. On some platforms (Cray and Mac), mallinfo is 
not available and no memory monitoring can be 
done. 

trace_all_pes false .true.: tracing is output for all pes. As stated in 
trace_pe, this does not change processor statistics. 

trace_csv true .true.: tracing statistics are written to a xxxx.csv file 
in CSV format 

use_html true .true.: tracing and error reporting routines will 
include HTML tags. 

warnings_are_fatal false .true.: warning messages that would normally allow 
the   program to continue are treated as fatal errors. 

&wrfvar10 (for code developers) 
Variable Name Default Value Description 
test_transforms false .true.: perform adjoint tests 
test_gradient false .true.: perform gradient test 
 
&wrfvar11 
Variable Name Default Value Description 
check_rh 0 0 --> No supersaturation check after minimization. 

1 --> supersaturation (rh> 100%) and minimum rh 
(rh<10%) check, and make the local adjustment of 
q. 
2 -->  supersaturation (rh> 95%) and minimum rh 
(rh<11%) check and make the multi-level q 
adjustment under the constraint of conserved 
column integrated water vapor 

sfc_assi_options 1 1 -->  surface observations will be assimilated based 
on the lowest model level first guess. Observations 
are not used when the elevation difference between 
the observing site and the lowest model level is 
larger than max_stheight_diff. 
2 -->  surface observations will be assimilated based 
on surface similarity theory in PBL. Innovations are 
computed based on 10-m wind, 2-m temperature 
and 2-m moisture. 

max_stheight_diff 100.0 Height difference in meters. Stations whose model-
interpolated height is different from the actual 
observation station height by more than this value 
will be rejected. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-76 

sfc_hori_intp_options 1 (SYNOP only) Specifies the method of interpolating 
the background to observation space 
1: 4-point interpolation 
2: Chooses values from neighboring model 
gridpoint with smallest height difference (among 
land points: grid points over water will not be used). 

q_error_options 1 (SYNOP only) Method for calculating Q error 
values from RH error values 
1 (default): original method 
2: new method 

obs_err_inflate false (SYNOP only) 
Observation error will be used as specified from 
observation files 
true: Inflate observation error values by a factor of 
e^(|Zdiff|/stn_ht_diff_scale) 

stn_ht_diff_scale 200.0 (SYNOP only) 
If obs_err_inflate=true, observation error will 
be inflated by a factor of e^(|Zdiff|/stn_ht_diff_scale). 
Default is 200.0 

psfc_from_slp false .true.: when sfc_assi_options=1, re-calculates Psfc 
from SLP when the observation elevation is below 
the lowest model level height. This was the behavior 
prior to V3.8, but is not recommended. 

calculate_cg_cost_fn false conjugate gradient algorithm does not require the 
computation of cost function at every iteration 
during minimization. 
.true.: Compute and write out cost function for each 
iteration into file cost_fn for diagnostic purposes 
false.: Only the initial and final cost functions are 
computed and output. 

write_detail_grad_fn false .true.: Write out gradient for each iteration into file 
grad_fn for diagnostic purposes 

seed_array1 1 For RANDOMCV when put_rand_seed=true, 
first integer for seeding the random function 

seed_array2 1 For RANDOMCV when put_rand_seed=true, 
second integer for seeding the random function 

&wrfvar12 
Variable Name Default Value Description 
use_wpec false true: enables the WPEC dynamic constraint term 
wpec_factor 0.001 WPEC dynamic constraint weighting factor 
balance_type 3 1 = geostrophic term only 

2 = cyclostrophic term only 
3 = geostrophic + cyclostrophic terms 

&wrfvar13 
Variable Name Default Value Description 
max_vert_var1 99.0 specify the maximum truncation value (percentage) 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-77 

to explain the variance of stream function in 
eigenvector decomposition 

max_vert_var2 99.0 specify the maximum truncation value (percentage) 
to explain the  variance of unbalanced potential 
velocity in eigenvector decomposition 

max_vert_var3 99.0 specify the maximum truncation value (percentage) 
to explain the variance of the unbalanced 
temperature in eigenvector decomposition 

max_vert_var4 99.0 specify the maximum truncation value (percentage) 
to explain the variance of  pseudo relative humidity 
in eigenvector decomposition 

max_vert_var5 99.0 for unbalanced surface pressure, it should be a non-
zero positive number. 
set max_vert_var5=0.0 only for offline VarBC 
applications. 

psi_chi_factor 1.0 Contribution of stream function in defining balanced 
part of velocity potential. For cv_options=6 only. 

psi_t_factor 1.0 Contribution of stream function in defining balanced 
part of temperature. For cv_options=6 only. 

psi_ps_factor 1.0 Contribution of stream function in defining balanced 
part of surface pressure. For cv_options=6 only. 

psi_rh_factor 1.0 Contribution of stream function in defining balanced 
part of moisture. For cv_options=6 only. 

chi_u_t_factor 1.0 Contribution of the unbalanced part of velocity 
potential in defining balanced part of temperature. 
For cv_options=6 only. 

chi_u_ps_factor 1.0 Contribution of the unbalanced part of velocity 
potential in defining balanced part of surface 
pressure. For cv_options=6 only. 

chi_u_rh_factor 1.0 Contribution of the unbalanced part of velocity 
potential in defining balanced part of moisture. For 
cv_options=6 only. 

t_u_rh_factor 1.0 Contribution of the unbalanced part of temperature 
in defining balanced part of moisture. For 
cv_options=6 only. 

ps_u_rh_factor 1.0 Contribution of the unbalanced part of surface 
pressure in defining balanced part of moisture. For 
cv_options=6 only. 

&wrfvar14 (radiance options) 
Variable Name Default Value Description 
rtminit_nsensor 1 total number of sensors to be assimilated 
rtminit_platform -1 

(max_instruments) 
platforms IDs array (used dimension: 
rtminit_nsensor); e.g., 1 for NOAA, 9 for EOS, 
10 for METOP and 2 for DMSP 

rtminit_satid -1.0  satellite IDs array (used dimension: 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-78 

(max_instruments) rtminit_nsensor) 
rtminit_sensor  -1.0  

(max_instruments) 
sensor IDs array (used dimension: 
rtminit_nsensor); e.g., 0 for HIRS, 3 for AMSU-
A, 4 for AMSU-B,  15 for MHS, 10 for SSMIS, 
11 for AIRS 

rad_monitoring 0  
(max_instruments) 

integer array (used dimension: rtminit_nsensor); 
0: assimilating mode;  
1: monitoring mode (only calculate innovations) 

thinning_mesh 60.0  
(max_instruments) 

real array (used dimension: rtminit_nsensor); 
specify thinning mesh size (in km) for different 
sensors. 

thinning false .true.: perform thinning on radiance data 
qc_rad true .true.: perform quality control. Do not change. 
write_iv_rad_ascii false .true.: output radiance Observation minus 

Background files, which are in ASCII format 
and separated by sensor and processor. 

write_oa_rad_ascii false .true.: output radiance Observation minus 
Analysis files (Observation minus Background 
information is also included), which are in 
ASCII format and separated by sensor and 
processor. 

use_error_factor_rad false .true.: use a radiance error tuning factor file 
radiance_error.factor, which can be created 
with empirical values or generated using 
variational tuning method (Desroziers and 
Ivanov, 2001) 

use_antcorr false 
(max_instruments) 

.true.: perform Antenna Correction in CRTM 

rtm_option 1 which RTM (Radiative Transfer Model) to use 
(To use RTTOV, WRFDA must be compiled to 
include RTTOV libraries; see first section for 
details) 
1: RTTOV  
2: CRTM   

only_sea_rad false .true.: assimilate radiance over water only 
use_varbc false .true.: perform Variational Bias Correction. A 

parameter file in ASCII format called VARBC.in 
(a template is provided with the source code tar 
ball) is required. 

freeze_varbc false .true: together with use_varbc=.false., keep the 
VarBC bias parameters constant in time. In this 
case, the bias correction is read and applied to 
the innovations, but it is not updated during the 
minimization. 

varbc_factor 1.0 for scaling the VarBC preconditioning 
varbc_nobsmin 10 defines the minimum number of observations 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-79 

required for the computation of the predictor 
statistics during the first assimilation cycle. If 
there are not enough data (according to 
"VARBC_NOBSMIN") on the first cycle, the 
next cycle will perform a coldstart again. 

use_clddet_mmr false .true. :use the MMR scheme to conduct cloud 
detection for infrared radiance 

use_clddet_ecmwf false .true. :use the ECMWF operational scheme to 
conduct cloud detection for infrared radiance. 

airs_warmest_fov false .true.: uses the observation brightness 
temperature for AIRS Window channel #914 as 
criterion for GSI  thinning (with a higher 
amplitude than the distance from the observation 
location to the nearest grid point). 

use_crtm_kmatrix true .true. use CRTM K matrix rather than calling 
CRTM TL and AD routines for gradient 
calculation, which reduces runtime noticeably. 

crtm_cloud false .true. include cloud effects in CRTM 
calculations (AMSR2 instrument only) 
.false. do not include cloud effects (non-clear-
sky pixels will be rejected) 

use_rttov_kmatrix false .true. use RTTOV K matrix rather than calling 
RTTOV TL and AD routines for gradient 
calculation, which reduces runtime noticeably. 

rttov_emis_atlas_ir 0 0: do not use IR emissivity atlas 
1: use IR emissivity atlas (recommended) 

rttov_emis_atlas_mw 0 0: do not use MW emissivity atlas 
1: use TELSEM MW emissivity atlas 
(recommended) 
2: use CNRM MW emissivity atlas 

use_blacklist_rad true true.: switch off the assimilation of known 
problematic channels (up to year 2012) that are 
hard-coded in 
var/da/da_radiance/da_blacklist_rad.inc. 
false.: users need to specify proper channel 
selections in the radiance_info files. 

&wrfvar15 (needs to be set together with &wrfvar19) 
Variable Name Default Value Description 
num_pseudo 0 Set the number of pseudo observations, either 0 or 1 

(single ob) 
pseudo_x 1.0 Set the x-position (I) of the OBS in unit of grid-

point. 
pseudo_y 1.0 Set the y-position (J) of the OBS in unit of grid-

point. 
pseudo_z 1.0 Set the z-position (K) of OBS with the vertical level 

index, in bottom-up order. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-80 

pseudo_val 1.0 Set the innovation of the  ob; wind in m/s, pressure 
in Pa, temperature in K, specific humidity in kg/kg  
 

pseudo_err 1.0 set the error of the pseudo ob. Unit the same as 
pseudo_val.; if pseudo_var="q", pseudo_err=0.001 
is more reasonable. 

&wrfvar16 (hybrid DA options) 
Variable Name Default Value Description 
use_4denvar .false. .true.: activate 4DEnVar capability 

.false.: No 4DEnVar 
hybrid_dual_res .false. .true.: activate dual-resolution hybrid capability 

.false.: No dual-resolution hybrid 
ensdim_alpha 0 ensemble size 
alphacv_method 2 1: ensemble perturbations in control variable space 

2: ensemble perturbations in model variable space 
alpha_corr_type 3 1: alpha_corr_type_exp 

2: alpha_corr_type_soar 
3: alpha_corr_type_gaussian (default) 

alpha_corr_scale 200.0 Hybrid covariance localization (km) 
alpha_std_dev 1.0 Alpha standard deviation 
alpha_vertloc .false. .true.: use vertical localization (recommended) 

.false.: no vertical localization 
&wrfvar17 
Variable Name Default Value Description 
analysis_type “3D-VAR” "3D-VAR": 3D-VAR mode (default); 

 "QC-OBS": 3D-VAR mode plus extra filtered_obs 
output;  
"VERIFY": verification mode. WRFDA resets 
check_max_iv=.false. and ntmax=0;  
"RANDOMCV": for creating ensemble 
perturbations 

adj_sens false .true.: write out gradient of Jo for adjoint sensitivity 
&wrfvar18 
Variable Name Default Value Description 
analysis_date “2002-08-

03_00:00:00.00
00” 

specify the analysis time. It should be consistent 
with the first guess time; if time difference between 
analysis_date and date info read in from first guess 
is larger than the &wrfvar2 setting “analysis_accu”, 
WRFDA will abort. 

&wrfvar19 (needs to be set together with &wrfvar15) 
Variable Name Default Value Description 
pseudo_var “t” Set the name of the OBS variable: 

'u' = X-direction component of wind, 
'v' = Y-direction component of wind, 
't' = Temperature, 
'p' = Pressure, 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-81 

'q' = Specific humidity 
"tpw": total precipitable water 
"ref": refractivity 
"ztd": zenith total delay 

&wrfvar20 
documentation_url “http://www.m

mm.ucar.edu/pe
ople/wrfhelp/wr
fvar/code/trunk” 

 

&wrfvar21 
time_window_min "2002-08-

02_21:00:00.00
00" 

start time of assimilation time window used for 
ob_format=1 and radiances to select observations 
inside the defined time_window. Note: Start from 
V3.1, this variable is also used for ob_format=2 to 
double-check if the obs are within the specified time 
window. 
 

&wrfvar22 
time_window_max "2002-08-

03_03:00:00.00
00" 

end time of assimilation time window used for 
ob_format=1 and radiances to select observations 
inside the defined time_window. Note: this variable 
is also used for ob_format=2 to double-check if the 
obs are within the specified time window. 

&perturbation (settings related to 4DVAR options) 
jcdfi_use false .true.: Include JcDF term in cost function. 

.false.: Ignore JcDF term in cost function. 
jcdfi_diag 1 0: Doesn't print out the value of Jc. 

1:Print out the value of Jc. 
jcdfi_penalty 10 The weight to Jc term. 
enable_identity .false. .true.: use identity adjoint and tangent linear model 

in 4D-Var. 
.false.: use full adjoint and tangent linear model in 
4D-Var. 

trajectory_io .true. .true.: use memory I/O in 4D-Var for data exchange 
NOTE: trajectory_io=false is depreciated 
and should not be used. 
.false.: use disk I/O in 4D-Var for data exchange 

var4d_detail_out false .true.: output extra diagnostics for debugging 4D-
Var 

&radar_da (settings related to radar options) 
radar_non_precip_opt 0 0 (default): no null-echo assimilation 

1: KNU null-echo scheme 
radar_non_precip_rf -999.99 Reflectivity flag value (dBz) in observation file 

indicating non-precipitation echoes 
radar_non_precip_rh_w 95 RH (%) with respect to water for non-precip 

retrieved Q_vapor (rqv) 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-82 

radar_non_precip_rh_i 85 RH (%) with respect to water for non-precip rqv 
cloudbase_calc_opt 1 Option for calculating cloud-base height: below this 

height retrieved humidity will not be assimilated for 
the use_radar_rqv option 
0 (not recommended): fixed value of 1500 meters 
1 (default): KNU scheme 
2: NCAR scheme 

radar_saturated_rf 25.0 rf value (dBz) used to indicate precipitation for rqv 
radar_rqv_thresh1 40.0 rf value (dBz) used to scale down retrieved rqv 
radar_rqv_thresh2 50.0 rf value (dBz) used to scale down retrieved rqv 
radar_rqv_rh1 85 RH (%) for radar_saturated_rf < rf <  

radar_rqv_thresh1 
radar_rqv_rh2 95 RH (%) for radar_rqv_thresh1 < rf <  

radar_rqv_thresh2 
radar_rqv_h_lbound -999.0 height (meters) lower bound for assimilating rqv 
radar_rqv_h_ubound -999.0 height (meters) upper bound for assimilating rqv 
    

b. OBSPROC namelist variables 

Variable Names Description 
&record1 
obs_gts_filename name and path of decoded observation file 
fg_format 'MM5' for MM5 application, 'WRF' for WRF application 
obserr.txt name and path of observational error file 
first_guess_file name and path of the first guess file 
&record2 
time_window_min The earliest time edge as ccyy-mm-dd_hh:mn:ss 
time_analysis The analysis time as ccyy-mm-dd_hh:mn:ss 
time_window_max The latest time edge as ccyy-mm-dd_hh:mn:ss 

** Note : Only observations between [time_window_min, 
time_window_max] will kept. 

&record3 
max_number_of_obs Maximum number of observations to be loaded, i.e. in domain 

and time window, this is independent of the number of obs 
actually read. 

fatal_if_exceed_max_o
bs 

.TRUE.:  will stop when more than max_number_of_obs are 
loaded 
.FALSE.: will process the first max_number_of_obs loaded 
observations.  

&record4 
qc_test_vert_consiste
ncy 

.TRUE. will perform a vertical consistency quality control check 
on sounding 

qc_test_convective_ad
j 

.TRUE. will perform a convective adjustment quality control 
check on sounding 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-83 

qc_test_above_lid .TRUE. will flag the observation above model lid 
remove_above_lid .TRUE. will remove the observation above model lid 
domain_check_h .TRUE. will discard the observations outside the domain 
Thining_SATOB .FALSE.: no thinning for SATOB data. 

.TRUE.: thinning procedure applied to SATOB data. 
Thining_SSMI .FALSE.: no thinning for SSMI data. 

.TRUE.: thinning procedure applied to SSMI data. 
Thining_QSCAT .FALSE.: no thinning for SATOB data. 

.TRUE.: thinning procedure applied to SSMI data. 
&record5 
print_gts_read TRUE. will write diagnostic on the decoded obs reading in file 

obs_gts_read.diag 
print_gpspw_read .TRUE. will write diagnostic on the gpsppw obs reading in file 

obs_gpspw_read.diag 
print_recoverp .TRUE. will write diagnostic on the obs pressure recovery in file 

obs_recover_pressure.diag 
print_duplicate_loc .TRUE. will  write diagnostic on space duplicate removal in file 

obs_duplicate_loc.diag 
print_duplicate_time .TRUE. will  write diagnostic on time duplicate removal in file 

obs_duplicate_time.diag 
print_recoverh .TRUE will write diagnostic on the obs height recovery in file 

obs_recover_height.diag 
print_qc_vert .TRUE will write diagnostic on the vertical consistency check in 

file obs_qc1.diag 
print_qc_conv .TRUE will write diagnostic on the convective adjustment check 

in file obs_qc1.diag 
print_qc_lid .TRUE. will write diagnostic on the above model lid height check 

in file obs_qc2.diag 
print_uncomplete .TRUE. will write diagnostic on the uncompleted obs removal in 

file obs_uncomplete.diag 
user_defined_area .TRUE.: read in the record6: x_left, x_right, y_top, y_bottom, 

.FALSE.: not read in the record6. 
&record6 
x_left West border of sub-domain, not used 
x_right East border of sub-domain, not used 
y_bottom South border of sub-domain, not used 
y_top North border of sub-domain, not used 
ptop Reference pressure at model top 
ps0 Reference sea level pressure 
base_pres Same as ps0. User must set either ps0 or base_pres. 
ts0 Mean sea level temperature 
base_temp Same as ts0. User must set either ts0 or base_temp. 
tlp Temperature lapse rate 
base_lapse Same as tlp. User must set either tlp or base_lapse. 
pis0 Tropopause pressure, the default = 20000.0 Pa 
base_tropo_pres Same as pis0. User must set either pis0 or base_tropo_pres 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-84 

tis0 Isothermal temperature above tropopause (K), the default = 215 
K. 

base_start_temp Same as tis0. User must set either tis0 or base_start_temp. 
&record7 
IPROJ Map projection (0 = Cylindrical Equidistance, 1 = Lambert 

Conformal, 2 = Polar stereographic, 3 = Mercator) 
PHIC Central latitude of the domain 
XLONC Central longitude of the domain 
TRUELAT1 True latitude 1 
TRUELAT2 True latitude 2 
MOAD_CEN_LAT The central latitude for the Mother Of All Domains 
STANDARD_LON The standard longitude (Y-direction) of the working domain. 
&record8  
IDD Domain ID (1=< ID =< MAXNES), Only the observations 

geographically located on that domain will be processed. For 
WRF application with XLONC /= STANDARD_LON, set 
IDD=2, otherwise set 1. 

MAXNES Maximum number of domains as needed. 
NESTIX The I(y)-direction dimension for each of the domains 
NESTJX The J(x)-direction dimension for each of the domains 
DIS The resolution (in kilometers) for each of the domains. For WRF 

application, always set NESTIX(1),NESTJX(1), and DIS(1) based 
on the information in wrfinput. 

NUMC The mother domain ID number for each of the domains 
NESTI The I location in its mother domain of the nest domain's low left 

corner -- point (1,1) 
NESTI The J location in its mother domain of the nest domain's low left 

corner -- point (1,1). For WRF application, NUMC(1), NESTI(1), 
and NESTJ(1) are always set to be 1. 

&record9  
prepbufr_output_filen
ame 

Name of the PREPBUFR OBS file. 

prepbufr_table_filena
me 

'prepbufr_table_filename' ; do not change 
output_ob_format output 1, PREPBUFR OBS file only; 

           2, ASCII OBS file only; 
           3, Both PREPBUFR and ASCII OBS files. 

use_for '3DVAR' obs file, same as before, default 
'FGAT ' obs files for FGAT 
'4DVAR' obs files for 4DVAR 

num_slots_past the number of time slots before time_analysis 
num_slots_ahead the number of time slots after time_analysis 
write_synop If keep synop obs in obs_gts (ASCII) files. 
write_ship If keep ship obs in obs_gts (ASCII) files. 
write_metar If keep metar obs in obs_gts (ASCII) files. 
write_buoy If keep buoy obs in obs_gts (ASCII) files. 
write_pilot If keep pilot obs in obs_gts (ASCII) files. 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-85 

write_sound If keep sound obs in obs_gts (ASCII) files. 
write_amdar If keep amdar obs in obs_gts (ASCII) files. 
write_satem If keep satem obs in obs_gts (ASCII) files. 
write_satob If keep satob obs in obs_gts (ASCII) files. 
write_airep If keep airep obs in obs_gts (ASCII) files. 
write_gpspw If keep gpspw obs in obs_gts (ASCII) files. 
write_gpsztd If keep gpsztd obs in obs_gts (ASCII) files. 
write_gpsref If keep gpsref obs in obs_gts (ASCII) files. 
write_gpseph If keep gpseph obs in obs_gts (ASCII) files. 
write_ssmt1 If keep ssmt1 obs in obs_gts (ASCII) files. 
write_ssmt2 If keep ssmt2 obs in obs_gts (ASCII) files. 
write_ssmi If keep ssmi obs in obs_gts (ASCII) files. 
write_tovs If keep tovs obs in obs_gts (ASCII) files. 
write_qscat If keep qscat obs in obs_gts (ASCII) files. 
write_profl If keep profile obs in obs_gts (ASCII) files. 
write_bogus If keep bogus obs in obs_gts (ASCII) files. 
write_airs If keep airs obs in obs_gts (ASCII) files. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



WRFDA 
 

 
WRF-ARW V3: User’s Guide  6-86 

 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-1 

 
Chapter 7: Objective Analysis (OBSGRID)  

 

Table of Contents 

• Introduction 
• Program Flow 
• Source of Observations 
• Objective Analysis techniques in OBSGRID 
• Quality Control for Observations 
• Additional Observations 
• Surface FDDA option 
• Objective Analysis on Model Nests 
• How to run OBSGRID 
• Output Files 
• Plot Utilities 
• Observations Format 
• OBSGRID Namelist 

 

Introduction 

The goal of objective analysis in meteorological modeling is to improve meteorological analyses 
(the first guess) on the mesoscale grid by incorporating information from observations. 
Traditionally, these observations have been "direct" observations of temperature, humidity, and 
wind from surface and radiosonde reports. As remote sensing techniques come of age, more and 
more "indirect" observations are available for researchers and operational modelers. Effective use 
of these indirect observations for objective analysis is not a trivial task. Methods commonly 
employed for indirect observations include three-dimensional or four-dimensional variational 
techniques ("3DVAR" and "4DVAR", respectively), which can be used for direct observations as 
well. 

This chapter discusses the objective analysis program, OBSGRID. Discussion of variational 
techniques (WRFDA) can be found in Chapter 6 of this User’s Guide. 

The analyses input to OBSGRID as the first guess are analyses output from the METGRID part of 
the WPS package (see Chapter 3 of this User’s Guide for details regarding the WPS package).  

 

 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-2 

OBSGRID capabilities include: 

• Choice of Cressman-style or Multiquadric objective analysis. 
• Various tests to screen the data for suspect observations. 
• Procedures to input bogus data. 
• Expanded Grid: OBSGRID has the capability to cut the input model domain down on 

output. This feature allows you to incorporate data from outside your intended grid to 
improve analyses near the boundaries. To use this feature, a user must create a larger 
domain than the final intended domain when running WPS.  
 

Program Flow 

OBSGRID is run directly after metgrid.exe, and uses the met_em* output files from 
metgrid.exe as input. OBSGRID also requires additional observations (A) as input. The 
format of these observational files is described in the Observations Format section of this 
chapter.    

 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-3 

Output from the objective analysis programs can be used to:  

• Provide fields for Initial and Boundary conditions (1). Note that the files metoa_em* are 
formatted identically to the met_em* files from metgrid.exe. The only difference is 
that the fields in these files now incorporate observational information.   

• Provide surface fields for surface-analysis-nudging FDDA (2). Note, when using the 
wrfsfdda file as input to WRF, it is also recommended to use the 3-D fdda file (wrffdda (5) 
– which is an optional output created when running real.exe) as input to WRF.  

• Provide data for observational nudging (3). Note: since version 3.1.1 of OBSGRID this file 
can be read directly by the observational nudging code and no longer needs to pass through 
an additional perl script.  

• Provide ASCII and netCDF output (4). These files provide information regarding the 
observations used and the quality control flags assigned. The information in these files can 
also be plotted with the provided plotting utilities. 

 

Source of Observations 

OBSGRID reads observations provided by the user in formatted ASCII text files. This allows users 
to adapt their own data to use as input to the OBSGRID program. This format (wrf_obs / little_r 
format) is the same format used in the MM5 objective analysis program LITTLE_R (hence the 
name).  

Programs are available to convert NMC ON29 and NCEP BUFR formatted files (see below) into 
the wrf_obs / little_r format. Users are responsible for converting other observations 
they may want to provide to OBSGRID into this format. A user-contributed (i.e., unsupported) 
program is available in the utils/ directory for converting observation files from the GTS to 
wrf_obs / little_r format. 

NCEP operational global surface and upper-air observation subsets, as archived by the Data 
Support Section (DSS) at NCAR. 

• Upper-air data in NMC ON29 format (from early 1970s to early 2000) 
http://rda.ucar.edu/datasets/ds353.4/   

• Surface data in NMC ON29 format (from early 1970s to early 2000) 
http://rda.ucar.edu/datasets/ds464.0/  

• Upper-air data in NCEP BUFR format (from 1999 to present) 
http://rda.ucar.edu/datasets/ds351.0/  

• Surface data in NCEP BUFR format (from 1999 to present)  
http://rda.ucar.edu/datasets/ds461.0/   

The newer data (ds351.0 and ds461.0) is also available in the little_r format. From outside NCAR, 
this data can be download from the web, while it is available on the NCAR /glade system for 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-4 

NCAR supercomputer users. This data is sorted into 6-hourly windows, which are typically too 
large for use in OBSGRID. To reorder this into 3-hourly windows: 

• Get the little_r 6-hourly data 
o Non-NCAR super-computer users. Get the data directly from the above web sites. 

Combine (by using the Unix ‘cat’ command) all the surface and upper-air data into one 
large file called rda_obs. 

o NCAR super-computer users. Use the script util/get_rda_data.csh, to get the 
data and create the file rda_obs. You will need to edit this script to supply the date 
range that you are interested in.  

• Compile the Fortran program util/get_rda_data.f. Place rda_obs file the in the 
top OBSGRID directory. Run the util/get_rda_data.exe executable. This 
executable will use the date range from namelist.oa, and create 3-hourly OBS:<date> files 
which are ready to use in OBSGRID.   

 

NMC Office Note 29 can be found in many places on the World Wide Web, including: 
     http://www.emc.ncep.noaa.gov/mmb/data_processing/on29.htm  

 

Another method of obtaining little_r observations is to download observations from the 
Meteorological Assimilation Data Ingest System (MADIS; https://madis.noaa.gov/) and convert 
them to little_r format using the MADIS2LITTLER tool provided by NCAR 
(http://www2.mmm.ucar.edu/wrf/users/wrfda/download/madis.html).  Note that to allow single-
level above-surface observations to be properly dealt with by OBSGRID, MADIS2LITTLER must 
be modified to mark such observations as soundings (in module_output.F, subroutine 
write_littler_onelvl must be modified to set is_sound = .TRUE.). 

 

Objective Analysis techniques in OBSGRID 

Cressman Scheme 

Three of the four objective analysis techniques used in OBSGRID are based on the Cressman 
scheme, in which several successive scans nudge a first-guess field toward the neighboring 
observed values. 

The standard Cressman scheme assigns to each observation a circular radius of influence, R. The 
first-guess field at each grid point, P, is adjusted by taking into account all the observations that 
influence P. 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-5 

The differences between the first-guess field and the observations are calculated, and a distance-
weighted average of these difference values is added to the value of the first-guess at P. Once all 
grid points have been adjusted, the adjusted field is used as the first guess for another adjustment 
cycle. Subsequent passes each use a smaller radius of influence.  

 

 

Ellipse Scheme 

In analyses of wind and relative humidity (fields strongly deformed by the wind) at pressure levels, 
the circles from the standard Cressman scheme are elongated into ellipses, oriented along the flow. 
The stronger the wind, the greater the eccentricity of the ellipses. This scheme reduces to the 
circular Cressman scheme under low-wind conditions.  

 

 

 

 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-6 

Banana Scheme 

In analyses of wind and relative humidity at pressure levels, the circles from the standard Cressman 
scheme are elongated in the direction of the flow, and curved along the streamlines. The result is 
a banana shape. This scheme reduces to the Ellipse scheme under straight-flow conditions, and the 
standard Cressman scheme under low-wind conditions.  

 

 

Multiquadric scheme 

The Multiquadric scheme uses hyperboloid radial basis functions to perform the objective analysis. 
Details of the multiquadric technique may be found in Nuss and Titley, 1994: "Use of multiquadric 
interpolation for meteorological objective analysis." Mon . Wea . Rev ., 122, 1611-1631. Use this 
scheme with caution, as it can produce some odd results in areas where only a few observations 
are available. 

 

Quality Control for Observations 

A critical component of OBSGRID is the screening for bad observations. Many of these QC checks 
are optional in OBSGRID. 

Quality Control on Individual Reports 

• Gross Error Checks (same values, pressure decreases with height, etc.) 
• Remove spikes from temperature and wind profiles. 
• Adjust temperature profiles to remove superadiabatic layers. 
• No comparisons to other reports or to the first-guess field. 

 

The ERRMAX test 

The ERRMAX quality-control check is optional, but highly recommended. 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-7 

• Limited user control over data removal. The user may set thresholds, which vary the 
tolerance of the error check. 

• Observations are compared to the first-guess field. 
• If the difference value (obs - first-guess) exceeds a certain threshold, the observation is 

discarded. 
• Threshold varies depending on the field, level, and time of day. 
• Works well with a good first-guess field. 

The Buddy test 

The Buddy check is optional, but highly recommended. 

• Limited user control over data removal. The user may set weighting factors, which vary 
the tolerance of the error check. 

• Observations are compared to both the first guess and neighboring observations. 
• If the difference value of an observation (obs - first-guess) varies significantly from the 

distance-weighted average of the difference values of neighboring observations, the 
observation is discarded. 

• Works well in regions with good data density. 
 

Additional Observations 

Input of additional observations, or modification of existing (and erroneous) observations, can be 
a useful tool at the objective analysis stage. 

In OBSGRID, additional observations are provided to the program the same way (in the same 
wrf_obs / little_r format) as standard observations. Additional observations must be in the same 
file as the rest of the observations. Existing (erroneous) observations can be modified easily, as 
the observations input format is ASCII text. Identifying an observation report as "bogus" simply 
means that it is assumed to be good data, but no quality control is performed for that report. 

 

Surface FDDA option 

The surface FDDA option creates additional analysis files for the surface only, usually with a 
smaller time interval between analyses (i.e., more frequently) than the full upper-air analyses. The 
purpose of these surface analysis files is for later use in WRF with the surface analysis nudging 
option. 

The LAGTEM option controls how the first-guess field is created for surface analysis files. 
Typically, the surface and upper-air first-guess (analysis times) is available at twelve-hour or six-
hour intervals, while the surface analysis interval may be 3 hours (10800 seconds). So at analysis 
times, the available surface first-guess is used. If LAGTEM is set to .FALSE., the surface first-
guess at other times will be temporally interpolated from the first-guess at the analysis times. If 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-8 

LAGTEM is set to .TRUE., the surface first guess at other times is the objective analysis from the 
previous time. 

 

Objective Analysis on Model Nests 

OBSGRID has the capability to perform the objective analysis on a nest. This is done manually 
with a separate OBSGRID process, performed on met_em_d0x files for the particular nest. Often, 
however, such a step is unnecessary; it complicates matters for the user and may introduce errors 
into the forecast. At other times, extra information available to the user, or extra detail that 
objective analysis may provide on a nest, makes objective analysis on a nest a good option. 

The main reason to do objective analysis on a nest is if you have observations available with 
horizontal resolution somewhat greater than the resolution of your coarse domain. There may also 
be circumstances in which the representation of terrain on a nest allows for better use of surface 
observations (i.e., the model terrain better matches the real terrain elevation of the observation). 

The main problem introduced by doing objective analysis on a nest is inconsistency in initial 
conditions between the coarse domain and the nest. Observations that fall just outside a nest will 
be used in the analysis of the coarse domain, but discarded in the analysis of the nest. With 
different observations used right at a nest boundary, one can get very different analyses. 
 
 

How to run OBSGRID 

Get the source code 

The source code can be downloaded from: 
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. Once the tar file is gunzipped 
(gunzip OBSGRID.TAR.gz), and untared (untar OBSGRID.TAR), it will create an OBSGRID/ 
directory. 

cd OBSGRID 

Generate the executable 

The only library that is required to build the WRF model is netCDF.  The user can find the source 
code, precompiled binaries, and documentation at the UNIDATA home page 
(http://www.unidata.ucar.edu/software/netcdf/ ). 

To successfully compile the utilities plot_level.exe and plot_sounding.exe, NCAR 
Graphics needs to be installed on your system. These routines are not necessary to run OBSGRID, 
but are useful for displaying observations. Since version 3.7.0 NCL scripts are available and 
therefore these two utilities are no longer needed to plot the data.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-9 

To configure, type: 

./configure 

Choose one of the configure options, then compile. 

./compile 

If successful, this will create the executable obsgrid.exe. Executables plot_level.exe 
and plot_sounding.exe, will be created if NCAR Graphics is installed.  

 

Prepare the observations files 

Preparing observational files is a user responsibility. Some data are available from NCAR’s RDA 
web site. Data from the early 1970’s are in ON29 format, while data from 1999 to present are in 
NCEP BUFR format. Help using these datasets are available. For more information see the section 
Source of Observations on page 7-3 of this Users’ Guide.  

A program is also available for reformatting observations from the GTS stream (unsupported). 
This can be found in OBSGRID/util, and is called gts_cleaner.f. The code expects to find one 
observational input file per analysis time. Each file should contain both surface and upper-air data 
(if available).  

 

Edit the namelist for your specific case 

The most critical information you'll be changing most often is the start date, end date, and file 
names.  

Pay particularly careful attention to the file name settings. Mistakes in observation file names can 
go unnoticed because OBSGRID will happily process the wrong files, and if there are no data in 
the (wrongly-specified) file for a particular time, OBSGRID will happily provide you with an 
analysis of no observations. 

 

Run the program 

Run the program by invoking the command: 

./obsgrid.exe >& obsgrid.out 

Check the obsgrid.out file for information and runtime errors.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-10 

Check your output 

Examine the obsgrid.out file for error messages or warning messages. The program should 
have created the files called metoa_em*. Additional output files containing information about 
observations found, used and discarded will probably be created, as well. 

Important things to check include the number of observations found for your objective analysis, 
and the number of observations used at various levels. This can alert you to possible problems in 
specifying observation files or time intervals. This information is included in the printout file. 

You may also want to experiment with a couple of simple plot utility programs, discussed below. 

There are a number of additional output files, which you might find useful. These are discussed 
below. 

 

Output Files 

The OBSGRID program generates some ASCII/netCDF files to detail the actions taken on 
observations through a time cycle of the program. In support of users wishing to plot the 
observations used for each variable (at each level, at each time), a file is created with this 
information. Primarily, the ASCII/netCDF files are for consumption by the developers for 
diagnostic purposes. The main output of the OBSGRID program is the gridded, pressure-level data 
set to be passed to the real.exe program (files metoa_em*). 

In each of the files listed below, the text ".dn.YYYY-MM-DD_HH:mm:ss.tttt" allows each time 
period that is processed by OBSGRID to output a separate file. The only unusual information in 
the date string is the final four letters "tttt" which is the decimal time to ten thousandths of a second. 
These files will be dependent on the domain being processed. 

 

metoa_em* 

These are the final analysis files at surface and pressure levels. Generating this file is the primary 
goal of running OBSGRID. 

These files can now be used in place of the met_em* files from WPS to generate initial and 
boundary conditions for WRF. To use these files when running real.exe you can do one of two 
things: 

1. Rename or link the metoa_em* files back to met_em*. This way real.exe will read the 
files automatically.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-11 

2. Use the auxinput1_inname namelist option in WRF’s namelist.input file to 
overwrite the default filename real.exe uses. To do this, add the following to the 
&time_control section of the WRF namelist.input file before running real.exe 
(use the exact syntax as below – do not substitute the <domain> and <date> for actual 
numbers): 
 
auxinput1_inname = "metoa_em.d<domain>.<date>" 

 

wrfsfdda_dn 

Use of the surface FDDA option in OBSGRID creates a file called wrfsfdda_dn. This file 
contains the surface analyses at INTF4D intervals, analyses of T, TH, U, V, RH, QV, PSFC, 
PMSL, and a count of observations within 250 km of each grid point. 

Due to the input requirements of the WRF model, data at the current time (_OLD) and data for the 
next time (_NEW) are supplied at each time interval. Due to this requirement, users must take care 
to specify the same interval in the WRF fdda section for surface nudging as the interval used in 
OBSGRID to create the wrfsfdda_dn file.  This also means that the user may need to have data 
available for OBSGRID to create a surface analysis beyond the last analysis actually used by WRF 
surface analysis nudging.  With a positive value for the length of rampdown, even though the 
_OLD field at the beginning of the rampdown will be nudged throughout the rampdown, WRF 
still requires a _NEW field at the beginning of the rampdown period. 

 

OBS_DOMAINdxx 

These files can be used in WRF for observational nudging. The format of this file is slightly 
different from the standard wrf_obs / little_r format. See the Observation Nudging User's Guide 
or Chapter 5 of this User’s Guide for details on observational nudging.  

The “d” in the file name represents the domain number. The “xx” is just a sequential number.  

These files contain a list of all of the observations available for use by the OBSGRID program. 

• The observations have been sorted and the duplicates have been removed.  
• Observations outside of the analysis region have been removed.  
• Observations with no information have been removed.  
• All reports for each separate location (different levels, but at the same time) have been 

combined to form a single report.  
• Data that has had the "discard" flag internally set (data which will not be sent to the quality 

control or objective analysis portions of the code) are not listed in this output.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-12 

• The data have gone through an expensive test to determine if the report is within the 
analysis region, and the data have been given various quality control flags. Unless a blatant 
error in the data is detected (such as a negative sea-level pressure), the observation data 
are not typically modified, but only assigned quality control flags. 

• Data with qc flags higher than a specified value (user controlled, via the namelist), will be 
set to missing data. 

The WRF observational nudging code requires that all observational data are available in a single 
file called OBS_DOMAINd01 (where d is the domain number), whereas OBSGRID creates one 
file per time. Therefore, to use these files in WRF, they should first be concatenated to a single 
file. A script (run_cat_obs_files.csh) is provided for this purpose. By running this script, the 
original OBS_DOMAINd01 files will be moved to OBS_DOMAINd01_sav, and a new 
OBS_DOMAINd01 file (containing all the observations for all times) will be created. This new 
file can be used directly in the WRF observational nudging code. 

 

qc_obs_raw.dn.YYYY-MM-DD_HH:mm:ss.tttt(.nc) 

This file contains a listing of all of the observations available for use by the OBSGRID program. 

• The observations have been sorted and the duplicates have been removed.  
• Observations outside of the analysis region have been removed.  
• Observations with no information have been removed.  
• All reports for each separate location (different levels, but at the same time) have been 

combined to form a single report.  
• Data that has had the "discard" flag internally set (data which will not be sent to the quality 

control or objective analysis portions of the code) are not listed in this output.  
• The data have gone through an expensive test to determine if the report is within the 

analysis region, and the data have been given various quality control flags. Unless a blatant 
error in the data is detected (such as a negative sea-level pressure), the observation data 
are not typically modified, but only assigned quality control flags. 

• Two files are available, both containing identical information. One is the older ASCII 
format, while the other is in netCDF format.  

• The data in the ASCII file can be used as input to the plotting utility 
plot_sounding.exe  

• The netCDF file can be used to plot both station data (util/station.ncl) and sounding data 
(util/sounding.ncl). This is available since version 3.7 and is the recommended option.  

 
qc_obs_used.dn.YYYY-MM-DD_HH:mm:ss.tttt(.nc) 

These files are similar to the above “raw” files, and can be used in the same way. But in this case 
it contains the data used by the OBSGRID program, which are also the data saved to the 
OBS_DOMAINdxx files. 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-13 

qc_obs_used_earth_relative.dn.YYYY-MM-DD_HH:mm:ss.tttt(.nc) 

These files are identical to the above "qc_obs_used" files except that the winds are in an earth-
relative framework rather than a model-relative framework.  The non-netCDF version of these 
files can be used as input for the Model Evaluation Tools (MET; 
http://www.dtcenter.org/met/users/). 

 
plotobs_out.dn.YYYY-MM-DD_HH:mm:ss.tttt 

This file lists data by variable and by level, where each observation that has gone into the objective 
analysis is grouped with all of the associated observations for plotting or some other diagnostic 
purpose. The first line of this file is the necessary FORTRAN format required to input the data. 
There are titles over the data columns to aid in the information identification. Below are a few 
lines from a typical file. This data can be used as input to the plotting utility plot_level.exe. 
But since version 3.7, it is recommended to use the station.ncl script that uses the data in 
the new netCDF data files.  

 
( 3x,a8,3x,i6,3x,i5,3x,a8,3x,2(g13.6,3x),2(f7.2,3x),i7 )  
Number of Observations 00001214  
Variable Press  Obs    Station Obs        Obs-1st   X         Y         QC  
Name     Level  Number ID      Value      Guess     Location  Location  Value  
U        1001   1      CYYT    6.39806    4.67690   161.51    122.96    0  
U        1001   2      CWRA    2.04794    0.891641  162.04    120.03    0  
U        1001   3      CWVA    1.30433   -1.80660   159.54    125.52    0  
U        1001   4      CWAR    1.20569    1.07567   159.53    121.07    0  
U        1001   5      CYQX    0.470500  -2.10306   156.58    125.17    0  
U        1001   6      CWDO    0.789376  -3.03728   155.34    127.02    0  
U        1001   7      CWDS    0.846182   2.14755   157.37    118.95    0  

 

Plot Utilities 

The OBSGRID package provides two utility programs for plotting observations. These programs 
are called plot_soundings.exe and plot_levels.exe. These optional programs use 
NCAR Graphics to build, which is often problematic. Two new NCL scripts are provided instead, 
sounding.ncl and station.ncl. Using these as opposed to the Fortran code are 
recommended.  

sounding.ncl / plot_soundings.exe 

The script util/sounding.ncl plots soundings. This script generates soundings from the 
netCDF files qc_obs_raw.dn.YYYY-MM-DD_HH:mm:ss.tttt.nc and qc_obs_used.dn.YYYY-
MM-DD_HH:mm:ss.tttt.nc. Only data that are on the requested analysis levels are processed.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-14 

By default the script will plot the data from all the “qc_obs_used” files in the directory. This can 
be customized through the use of command line setting. For example: 

 ncl ./util/sounding.ncl 'qcOBS="raw"' 
  will plot data from the “qc_obs_raw” files 
 ncl util/sounding.ncl YYYY=2010 MM=6 
  will plot data from the “qc_obs_used” files for June 2010 

Available command line options are: 

qcOBS Dataset to use. Options are “raw” or “used”. Default is “used” 
YYYY Integer year to plot. Default is all available years. 
MM Integer month to plot. Default is all available months. 
DD Integer day to plot. Default is all available days. 
HH Integer hour to plot. Default is all available hours. 
outTYPE Output type. Default is plotting to the screen, i.e., “x11”. Other options are 

“pdf” or “ps”. 
The script creates the following output files(s): 
qc_obs_<qcOBS>.sounding.<date>.<outTYPE> for instance: 
qc_obs_used.sounding.2010-03-06_09.pdf  

 

The older program plot_soundings.exe also plots soundings. This program generates 
soundings from the qc_obs_raw.dn.YYYY-MM-DD_HH:mm:ss.tttt and qc_obs_used.dn.YYYY-
MM-DD_HH:mm:ss.tttt data files. Only data that are on the requested analysis levels are 
processed. The program uses information from &record1, &record2 and 
&plot_sounding in the namelist.oa file to generate the required output. The program 
creates output file(s): sounding_<file_type>_<date>.cgm 

 
plot_level.exe 

The script util/station.ncl creates station plots for each analysis level. These plots contain 
both observations that have passed all QC tests and observations that have failed the QC tests. 
Observations that have failed the QC tests are plotted in various colors according to which test 
failed. This script generates soundings from the netCDF files qc_obs_raw.dn.YYYY-MM-
DD_HH:mm:ss.tttt.nc and qc_obs_used.dn.YYYY-MM-DD_HH:mm:ss.tttt.nc. 

By default the script will plot the data from all the “qc_obs_used” files in the directory. This can 
be customized through the use of command line setting. For example: 

 ncl ./util/station.ncl 'qcOBS="raw"' 
  will plot data from the “qc_obs_raw” files 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-15 

 ncl util/station.ncl YYYY=2010 MM=6 
  will plot data from the “qc_obs_used” files for June 2010 

Available command line options are: 

qcOBS Dataset to use. Options are “raw” or “used”. Default is “used” 
YYYY Integer year to plot. Default is all available years. 
MM Integer month to plot. Default is all available months. 
DD Integer day to plot. Default is all available days. 
HH Integer hour to plot. Default is all available hours. 
outTYPE Output type. Default is plotting to the screen, i.e., “x11”. Other options are 

“pdf” or “ps”. 
The script creates the following output files(s): 
qc_obs_<qcOBS>.station.<date>.<outTYPE> for instance: 
qc_obs_used.station.2010-03-06_09.pdf  

The older program plot_level.exe creates station plots for each analysis level. These plots 
contain both observations that have passed all QC tests and observations that have failed the QC 
tests. Observations that have failed the QC tests are plotted in various colors according to which 
test failed. The program uses information from &record1 and &record2 in the 
namelist.oa file to generate plots from the observations in the file 
plotobs_out.dn.YYYY-MM-DD_HH:mm:ss.tttt. The program creates the file(s): 
levels_<date>.cgm. 

 

Observations Format 

To make the best use of the OBSGRID program, it is important for users to understand the 
wrf_obs/little_r Observations Format. 

Observations are conceptually organized in terms of reports. A report consists of a single 
observation or set of observations associated with a single latitude/longitude coordinate. 

Examples 

• a surface station report including observations of temperature, pressure, humidity, and 
winds. 

• an upper-air station's sounding report with temperature, humidity, and wind observations 
at many height or pressure levels. 

• an aircraft report of temperature at a specific lat/lon/height. 
• a satellite-derived wind observation at a specific lat/lon/height. 

Each report in the wrf_obs/little_r Observations Format consists of at least four records: 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-16 

• A report header record  
• one or more data records  
• an end data record  
• an end report record . 

The report header record is a 600-character-long record (much of which is unused and needs only 
dummy values) that contains certain information about the station and the report as a whole 
(location, station id, station type, station elevation, etc.). The report header record is described 
fully in the following table. Shaded items in the table are unused: 

Report header format 
Variable Fortran 

I/O Format 
Description 

latitude F20.5 station latitude (north positive) 
longitude F20.5 station longitude (east positive) 
id A40 ID of station 
name A40 Name of station 
platform A40 Description of the measurement device 
source A40 GTS, NCAR/ADP, BOGUS, etc. 
elevation F20.5 station elevation (m) 
num_vld_fld I10 Number of valid fields in the report 
num_error I10 Number of errors encountered during the 

decoding of this observation 
num_warning I10 Number of warnings encountered during 

decoding of this observation. 
seq_num I10 Sequence number of this observation 
num_dups I10 Number of duplicates found for this 

observation 
is_sound L10 T/F Above-surface or surface (i.e., all 

non-surface observations should use T, 
even above-surface single-level obs) 

bogus L10 T/F bogus report or normal one 
discard L10 T/F Duplicate and discarded (or merged) 

report. 
sut I10 Seconds since 0000 UTC 1 January 1970 
julian I10 Day of the year 
date_char A20 YYYYMMDDHHmmss 
slp, qc F13.5, 

I7 
Sea-level pressure (Pa) and a QC flag 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-17 

ref_pres, qc F13.5, 
I7 

Reference pressure level (for thickness) 
(Pa) and a QC flag 

ground_t, qc F13.5, 
I7 

Ground Temperature (T) and QC flag 

sst, qc F13.5, 
I7 

Sea-Surface Temperature (K) and QC 

psfc, qc F13.5, 
I7 

Surface pressure (Pa) and QC 

precip, qc F13.5, 
I7 

Precipitation Accumulation and QC 

t_max, qc F13.5, 
I7 

Daily maximum T (K) and QC 

t_min, qc F13.5, 
I7 

Daily minimum T (K) and QC 

t_min_night, 
qc 

F13.5, 
I7 

Overnight minimum T (K) and QC 

p_tend03, qc F13.5, 
I7 

3-hour pressure change (Pa) and QC 

p_tend24, qc F13.5, 
I7 

24-hour pressure change (Pa) and QC 

cloud_cvr, 
qc 

F13.5, 
I7 

Total cloud cover (oktas) and QC 

ceiling, qc F13.5, 
I7 

Height (m) of cloud base and QC 

Following the report header record are the data records. These data records contain the 
observations of pressure, height, temperature, dewpoint, wind speed, and wind direction. There 
are a number of other fields in the data record that are not used on input. Each data record contains 
data for a single level of the report. For report types that have multiple levels (e.g., upper-air 
station sounding reports), each pressure or height level has its own data record. For report types 
with a single level (such as surface station reports or a satellite wind observation), the report will 
have a single data record. The data record contents and format are summarized in the following 
table 

Format of data records 
Variable Fortran I/O 

Format 
Description 

pressure, qc F13.5, I7 Pressure (Pa) of observation, and QC 
height, qc F13.5, I7 Height (m MSL) of observation, and QC 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-18 

temperature, 
qc 

F13.5, I7 Temperature (K) and QC 

dew_point, qc F13.5, I7 Dewpoint (K) and QC 
speed, qc F13.5, I7 Wind speed (m/s) and QC 
direction, qc F13.5, I7 Wind direction (degrees) and QC 
u, qc F13.5, I7 u component of wind (m/s), and QC 
v, qc F13.5, I7 v component of wind (m/s), and QC 
rh, qc F13.5, I7 Relative Humidity (%) and QC 
thickness, qc F13.5, I7 Thickness (m), and QC 

The end data record is simply a data record with pressure and height fields both set to -777777. 

After all the data records and the end data record, an end report record must appear. The end report 
record is simply three integers, which really aren't all that important. 

 

Format of end_report records 
Variable Fortran I/O 

Format 
Description 

num_vld_fld I7 Number of valid fields in the report 
num_error I7 Number of errors encountered during the 

decoding of the report 
num_warning I7 Number of warnings encountered during the 

decoding the report 

QCFlags 

In the observation files, most of the meteorological data fields also have space for an additional 
integer quality-control flag. The quality-control values are of the form 2n, where n takes on 
positive integer values. This allows the various quality control flags to be additive, yet permits the 
decomposition of the total sum into constituent components. Following are the current quality 
control flags that are applied to observations: 

pressure interpolated from first-guess height      = 2 **  1 =      2 
pressure int. from std. atmos. and 1st-guess height= 2 **  3 =      8 
temperature and dew point both = 0                 = 2 **  4 =     16 
wind speed and direction both = 0                  = 2 **  5 =     32 
wind speed negative                                = 2 **  6 =     64 
wind direction < 0 or > 360                        = 2 **  7 =    128 
level vertically interpolated                      = 2 **  8 =    256 
value vertically extrapolated from single level    = 2 **  9 =    512 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-19 

sign of temperature reversed                       = 2 ** 10 =   1024 
superadiabatic level detected                      = 2 ** 11 =   2048 
vertical spike in wind speed or direction          = 2 ** 12 =   4096 
convective adjustment applied to temperature field = 2 ** 13 =   8192  
no neighboring observations for buddy check        = 2 ** 14 =  16384 
----------------------------------------------------------------------  
data outside normal analysis time and not QC-ed    = 2 ** 15 =  32768 
---------------------------------------------------------------------- 
fails error maximum test                           = 2 ** 16 =  65536 
fails buddy test                                   = 2 ** 17 = 131072  
observation outside of domain detected by QC       = 2 ** 18 = 262144 

 
OBSGRID Namelist 

The OBSGRID namelist file is called "namelist.oa", and must be in the directory from which 
OBSGRID is run. The namelist consists of nine namelist records, named "record1" through 
"record9", each having a loosely related area of content. Each namelist record, which extends over 
several lines in the namelist.oa file, begins with "&record<#>" (where <#> is the namelist 
record number) and ends with a slash "/". 

The namelist record &plot_sounding is only used by the corresponding utility. 

Namelist record1 

The data in namelist record1 define the analysis times to process: 

Namelist 
Variable 

Value Description 

start_year 2000 4-digit year of the starting time to 
process 

start_month 01 2-digit month of the starting time to 
process 

start_day 24 2-digit day of the starting time to process 
start_hour 12 2-digit hour of the starting time to 

process 
end_year 2000 4-digit year of the ending time to process 
end_month 01 2-digit month of the ending time to process 
end_day 25 2-digit day of the ending time to process 
end_hour 12 2-digit hour of the ending time to process 
interval 21600 Time interval (s) between consecutive times 

to process 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-20 

Namelist record2 

The data in record2 define the model grid and names of the input files:  

Namelist Variable Value Description 
grid_id 1 ID of domain to process  
obs_filename CHARACTER Root file name (may include 

directory information) of 
the observational files. 
All input files must have 
the format 
obs_filename:<YYYY-MM-
DD_HH>.  
One file required for each 
time period. 

If a wrfsfdda is being 
created, then similar input 
data files are required for 
each surface fdda time. 

remove_data_above_qc_flag 200000 Data with qc flags higher 
than this will not be 
output to the OBS_DOMAINdxx 
files. Default is to output 
all data. Use 65536 to 
remove data that failed the 
buddy and error max tests. 
To also exclude data 
outside analysis times that 
could not be QC-ed use 
32768 (recommended). 
This does not affect the 
data used in the OA 
process. 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-21 

remove_unverified_data .FALSE. By setting this parameter 
to .TRUE. (recommended) any 
observations that could not 
be QC'd due to having a 
pressure insufficiently 
close to an analysis level 
will be removed from the 
OBS_DOMAINdxx files.  Obs 
QC'd by adjusting them to a 
nearby analysis level or by 
comparing them to an 
analysis level within a 
user-specified tolerance 
will be included in the 
OBS_DOMAINdxx files.  See 
use_p_tolerance_one_lev in 
&record4. 

trim_domain .FALSE. Set to .TRUE. if this 
domain must be cut down on 
output 

trim_value 5 Value by which the domain 
will be cut down in each 
direction  

The met_em* files which are being processed must be available in the OBSGRID/ directory. 

The obs_filename and interval settings can get confusing, and deserve some additional 
explanation. Use of the obs_filename files is related to the times and time interval set in namelist 
&record1, and to the F4D options set in namelist &record8. The obs_filename files are used 
for the analyses of the full 3D dataset, both at upper levels and the surface. They are also used 
when F4D=.TRUE.; that is, if surface analyses are being created for surface FDDA nudging. The 
obs_filename files should contain all observations (upper-air and surface) to be used for a 
particular analysis at a particular time.  

Ideally there should be an obs_filename for each time period for which an objective analysis is 
desired. Time periods are processed sequentially from the starting date to the ending date by the 
time interval, all specified in namelist &record1. All observational files must have a date 
associated with them. If a file is not found, the code will process as if this file contains zero 
observations, and then continue to the next time period.  

If the F4D option is selected, the obs_filename files are similarly processed for surface analyses, 
this time with the time interval as specified by INTF4D. 

If a user wishes to include observations from outside the model domain of interest, geogrid.exe 
(WPS) needs to be run over a slightly larger domain than the domain of interest. Setting 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-22 

trim_domain to .TRUE. will cut all 4 directions of the input domain down by the number of 
grid points set in trim_value.  

In the example below, the domain of interest is the inner white domain with a total of 100x100 
grid points. geogrid.exe has been run for the outer domain (110x110 grid points). By setting 
the trim_value to 5, the output domain will be trimmed by 5 grid points in each direction, 
resulting in the white 100x100 grid point domain.   

 

 

Namelist record3 

The data in the &record3 concern space allocated within the program for observations. These 
are values that should not frequently need to be modified: 

Namelist Variable Value Description 
max_number_of_obs 10000 Anticipated maximum number of 

reports per time period 
fatal_if_exceed_max_obs .TRUE. T/F flag allows the user to 

decide the severity of not having 
enough space to store all of the 
available observation 

Namelist record4  

The data in &record4 set the quality control options. There are four specific tests that may be 
activated by the user: An error max test; a buddy test; removal of spike, and; the removal of super-
adiabatic lapse rates. For some of these tests, the user has control over the tolerances, as well.  

Namelist Variable Value Description 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-23 

qc_psfc .FALSE. Execute error max and buddy 
check tests for surface 
pressure observations 
(temporarily converted to sea 
level pressure to run QC) 

Error Max Test: For this test there is a threshold for each variable. These values are scaled for 
time of day, surface characteristics and vertical level. 
qc_test_error_max .TRUE. Check the difference between 

the first-guess and the 
observation 

max_error_t 10 Maximum allowable temperature 
difference (K) 

max_error_uv 13  Maximum allowable horizontal 
wind component difference 
(m/s) 

max_error_z 8  Not used 
max_error_rh 50  Maximum allowable relative 

humidity difference (%) 
max_error_p 600  Maximum allowable sea-level 

pressure difference (Pa 
max_error_dewpoint 20 Maximum allowable dewpoint 

difference (K) 

Buddy Check Test: For this test there is a threshold for each variable. These values are similar 
to standard deviations. 
qc_test_buddy .TRUE. Check the difference between 

a single observation and 
neighboring observations 

max_buddy_t 8 Maximum allowable temperature 
difference (K) 

max_buddy_uv 8 Maximum allowable horizontal 
wind component difference 
(m/s) 

max_buddy_z 8 Not used 
max_buddy_rh 40 Maximum allowable relative 

humidity difference (%) 

max_buddy_p 800 Maximum allowable sea-level 
pressure difference (Pa) 

max_buddy_dewpoint 20 Maximum allowable dewpoint 
difference (K) 

buddy_weight 1.0 Value by which the buddy 
thresholds are scaled 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-24 

Spike removal 
qc_test_vert_consistency .FALSE. Check for vertical spikes in 

temperature, dew point, wind 
speed and wind direction 

Removal of super-adiabatic lapse rates 
qc_test_convective_adj .FALSE. Remove any super-adiabatic 

lapse rate in a sounding by 
conservation of dry static 
energy 

For satellite and aircraft observations, data are often horizontally spaced with only a single 
vertical level. The following entries determine how such data are dealt with and are described 
in more detail below the table. 
use_p_tolerance_one_lev .FALSE. Should single-level above-

surface observations be 
directly QC'd against nearby 
levels (.TRUE.) or extended 
to nearby levels (.FALSE.) 

max_p_tolerance_one_lev_qc 700 Pressure tolerance within 
which QC can be applied 
directly (Pa) 

max_p_extend_t 1300 Pressure difference (Pa) 
through which a single 
temperature report may be 
extended 

max_p_extend_w 1300 Pressure difference (Pa) 
through which a single wind 
report may be extended 

Dewpoint quality control:  
Note that the dewpoint error max check and buddy check are using the same moisture field as the 
relative humidity checks.  The dewpoint checks are to allow for an additional level of quality 
control on the moisture fields and may be helpful for dry observations where RH differences 
may be small but dewpoint differences are much larger.  The maximum dewpoint thresholds are 
scaled based on the observed dewpoint to increase the threshold for dry conditions where larger 
dewpoint variations are expected.  If the user does not wish to use dewpoint error checks, simply 
set the thresholds to very large values. 
 
Quality control of single-level above-surface observations: 
 
Option 1:  use_p_tolerance_one_lev = .FALSE.: 
For single-level above-surface observations marked as 'FM-88 SATOB' or 'FM-97 AIREP', the 
observations are adjusted to the nearest pressure level.  If the observation's pressure is within 
max_p_extend_t Pa of the nearest first-guess level, the temperature of the observation is 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-25 

adjusted to the first-guess level using a standard lapse rate, otherwise the temperature is marked 
as missing.  If the observation’s pressure is within max_p_extend_w Pa of the nearest first-
guess level, the winds are used without adjustment.  The dewpoint is marked as missing 
regardless of the pressure of the observation. The pressure of the observation is changed to be the 
pressure of the pressure level against which it is being quality controlled. 
If a single-level above-surface observation is marked as anything other than ‘FM-88 SATOB’ or 
‘FM-97 AIREP’, it appears that it will not be quality controlled unless its pressure happens to 
exactly match one of the pressure levels in the first guess field.  Note that 
max_p_tolerance_one_lev_qc is ignored if use_p_tolerance_one_lev = 
.FALSE. 

Option 2: use_p_tolerance_one_lev = .TRUE.: 
For all single-level above-surface observations, the observations will be quality controlled as 
long as the closest first-guess field is within max_p_tolerance_one_lev_qc Pa of the 
observation.  In order to allow all single-level above-surface observations to be close enough to a 
first-guess pressure level that quality control directly comparing the closest pressure level to the 
observation is valid, the user may need to interpolate the first guess to additional pressure levels 
prior to ingestion into OBSGRID.  OBSGRID will print out the pressure ranges for which error 
max quality control is not available (i.e., the pressures for which single-level above-surface 
observations will not be quality controlled).  See max_p_tolerance_one_lev_oa in 
namelist record9 for the equivalent pressure tolerance for creating objective analyses.  Note that 
max_p_extend_t and max_p_extend_w are ignored if use_p_tolerance_one_lev 
= .TRUE. 

 
Namelist record5 

The data in &record5 control the enormous amount of printout that may be produced by the 
OBSGRID program. These values are all logical flags, where TRUE will generate output and 
FALSE will turn off output. 

print_obs_files ; print_found_obs ; print_header ; 
print_analysis ;print_qc_vert ; print_qc_dry ; 
print_error_max ; print_buddy ;print_oa 

 

Namelist record7 

The data in &record7 concern the use of the first-guess fields and surface FDDA analysis 
options. Always use the first guess.  

Namelist Variable Value Description 
use_first_guess .TRUE. Always use first guess 

(use_first_guess=.TRUE.) 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-26 

f4d .TRUE. Turns on (.TRUE.) or off (.FALSE.) the 
creation of surface analysis files. 

intf4d 10800 Time interval in seconds between surface 
analysis times 

lagtem .FALSE. Use the previous time-period's final 
surface analysis for this time-period's 
first guess (lagtem=.TRUE.); or  
Use a temporal interpolation between 
upper-air times as the first guess for 
this surface analysis (lagtem = .FALSE.) 

 
Namelist record8  

The data in &record8 concern the smoothing of the data after the objective analysis. Note, only 
the differences fields (observation minus first-guess) of the analyzed are smoothed, not the full 
fields. 

Namelist Variable Value Description 
smooth_type 1 1 = five point stencil of 1-2-1 

smoothing; 2 = smoother-desmoother 
smooth_sfc_wind 0 Number of smoothing passes for surface 

winds 

smooth_sfc_temp 0 Number of smoothing passes for surface 
temperature 

smooth_sfc_rh 0 Number of smoothing passes for surface 
relative humidity 

smooth_sfc_slp 0 Number of smoothing passes for sea-level 
pressure 

smooth_upper_wind 0 Number of smoothing passes for upper-air 
winds 

smooth_upper_temp 0 Number of smoothing passes for upper-air 
temperature 

smooth_upper_rh 0 Number of smoothing passes for upper-air 
relative humidity 

 
Namelist record9  

The data in &record9 concern the objective analysis options. There is no user control to select 
the various Cressman extensions for the radius of influence (circular, elliptical or banana). If the 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-27 

Cressman option is selected, ellipse or banana extensions will be applied as the wind conditions 
warrant. 

Namelist Variable Value Description 
oa_type “Cressman” “MQD” for multiquadric; 

“Cressman” for the 
Cressman-type scheme, 
"None" for no analysis, 
this string is case 
sensitive 

oa_3D_type “Cressman” Set upper-air scheme to 
“Cressman”, regardless of 
the scheme used at the 
surface 

oa_3D_option 0 How to switch between 
“MQD” and “Cressman” if 
not enough observations 
are available to perform 
“MQD” 

mqd_minimum_num_obs 30 Minimum number of 
observations for MQD 

mqd_maximum_num_obs 1000 Maximum number of 
observations for MQD 

radius_influence 5,4,3,2 Radius of influence in 
grid units for Cressman 
scheme 

radius_influence_sfc_mult 1.0 Multiply above-surface 
radius of influence by 
this value to get surface 
radius of influence 

oa_min_switch .TRUE. T = switch to Cressman if 
too few observations for 
MQD; F = no analysis if 
too few observations 

oa_max_switch .TRUE. T = switch to Cressman if 
too many observations for 
MQD; F = no analysis if 
too many observation 

scale_cressman_rh_decreases .FALSE. T = decrease magnitude of 
drying in Cressman 
analysis; F = magnitude 
of drying in Cressman 
analysis unmodified 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-28 

oa_psfc .FALSE. T = perform surface 
pressure objective 
analysis; F = surface 
pressure only adjusted by 
sea level pressure 
analysis 

max_p_tolerance_one_lev_oa 700 Pressure tolerance within 
which single-level above-
surface observations can 
be used in the objective 
analysis (Pa) 

When oa_type is set to Cressman, then the Cressman scheme will be performed on all data. 

When oa_type is set to None, then no objective analysis will be performed on any data. 

When oa_type is set to MQD, there are a wide variety of options available that control when 
the code will revert back to the Cressman scheme.  

• oa_max_switch ; mqd_maximum_num_obs 
The code will revert back to Cressman if the switch is set to true and the maximum 
number of observations is exceeded. 
This is to reduce the time the code runs and not for physical reasons. 
Recommended to leave switch set to true and just set the maximum number large. 
 

• oa_min_switch ; mqd_minimum_num_obs 
The code will revert back to Cressman if the switch is set to true and there are too few  
observations. How and when the code reverts back to Cressman under these conditions 
are controlled by the oa_3D_option parameter. 
Recommended to leave switch set to true and start with the default minimum settings. 
 

• oa_3D_type=”Cressman” 
All upper-air levels will use the Cressman scheme, regardless of other settings. 
  
The surface will use MQD as long as there are enough observations to do so 
(mqd_maximum_num_obs ; mqd_minimum_num_obs), otherwise it will revert to 
the Cressman scheme.  
Note that if some time periods have enough observations and others do not, the code will 
only revert to Cressman for the times without sufficient observations.  
 

• oa_3D_option 
There are three options (0,1,2). For all these options the surface will use MQD as long as 
there are enough observations to do so (mqd_maximum_num_obs ; 
mqd_minimum_num_obs), otherwise it will revert to the Cressman scheme.  



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-29 

Note that if some time periods have enough observations and others do not, the code will 
only revert to Cressman for the times without sufficient observations. 
 
The upper-air will react as follows: 
0 (default): MQD is performed in the upper-air as long as there are enough observations 
to do so (mqd_maximum_num_obs ; mqd_minimum_num_obs). As soon as this 
is no longer the case, the code will STOP, with suggestions as to which parameters to set 
to run the code correctly.  
 
1: The code will first check to see if, for a given time, all levels and variables in the 
upper-air have sufficient observations for the MQD scheme. If not, the code will revert to 
Cressman for that time period. Note that if some time periods have enough observations 
and others do not, the code will only revert to Cressman for the times without sufficient 
observations. 
 
2: The code will check if sufficient observations are available per time, level, and 
variable for the MQD scheme. If not, the code will revert to the Cressman scheme for that 
particular time, level and variable. Note this can result in uncontrolled switching between 
MQD and Cressman.  Therefore this option is not recommended.  

radius_influence 
There are three ways to set the radius of influence (RIN) for the Cressman scheme: 

• Manually: Set the RIN and number of scans directly. E.g., 5,4,3,2, will result in 4 scans. 
The first will use 5 grid points for the RIN and the last, 2 points. 

• Automatically 1: Set RIN to 0 and the code will calculate the RIN based on the domain 
size and an estimated observation density of 325 km. By default there will be 4 scans. 

• Automatically 2: Set RIN to a negative number and the code will calculate the RIN based 
on the domain size and an estimated observation density of 325 km. The number of scans 
is controlled by the value of the set number. E.g, -5 will result in 5 scans.  

 

radius_influence_sfc_mult�  
The RIN calculated as described above is multiplied by this value to determine the RIN for surface 
observations.  This allows the finer scale structures observed at the surface to be retained.  If this 
multiplication results in a RIN greater than 100 model grid points, then the RIN on the first scan 
is scaled to be 100 model grid points and all subsequent scans are scale by that same ratio.  This is 
to prevent features from being washed out on fine-scale domains.  In order to minimize “spots” on 
the solution, any scan with a RIN less than 4.5 model grid points is skipped. If this is set to 1.0 
then the RIN for surface observations will match the RIN for above-surface observations. 
 
scale_cressman_rh_decreases�  
This option is meant to mitigate overdrying that can occur when the need for drying diagnosed 
via an observation at one point is spread to another point where the first guess is already drier 
than the first guess at the location of the observation  If this option is set to true then drying 



OBSGRID 
 

 
WRF-ARW V3: User’s Guide 7-30 

applied to a point where the first guess is drier than the first guess at the observation location is 
scaled by the ratio first guess relative humidity at the point the drying is being applied to divided 
by the first guess relative humidity at the location of the observation.  
  
Note that this scaling is applied on each Cressman scan.  See Reen et al. 2016 
(http://dx.doi.org/10.1175/JAMC-D-14-0301.1) for further details. 
  
oa_psfc�  
An objective analysis of surface pressure may allow Obsgrid surface analyses of other fields to 
be more effectively utilized in WRF if the first-guess surface pressure field is sufficiently coarse 
compared to the WRF domains (e.g., Reen 2015; http://www.arl.army.mil/arlreports/2015/ARL-
TR-7447.pdf).  This is because the surface pressure analysis may provide a better estimate of the 
pressure of the surface analyses and thus WRF is less likely to erroneously reject the surface 
analyses as being too distant from the actual surface.  If there are an insufficient number of 
observations or if the first-guess surface pressure is not much coarser than WRF, this capability 
is less likely to add value. 
  
max_p_tolerance_one_lev_oa 
If use_p_tolerance_one_lev = .TRUE. in record4, then 
max_p_tolerance_one_lev_oa is the pressure tolerance (Pa) allowed between single-
level above-surface observations and the pressure level they are being used in an objective 
analysis. If use_p_tolerance_one_lev = .FALSE. in record4, then 
max_p_tolerance_one_lev_oa is not used by OBSGRID. 

 

Namelist plot_sounding 

Only used for the utility plot_sounding.exe 

Namelist 
Variable 

Value Description 

file_type “raw” File to read to produce the plots. 
Options are “raw” or “used” 

read_metoa .TRUE. If set to .TRUE., the model domain 
information in the metoa_em files will 
be used to add location information on 
the plot. 

 
 
 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-1 

  

Chapter 8: WRF Software  
 

Table of Contents 
• WRF Build Mechanism 
• Registry 
• I/O Applications Program Interface (I/O API) 
• Timekeeping 
• Software Documentation 
• Performance 

 

 

WRF Build Mechanism 
 
The WRF build mechanism provides a uniform apparatus for configuring and compiling 
the WRF model, WRF-Var system and the WRF pre-processors over a range of 
platforms, with a variety of options. This section describes the components and 
functioning of the build mechanism.  For information on building the WRF code, see the 
chapter on Software Installation. 

Required software: 

The WRF build relies on Perl (version 5 or later) and a number of UNIX utilities: csh and 
Bourne shell, make, M4, sed, awk, and the uname command.  A C compiler is needed to 
compile programs and libraries in the tools and external directories.  The WRF code, 
itself, is mostly standard Fortran (and uses a few 2003 capabilities).  For distributed-
memory processing, MPI and related tools and libraries should be installed. 

Build Mechanism Components: 

Directory structure: The directory structure of WRF consists of the top-level directory, 
plus directories containing files related to the WRF software framework (frame), the 
WRF model (dyn_em, phys, chem, share), WRF-Var (da), configuration files 
(arch, Registry), helper and utility programs (tools), and packages that are 
distributed with the WRF code (external). 
  
Scripts: The top-level directory contains three user-executable scripts: configure, 
compile, and clean.  The configure script relies on the Perl script in 
arch/Config_new.pl. 
  



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-2 

Programs: A significant number of WRF lines of code are automatically generated at 
compile time.  The program that does this is tools/registry and it is distributed as 
part of the source code with the WRF model. 
  
Makefiles: The main Makefile (input to the UNIX make utility) is in the top-level 
directory.  There are also makefiles in most of the subdirectories that come with WRF. 
Make is called recursively over the directory structure.  Make is not directly invoked by 
the user to compile WRF; the compile script is provided for this purpose.  The WRF 
build has been structured to allow “parallel make”.  Before the compile command, the 
user sets an environment variable, J, to the number of processors to use.  For example, to 
use two processors (in csh syntax): 
setenv J “-j 2” 
On some machines, this parallel make causes troubles (a typical symptom is a missing 
mpif.h file in the frame directory).  The user can force that only a single processor to 
be used with the command: 
setenv J “-j 1” 
  
Configuration files: The configure.wrf contains compiler, linker, and other build 
settings, as well as rules and macro definitions used by the make utility.  The 
configure.wrf file is included by the Makefiles in most of the WRF source 
distribution (Makefiles in tools and external directories do not include 
configure.wrf).  The configure.wrf file, in the top-level directory, is generated 
each time the configure script is invoked.  It is also deleted by clean -a.  Thus, 
configure.wrf is the place to make temporary changes, such as optimization levels 
and compiling with debugging, but permanent changes should be made in the file 
arch/configure_new.defaults.  The configure.wrf file is composed of 
three files: arch/preamble_new, arch/postamble_new and 
arch/configure_new.defaults. 
  
The arch/configure_new.defaults file contains lists of compiler options for all 
the supported platforms and configurations.  Changes made to this file will be 
permanent.  This file is used by the configure script to generate a temporary 
configure.wrf file in the top-level directory.  The arch directory also contains the 
files preamble_new and postamble_new, which constitute the generic parts (non-
architecture specific) of the configure.wrf file that is generated by the configure 
script. 
  
The Registry directory contains files that control many compile-time aspects of the 
WRF code.  The files are named Registry.core (where core is, for example, 
EM).  The configure script copies one of these to Registry/Registry, which is 
the file that tools/registry will use as input. The choice of core depends on 
settings to the configure script.  Changes to Registry/Registry will be lost; 
permanent changes should be made to Registry.core.  For the WRF ARW model, 
the file is typically Registry.EM. One of the keywords that the registry program 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-3 

understands is include.  The ARW Registry files make use of the 
REGISTRY.EM_COMMON file.  This reduces the amount of replicated registry 
information. When searching for variables previously located in a Registry.EM* file, 
now look in Registry.EM_COMMON.   
  
Environment variables: Certain aspects of the configuration and build are controlled by 
environment variables: the non-standard locations of NetCDF libraries or the Perl 
command, which dynamic core to compile, machine-specific features, and optional build 
libraries (such as Grib Edition 2, HDF, and parallel netCDF). 
  
In addition to WRF-related environment settings, there may also be settings specific to 
particular compilers or libraries. For example, local installations may require setting a 
variable like MPICH_F90 to make sure the correct instance of the Fortran 90 compiler is 
used by the mpif90 command. 

How the WRF build works: 

There are two steps in building WRF: configuration and compilation. 
  
Configuration:  The configure script configures the model for compilation on your 
system.  The configuration first attempts to locate needed libraries, such as netCDF or 
HDF, and tools, such as Perl.  It will check for these in normal places, or will use settings 
from the user's shell environment.  The configure file then calls the UNIX uname 
command to discover what platform you are compiling on.  It then calls the Perl script 
arch/Config_new.pl, which traverses the list of known machine configurations and 
displays a list of available options to the user.  The selected set of options is then used to 
create the configure.wrf file in the top-level directory.  This file may be edited but 
changes are temporary, since the file will be deleted by clean –a, or overwritten by 
the next invocation of the configure script.  About the only typical option that is 
included on the configure command is “-d” (for debug).  The code builds relatively 
quickly and has the debugging switches enabled, but the model will run very slowly since 
all of the optimization has been deactivated.  This script takes only a few seconds to run. 
  
Compilation: The compile script is used to compile the WRF code after it has been 
configured using the configure script.  This csh script performs a number of checks, 
constructs an argument list, copies to Registry/Registry the correct 
Registry.core file for the core being compiled, and the invokes the UNIX make 
command in the top-level directory. The core to be compiled is determined from the 
user’s environment; if no core is specified in the environment (by setting 
WRF_core_CORE to 1) the default core is selected (currently the Eulerian Mass core for 
ARW). The Makefile, in the top-level directory, directs the rest of the build, 
accomplished as a set of recursive invocations of make in the subdirectories of 
WRF.  Most of these makefiles include the configure.wrf file from the top-level 
directory.  The order of a complete build is as follows: 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-4 

 
  

1. Make in external directory 

a. make in external/io_{grib1,grib_share,int,netcdf} for 
Grib Edition 1, binary, and netCDF implementations of I/O API 

b. make in RSL_LITE directory to build communications layer 
(DM_PARALLEL only) 

c. make in external/esmf_time_f90 directory to build ESMF time 
manager library 

d. make in external/fftpack directory to build FFT library for the 
global filters 

e. make in other external directories, as specified by “external:” target 
in the configure.wrf file 

2. Make in the tools directory to build the program that reads the 
Registry/Registry file and auto-generates files in the inc directory  

3. Make in the frame directory to build the WRF framework specific modules 

4. Make in the share directory to build the non-core-specific mediation layer 
routines, including WRF I/O modules that call the I/O API 

5. Make in the phys directory to build the WRF model layer routines for physics 
(non core-specific) 

6. Make in the dyn_core directory for core-specific mediation-layer and model-
layer subroutines 

7. Make in the main directory to build the main programs for WRF, symbolic link 
to create executable files (location depending on the build case that was selected 
as the argument to the compile script) 

Source files (.F and, in some of the external directories, .F90) are preprocessed to 
produce .f90 files, which are input to the compiler. As part of the preprocessing, 
Registry-generated files from the inc directory may be included. Compiling the .f90 
files results in the creation of object (.o) files that are added to the library 
main/libwrflib.a.   Most of the external directories generate their own library 
file.  The linking step produces the wrf.exe executable and other executables, 
depending on the case argument to the compile command: real.exe (a preprocessor 
for real-data cases) or ideal.exe (a preprocessor for idealized cases), and the 
ndown.exe program, for one-way nesting of real-data cases. 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-5 

  
The .o files and .f90 files from a compile are retained until the next invocation of the 
clean script. The .f90 files provide the true reference for tracking down run time 
errors that refer to line numbers or for sessions using interactive debugging tools such as 
dbx or gdb. 

 

Registry 
  
Tools for automatic generation of application code from user-specified tables provide 
significant software productivity benefits in development and maintenance of large 
applications, such as WRF. Just for the WRF model, hundreds of thousands of lines of 
WRF code are automatically generated from a user-edited table, called the Registry.  The 
Registry provides a high-level single-point-of-control over the fundamental structure of 
the model data, and thus provides considerable utility for developers and maintainers.  It 
contains lists describing state data fields and their attributes:  dimensionality, binding to 
particular solvers, association with WRF I/O streams, communication operations, and run 
time configuration options (namelist elements and their bindings to model control 
structures).  Adding or modifying a state variable to WRF involves modifying a single 
line of a single file; this single change is then automatically propagated to scores of 
locations in the source code the next time the code is compiled. 
  
The WRF Registry has two components: the Registry file (which the user may edit), and 
the Registry program. 
  
The Registry file is located in the Registry directory and contains the entries that 
direct the auto-generation of WRF code by the Registry program.  There is more than one 
Registry in this directory, with filenames such as Registry.EM_COMMON (for builds 
using the Eulerian Mass/ARW core) and Registry.NMM (for builds using the NMM 
core). The WRF Build Mechanism copies one of these to the file 
Registry/Registry and this file is used to direct the Registry program. The syntax 
and semantics for entries in the Registry are described in detail in “WRF Tiger Team 
Documentation: The Registry” on 
http://www2.mmm.ucar.edu/wrf/WG2/Tigers/Registry/. The use of 
the keyword include has greatly reduced the replicated information that was inside 
the Registry.EM_COMMON file. The Registry program is distributed as part of WRF 
in the tools directory. It is built automatically (if necessary) when WRF is compiled. 
The executable file is tools/registry. This program reads the contents of the 
Registry file, Registry/Registry, and generates files in the inc directory. These 
include files are inserted (with cpp #include commands) into WRF Fortran source 
files prior to compilation. Additional information on these is provided as an appendix to 
“WRF Tiger Team Documentation: The Registry (DRAFT)”. The Registry program itself 
is written in C. The source files and makefile are in the tools directory. 
  



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-6 

 

Figure 8.1. When the user compiles WRF, the Registry Program reads Registry/Registry, producing auto-
generated sections of code that are stored in files in the inc directory. These are included into WRF using 
the CPP preprocessor and the Fortran compiler. 

In addition to the WRF model itself, the Registry/Registry file is used to build the 
accompanying preprocessors such as real.exe (for real data) or ideal.exe (for 
ideal simulations), and the ndown.exe program (used for one-way, off-line nesting). 

Every variable that is an input or an output field is described in the Registry.  
Additionally, every variable that is required for parallel communication, specifically 
associated with a physics package, or needs to provide a tendency to multiple physics or 
dynamics routines is contained in the Registry.  For each of these variables, the index 
ordering, horizontal and vertical staggering, feedback and nesting interpolation 
requirements, and the associated IO are defined.   For most users, to add a variable into 
the model requires, regardless of dimensionality, only the addition of a single line to the 
Registry (make sure that changes are made to the correct Registry.core file, as 
changes to the Registry file itself are overwritten).  Since the Registry modifies code 
for compile-time options, any change to the Registry REQUIRES that the code be 
returned to the original unbuilt status with the clean –a command. 
 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-7 

The other very typical activity for users is to define new run-time options, which are 
handled via a Fortran namelist file namelist.input in WRF.  As with the model 
state arrays and variables, the entire model configuration is described in the Registry.  As 
with the model arrays, adding a new namelist entry is as easy as adding a new line in the 
Registry. 
 
While the model state and configuration are, by far, the most commonly used features in 
the Registry, the data dictionary has several other powerful uses. The Registry file 
provides input to generate all of the communications for the distributed memory 
processing (halo interchanges between patches, support for periodic lateral boundaries, 
and array transposes for FFTs to be run in the X, Y, or Z directions).  The Registry 
associates various fields with particular physics packages so that the memory footprint 
reflects the actual selection of the options, not a maximal value.   
 
Together, these capabilities allow a large portion of the WRF code to be automatically 
generated.  Any code that is automatically generated relieves the developer of the effort 
of coding and debugging that portion of software.  Usually, the pieces of code that are 
suitable candidates for automation are precisely those that are fraught with “hard to 
detect” errors, such as communications, indexing, and IO, which must be replicated for 
hundreds of variables. 

Registry Syntax: 

Each entry in the Registry is for a specific variable, whether it is for a new dimension in 
the model, a new field, a new namelist value, or even a new communication.  For 
readability, a single entry may be spread across several lines with the traditional “\” at the 
end of a line to denote that the entry is continuing.  When adding to the Registry, most 
users find that it is helpful to copy an entry that is similar to the anticipated new entry, 
and then modify that Registry entry.  The Registry is not sensitive to spatial formatting.  
White space separates identifiers in each entry.   

Note: Do not simply remove an identifier and leave a supposed token blank, use the 
appropriate default value (currently a dash character “-“). 

Registry Entries: 

The WRF Registry has the following types of entries (not case dependent): 

Dimspec – Describes dimensions that are used to define arrays in the model 
State – Describes state variables and arrays in the domain structure 
I1 – Describes local variables and arrays in solve 
Typedef – Describes derived types that are subtypes of the domain structure  
Rconfig – Describes a configuration (e.g. namelist) variable or array 
Package – Describes attributes of a package (e.g. physics) 
Halo – Describes halo update interprocessor communications 
Period – Describes communications for periodic boundary updates 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-8 

Xpose – Describes communications for parallel matrix transposes 
include – Similar to a CPP #include file 

These keywords appear as the first word in a line of the file Registry to define which 
type of information is being provided.  Following are examples of the more likely 
Registry types that users will need to understand. 

Registry Dimspec: 

The first set of entries in the Registry is the specifications of the dimensions for the fields 
to be defined.  To keep the WRF system consistent between the dynamical cores and 
Chemistry, a unified registry.dimspec file is used (located in the Registry 
directory).  This single file is included into each Registry file, with the keyword 
include.  In the example below, three dimensions are defined: i, j, and k.  If you do an 
“ncdump -h” on a WRF file, you will notice that the three primary dimensions are 
named as “west_east”, “south_north”, and “bottom_top”.  That information is 
contained in this example (the example is broken across two lines, but interleaved). 

#<Table>  <Dim>  <Order> <How defined>          
dimspec    i      1     standard_domain  
dimspec    j      3     standard_domain  
dimspec    k      2     standard_domain 

<Coord-axis>  <Dimname in Datasets> 
x          west_east  
y          south_north  
z          bottom_top 

The WRF system has a notion of horizontal and vertical staggering, so the dimension 
names are extended with a “_stag” suffix for the staggered sizes.  The list of names in 
the <Dim> column may either be a single unique character (for release 3.0.1.1 and prior), 
or the <Dim> column may be a string with no embedded spaces (such as my_dim).  
When this dimension is used later to dimension-ize a state or i1 variable, it must be 
surrounded by curly braces (such as {my_dim}).  This <Dim> variable is not case 
specific, so for example “i” is the same as an entry for “I”.   

Registry State and I1: 

A state variable in WRF is a field that is eligible for IO and communications, and 
exists for the duration of the model forecast.  The I1 variables (intermediate level one) 
are typically thought of as tendency terms, computed during a single model time-step, 
and then discarded prior to the next time-step.  The space allocation and de-allocation for 
these I1 variables is automatic (on the stack for the model solver).  In this example, for 
readability, the column titles and the entries are broken into multiple interleaved lines, 
with the user entries in a bold font. 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-9 

Some fields have simple entries in the Registry file.  The following is a state 
variable that is a Fortran type real.  The name of the field inside the WRF model is 
u_gc.  It is a three dimension array (igj).  This particular field is only for the ARW 
core (dyn_em).  It has a single time level, and is staggered in the X and Z directions.  
This field is input only to the real program (i1).  On output, the netCDF name is UU, 
with the accompanying description and units provided. 

#<Table> <Type> <Sym> <Dims>     
state    real   u_gc   igj 

<Use>  <NumTLev> <Stagger> <IO>   
dyn_em     1          XZ     i1 

<DNAME>  <DESCRIP>             <UNITS> 
"UU"    "x-wind component"    "m s-1" 

If a variable is not staggered, a “-“ (dash) is inserted instead of leaving a blank space.  
The same dash character is required to fill in a location when a field has no IO 
specification.  The variable description and units columns are used for post-processing 
purposes only; this information is not directly utilized by the model. 

When adding new variables to the Registry file, users are warned to make sure that 
variable names are unique.  The <Sym> refers to the variable name inside the WRF 
model, and it is not case sensitive.  The <DNAME> is quoted, and appears exactly as 
typed.  Do not use imbedded spaces.  While it is not required that the <Sym> and 
<DNAME> use the same character string, it is highly recommended.  The <DESCRIP> 
and the <UNITS> are optional, however they are a good way to supply self-
documenation to the Registry.  Since the <DESCRIP> value is used in the automatic 
code generation, restrict the variable description to 40 characters or less. 

From this example, we can add new requirements for a variable.  Suppose that the 
variable to be added is not specific to any dynamical core.  We would change the <Use> 
column entry of dyn_em to misc (for miscellaneous).  The misc entry is typical of 
fields used in physics packages.  Only dynamics variables have more than a single time 
level, and this introductory material is not suitable for describing the impact of multiple 
time periods on the registry program.  For the <Stagger> option, users may select any 
subset from {X, Y, Z} or {-}, where the dash character “-“ signifies “no staggering”.   
For example, in the ARW model, the x-direction wind component, u, is staggered in the 
X direction, and the y-direction wind component, v, is staggered in the Y direction. 

The <IO> column handles file input and output, and it handles the nesting specification 
for the field.  The file input and output uses three letters: i (input), r (restart), and h 
(history).  If the field is to be in the input file to the model, the restart file from the model, 
and the history file from the model, the entry would be irh.  To allow more flexibility, 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-10 

the input and history fields are associated with streams.  The user may specify a digit 
after the i or the h token, stating that this variable is associated with a specified stream 
(1 through 9) instead of the default (0).  A single variable may be associated with 
multiple streams.   Once any digit is used with the i or h tokens, the default 0 stream 
must be explicitly stated.  For example, <IO> entry i and <IO> entry i0 are the same.  
However, <IO> entry h1 outputs the field to the first auxiliary stream, but does not 
output the field to the default history stream.  The <IO> entry h01 outputs the field to 
both the default history stream and the first auxiliary stream.  For streams larger than a 
single digit, such as stream number thirteen, the multi-digit numerical value is enclosed 
inside braces: i{13}. The maximum stream is currently 24 for both input and history. 

Nesting support for the model is also handled by the <IO> column.  The letters that are 
parsed for nesting are: u (up as in feedback up), d (down, as in downscale from coarse to 
fine grid), f (forcing, how the lateral boundaries are processed), and s (smoothing).  As 
with other entries, the best coarse of action is to find a field nearly identical to the one 
that you are inserting into the Registry file, and copy that line.  The user needs to 
make the determination whether or not it is reasonable to smooth the field in the area of 
the coarse grid, where the fine-grid feeds back to the coarse grid.   Variables that are 
defined over land and water, non-masked, are usually smoothed.  The lateral boundary 
forcing is primarily for dynamics variables, and is ignored in this overview presentation.  
For non-masked fields (such as wind, temperature,  & pressure), the downward 
interpolation (controlled by d) and the feedback (controlled by u) use default routines.  
Variables that are land fields (such as soil temperature TSLB) or water fields (such as sea 
ice XICE) have special interpolators, as shown in the examples below (again, interleaved 
for readability): 

#<Table> <Type> <Sym> <Dims> 
state    real   TSLB   ilj        
state    real   XICE   ij 

<Use>  <NumTLev> <Stagger> 
misc       1          Z      
misc       1          - 

<IO> 
i02rhd=(interp_mask_land_field:lu_index)u=(copy_fcnm)           
i0124rhd=(interp_mask_water_field:lu_index)u=(copy_fcnm) 

<DNAME>  <DESCRIP>           <UNITS>   
"TSLB"   "SOIL TEMPERATURE"   "K" 
"SEAICE" "SEA ICE FLAG"       "" 

Note that the d and u entries in the <IO> section are followed by an “=” then a 
parenthesis-enclosed subroutine, and a colon-separated list of additional variables to pass 
to the routine.  It is recommended that users follow the existing pattern: du for non-



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-11 

masked variables, and the above syntax for the existing interpolators for masked 
variables. 

 

Registry Rconfig: 

The Registry file is the location where the run-time options to configure the model are 
defined.  Every variable in the ARW namelist is described by an entry in the Registry 
file.  The default value for each of the namelist variables is as assigned in the Registry.  
The standard form for the entry for two namelist variables is given (broken across lines 
and interleaved): 

#<Table>  <Type>    <Sym>           
rconfig  integer    run_days  
rconfig  integer    start_year  

<How set>          <Nentries>   <Default>          
namelist,time_control      1           0              
namelist,time_control  max_domains    1993 

The keyword for this type of entry in the Registry file is rconfig (run-time 
configuration).  As with the other model fields (such as state and i1), the <Type> 
column assigns the Fortran kind of the variable: integer, real, or logical.  The 
name of the variable in ARW is given in the <Sym> column, and is part of the derived 
data type structure, as are the state fields.  There are a number of Fortran namelist 
records in the file namelist.input.  Each namelist variable is a member of one of 
the specific namelist records.   The previous example shows that run_days and 
start_year are both members of the time_control record.  The <Nentries> 
column refers to the dimensionality of the namelist variable (number of entries).  For 
most variables, the <Nentries> column has two eligible values, either 1 (signifying 
that the scalar entry is valid for all domains) or max_domains (signifying that the 
variable is an array, with a value specified for each domain).  Finally, a default value is 
given.  This permits a namelist entry to be removed from the namelist.input file if 
the default value is acceptable. 

The registry program constructs two subroutines for each namelist variable:  one to 
retrieve the value of the namelist variable, and the other to set the value.  For an integer 
variable named my_nml_var, the following code snippet provides an example of the 
easy access to the namelist variables. 

INTEGER :: my_nml_var, dom_id 
CALL nl_get_my_nml_var ( dom_id , my_nml_var )  



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-12 

The subroutine takes two arguments.  The first is the input integer domain identifier (for 
example, 1 for the most coarse grid, 2 for the second domain), and the second argument 
is the returned value of the namelist variable.  The associated subroutine to set the 
namelist variable, with the same argument list, is nl_set_my_nml_var.  For namelist 
variables that are scalars, the grid identifier should be set to 1. 

The rconfig line may also be used to define variables that are convenient to pass 
around in the model, usually part of a derived configuration (such as the number of 
microphysics species associated with a physics package).  In this case, the <How set> 
column entry is derived.  This variable does not appear in the namelist, but is 
accessible with the same generated nl_set and nl_get subroutines. 

Registry Halo, Period, and Xpose: 

The distributed memory, inter-processor communications are fully described in the 
Registry file.  An entry in the Registry constructs a code segment which is included 
(with cpp) in the source code.  Following is an example of a halo communication (split 
across two lines and interleaved for readability). 
 
#<Table>  <CommName>   <Core>  
halo      HALO_EM_D2_3 dyn_em  
 
<Stencil:varlist> 
24:u_2,v_2,w_2,t_2,ph_2;24:moist,chem,scalar;4:mu_2,al 
 
The keyword is halo.  The communication is named in the <CommName> column, so 
that it can be referenced in the source code.  The entry in the <CommName> column is 
case sensitive (the convention is to start the name with HALO_EM).  The selected 
dynamical core is defined in the <Core> column.  There is no ambiguity, as every 
communication in each Registry file will have the exact same <Core> column 
option.  The last set of information is the <Stencil:varlist>.   The portion in front 
of the “:” is the stencil size, and the comma-separated list afterwards defines the 
variables that are communicated with that stencil size.  Different stencil sizes are 
available, and are “;” -separated in the same <Stencil:varlist> column.  The 
stencil sizes 8, 24, 48 all refer to a square with an odd number of grid cells on a side, 
with the center grid cell removed (8 = 3x3-1, 24 = 5x5-1, 48 = 7x7-1).  The special 
small stencil 4 is just a simple north, south, east, west communication pattern. 
 
The convention in the WRF model is to provide a communication immediately after a 
variable has been updated.  The communications are restricted to the mediation layer (an 
intermediate layer of the software that is placed between the framework level and the 
model level).  The model level is where developers spend most of their time.  The 
majority of users will insert communications into the dyn_em/solve_em.F 
subroutine.  The HALO_EM_D2_3 communication, defined in the Registry file in the 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-13 

example above, is activated by inserting a small section of code that includes an 
automatically generated code segment into the solve routine, via standard cpp directives. 
 
#ifdef DM_PARALLEL 
#    include "HALO_EM_D2_3.inc" 
#endif 
 
The parallel communications are only required when the ARW code is built for 
distributed-memory parallel processing, which accounts for the surrounding #ifdef.   
 
The period communications are required when periodic lateral boundary conditions are 
selected.  The Registry syntax is very similar for period and halo communications, 
but the stencil size refers to how many grid cells to communicate, in a direction that is 
normal to the periodic boundary.   
 
#<Table>     <CommName>        <Core>   <Stencil:varlist> 
period   PERIOD_EM_COUPLE_A    dyn_em    2:mub,mu_1,mu_2 
 
The xpose (a data transpose) entry is used when decomposed data is to be re-
decomposed.  This is required when doing FFTs in the x-direction for polar filtering, for 
example.   No stencil size is necessary. 
 
#<Table>     <CommName>        <Core>      <Varlist> 
xpose    XPOSE_POLAR_FILTER_T  dyn_em   t_2,t_xxx,dum_yyy  

It is anticipated that many users will add to the the parallel communications portion of the 
Registry file (halo and period.  It is unlikely that users will add xpose fields. 

Registry Package: 

The package option in the Registry file associates fields with particular physics 
packages.  Presently, it is mandatory that all 4-D arrays be assigned.  Any 4-D array that 
is not associated with the selected physics option at run-time is neither allocated, used for 
IO, nor communicated.  All other 2-D and 3-D arrays are eligible for use with a 
package assignment, but that is not required. 
 
The purpose of the package option is to allow users to reduce the memory used by the 
model, since only “necessary” fields are processed.  An example for a microphysics 
scheme is given below. 
 
#<Table>  <PackageName>  <NMLAssociated>    <Variables> 
package   kesslerscheme   mp_physics==1   - moist:qv,qc,qr 
 
The entry keyword is package, and is associated with the single physics option listed 
under <NMLAssociated>.  The package is referenced in the code in Fortran IF and 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-14 

CASE statements by the name given in the <PackageName> column, instead of the 
more confusing and typical IF ( mp_physics == 1 ) approach.   The 
<Variables> column must start with a dash character and then a blank “- “ (for 
historical reasons of backward compatibility).  The syntax of the <Variables> column 
then is a 4-D array name, followed by a colon, and then a comma-separated list of the 3-
D arrays constituting that 4-D amalgamation.  In the example above, the 4-D array is 
moist, and the selected 3-D arrays are qv, qc, and qr.  If more than one 4-D array is 
required, a “;” separates those sections from each other in the <Variables> column.   
 
In addition to handling 4-D arrays and their underlying component, 3-D arrays, the 
package entry is able to associate generic state variables, as shown in the example 
following.  If the namelist variable use_wps_input is set to 1, then the variables 
u_gc and v_gc are available to be processed. 
 
#<Table>  <PackageName> <NMLAssociated>     <Variables> 
package     realonly    use_wps_input==1  - state:u_gc,v_gc 

 

I/O Applications Program Interface (I/O API) 
  
The software that implements WRF I/O, like the software that implements the model in 
general, is organized hierarchically, as a “software stack” 
(http://www2.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/IOStack.html). 
From top (closest to the model code itself) to bottom (closest to the external package 
implementing the I/O), the I/O stack looks like this: 

• Domain I/O (operations on an entire domain) 
• Field I/O (operations on individual fields) 
• Package-neutral I/O API 
• Package-dependent I/O API (external package) 

The lower-levels of the stack, associated with the interface between the model and the 
external packages, are described in the I/O and Model Coupling API specification 
document on 
http://www2.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/index.html. 

 

Timekeeping 
  
Starting times, stopping times, and time intervals in WRF are stored and manipulated as 
Earth System Modeling Framework (ESMF, 
http://www.cisl.ucar.edu/research/2005/esmf.jsp) time manager objects. This allows 
exact representation of time instants and intervals as integer numbers of years, months, 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-15 

hours, days, minutes, seconds, and fractions of a second (numerator and denominator are 
specified separately as integers). All time computations involving these objects are 
performed exactly by using integer arithmetic, with the result that there is no accumulated 
time step drift or rounding, even for fractions of a second. 
  
The WRF implementation of the ESMF Time Manger is distributed with WRF in the 
external/esmf_time_f90 directory. This implementation is entirely Fortran90 (as 
opposed to the ESMF implementation in C++) and it is conformant to the version of the 
ESMF Time Manager API that was available in 2009. 
  
WRF source modules and subroutines that use the ESMF routines do so by use-
association of the top-level ESMF Time Manager module, esmf_mod: 
  
     USE esmf_mod 
  
The code is linked to the library file libesmf_time.a in the 
external/esmf_time_f90 directory. 
  
ESMF timekeeping is set up on a domain-by-domain basis in the routine 
setup_timekeeping (share/set_timekeeping.F). Each domain keeps track of its 
own clocks and alarms.  Since the time arithmetic is exact there is no problem with 
clocks on separate domains getting out of synchronization.  
  

 

Software Documentation 
  
Detailed and comprehensive documentation aimed at WRF software is available at 
http://www2.mmm.ucar.edu/wrf/WG2/software_2.0. 

 

Performance  
  
Benchmark information is available at http://www2.mmm.ucar.edu/wrf/bench  
 
 
 
 
 
 
 
 
 



SOFTWARE 
 

 
WRF-ARW V3: User’s Guide 8-16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-1 

  

Chapter 9: Post-Processing Utilities 
 

Table of Contents 

• Introduction 
• NCL  
• RIP4  
• ARWpost  
• UPP 
• VAPOR 

 

Introduction 

There are a number of visualization tools available to display WRF-ARW (http:// 
http://www2.mmm.ucar.edu/wrf/users) model data. Model data in netCDF format can 
essentially be displayed using any tool capable of displaying this data format.  
  
Currently the following post-processing utilities are supported: NCL, RIP4, ARWpost 
(converter to GrADS), UPP, and VAPOR.  
  
NCL, RIP4, ARWpost and VAPOR can currently only read data in netCDF format, while 
UPP can read data in netCDF and binary format. 
 
Required software 
The only library that is always required is the netCDF package from Unidata 
(http://www.unidata.ucar.edu/: login > Downloads > NetCDF - registration login 
required).  
  
netCDF stands for Network Common Data Form. This format is platform independent, 
i.e., data files can be read on both big-endian and little-endian computers, regardless of 
where the file was created. To use the netCDF libraries, ensure that the paths to these 
libraries are set correct in your login scripts as well as all Makefiles. 
   
Additional libraries required by each of the supported post-processing packages:  
 

• NCL (http://www.ncl.ucar.edu)  
• GrADS (http://grads.iges.org/home.html) 
• GEMPAK (http://www.unidata.ucar.edu/software/gempak/) 
• VAPOR (http://www.vapor.ucar.edu)  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-2 

NCL 

With the use of NCL Libraries (http://www.ncl.ucar.edu), WRF-ARW data can easily be 
displayed.  
  
The information on these pages has been put together to help users generate NCL scripts 
to display their WRF-ARW model data.  
  
Some example scripts are available online 
(http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm), but 
in order to fully utilize the functionality of the NCL Libraries, users should adapt these for 
their own needs, or write their own scripts. 
  
NCL can process WRF-ARW static, input and output files, as well as WRFDA output data. 
Both single and double precision data can be processed.  
  

WRF and NCL 
  
In July 2007, the WRF-NCL processing scripts have been incorporated into the NCL 
Libraries, thus only the NCL Libraries are now needed.  
 
Major WRF-ARW-related upgrades have been added to the NCL libraries in version 
6.1.0; therefore, in order to use many of the functions, NCL version 6.1.0 or higher is 
required. 
 
Special functions are provided to simplify the plotting of WRF-ARW data. These 
functions are located in: 
"$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl". 
Users are encouraged to view and edit this file for their own needs. If users wish to edit 
this file, but do not have write permission, they should simply copy the file to a local 
directory, edit and load the new version, when running NCL scripts.  
 
Special NCL built-in functions have been added to the NCL libraries to help users 
calculate basic diagnostics for WRF-ARW data.  

  
All the FORTRAN subroutines used for diagnostics and interpolation (previously located 
in wrf_user_fortran_util_0.f) has been re-coded into NCL in-line functions. This means 
users no longer need to compile these routines. 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-3 

What is NCL 
  
The NCAR Command Language (NCL) is a free, interpreted language designed 
specifically for scientific data processing and visualization. NCL has robust file input and 
output. It can read in netCDF, HDF4, HDF4-EOS, GRIB, binary and ASCII data. The 
graphics are world-class and highly customizable. 
 
It runs on many different operating systems including Solaris, AIX, IRIX, Linux, MacOSX, 
Dec Alpha, and Cygwin/X running on Windows. The NCL binaries are freely available at: 
http://www.ncl.ucar.edu/Download/  
  
To read more about NCL, visit: http://www.ncl.ucar.edu/overview.shtml  
  

Necessary software  
NCL libraries, version 6.1.0 or higher. 
 

Environment Variable  
 
Set the environment variable NCARG_ROOT to the location where you installed the NCL 
libraries. Typically (for cshrc shell): 
 

setenv NCARG_ROOT /usr/local/ncl 
 

.hluresfile  
 
Create a file called .hluresfile in your $HOME directory. This file controls the color, 
background, fonts, and basic size of your plot. For more information regarding this file, 
see: http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml.  
 
NOTE: This file must reside in your $HOME directory and not where you plan on running 
NCL. 
  
Below is the .hluresfile used in the example scripts posted on the web (scripts are available 
at: http://www2.mmm.ucar.edu/wrf/users/graphics/NCL/NCL.htm). If a different color 
table is used, the plots will appear different. Copy the following to your ~/.hluresfile. (A 
copy of this file is available at: 
http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_basics.htm) 
   

*wkColorMap : BlAqGrYeOrReVi200 
*wkBackgroundColor : white  
*wkForegroundColor : black  
*FuncCode : ~  
*TextFuncCode : ~  
*Font : helvetica  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-4 

*wkWidth : 900  
*wkHeight : 900 

 
 
NOTE: 

If your image has a black background with white lettering, your .hluresfile has not 
been created correctly, or it is in the wrong location.  
wkColorMap, as set in your .hluresfile can be overwritten in any NCL script with 
the use of the function “gsn_define_colormap”, so you do not need to change your 
.hluresfile if you just want to change the color map for a single plot. 

  

Create NCL scripts 
 
The basic outline of any NCL script will look as follows: 
 

load external functions and procedures 
  
begin 

; Open input file(s)  
; Open graphical output 
; Read variables 
; Set up plot resources & Create plots  
; Output graphics 

end 
  
  
For example, let’s create a script to plot Surface Temperature, Sea Level Pressure and Wind 
as shown in the picture below. 
  
 
  
  
  

 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-5 

  
; load functions and procedures 
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" 
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl" 
  
begin 
  
; WRF ARW input file (NOTE, your wrfout file does not need  
; the .nc, but NCL needs it so make sure to add it in the  
; line below) 
a = addfile("../wrfout_d01_2000-01-24_12:00:00.nc","r")  
 
  
; Output on screen. Output will be called "plt_Surface1"  
type = "x11" 
wks = gsn_open_wks(type,"plt_Surface1")  
 
  
; Set basic resources 
res = True  
res@MainTitle = "REAL-TIME WRF"          ; Give plot a main 
title 
res@Footer = False                              ; Set Footers 
off 
pltres = True                                ; Plotting 
resources  
mpres = True                                      ; Map 
resources 
  
;--------------------------------------------------------------
-  
times = wrf_user_getvar(a,"times",-1))    ; get times in the 
file 
it = 0                            ; only interested in first 
time  
res@TimeLabel = times(it)            ; keep some time 
information  
    
;--------------------------------------------------------------
- 
; Get variables  
  
slp = wrf_user_getvar(a,"slp",it)                         Get 
slp 
   wrf_smooth_2d( slp, 3 )                           ; Smooth 
slp 
 
t2 = wrf_user_getvar(a,"T2",it)                  ; Get T2 (deg 
K) 
   tc2 = t2-273.16                             ; Convert to deg 
C  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-6 

   tf2 = 1.8*tc2+32.                           ; Convert to deg 
F  
   tf2@description = "Surface Temperature"  
   tf2@units = "F"  
  
u10 = wrf_user_getvar(a,"U10",it)                       ; Get 
U10  
v10 = wrf_user_getvar(a,"V10",it)                       ; Get 
V10  
   u10 = u10*1.94386                           ; Convert to 
knots  
   v10 = v10*1.94386  
   u10@units = "kts"  
   v10@units = "kts" 
  
;--------------------------------------------------------------
- 
 
 
 
; Plotting options for T 
opts = res                                  ; Add basic 
resources 
opts@cnFillOn = True                                ; Shaded 
plot  
opts@ContourParameters = (/ -20., 90., 5./)   ; Contour 
intervals  
opts@gsnSpreadColorEnd = -3  
contour_tc = wrf_contour(a,wks,tf2,opts)            ; Create 
plot  
delete(opts)  
  
  
; Plotting options for SLP  
opts = res                                  ; Add basic 
resources 
opts@cnLineColor = "Blue"                        ; Set line 
color 
opts@cnHighLabelsOn = True                           ; Set 
labels 
opts@cnLowLabelsOn = True 
opts@ContourParameters = (/ 900.,1100.,4./)   ; Contour 
intervals 
contour_psl = wrf_contour(a,wks,slp,opts)           ; Create 
plot delete(opts) 
   
  
; Plotting options for Wind Vectors 
opts = res                                  ; Add basic 
resources 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-7 

opts@FieldTitle = "Winds"             ; Overwrite the field 
title  
opts@NumVectors = 47                      ; Density of wind 
barbs 
vector = wrf_vector(a,wks,u10,v10,opts)             ; Create 
plot  
delete(opts) 
  
  
; MAKE PLOTS  
plot = wrf_map_overlays(a,wks,  \  
      (/contour_tc,contour_psl,vector/),pltres,mpres) 
   
;--------------------------------------------------------------
- 
  
  
end 

  
  
Extra sample scripts are available at: 
http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.htm  
  

Run NCL scripts  
 
1. Ensure NCL is successfully installed on your computer.  

 
2. Ensure that the environment variable NCARG_ROOT is set to the location where 

NCL is installed on your computer. Typically (for cshrc shell), the command will 
look as follows: 
 

setenv NCARG_ROOT /usr/local/ncl 
3. Create an NCL plotting script.  
 
4. Run the NCL script you created: 

  
ncl  NCL_script  

  
The output type created with this command is controlled by the line:  

wks = gsn_open_wk (type,"Output")    ;  inside the NCL script 
where type can be x11, pdf, ncgm, ps, or eps 
  
  
For high quality images, create pdf , ps, or eps images directly via the ncl scripts (type = 
pdf / ps / eps) 

   



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-8 

See the Tools section in Chapter 10 of this User’s Guide for more information concerning 
other types of graphical formats and conversions between graphical formats. 

 

Functions / Procedures under "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/" 
(WRFUserARW.ncl) 
 
 
wrf_user_getvar (nc_file, fld, it) 
Usage: ter = wrf_user_getvar (a, “HGT”, 0) 
  
Get fields from a netCDF file for: 

• Any given time by setting it to the time required. 
• For all times in the input file(s), by setting it = -1 
• A list of times from the input file(s), by setting it to 

(/start_time,end_time,interval/) ( e.g. (/0,10,2/) ). 
• A list of times from the input file(s), by setting it to the list required ( e.g. 

(/1,3,7,10/) ). 
 
Any field available in the netCDF file can be extracted.  
fld is case sensitive. The policy adapted during development was to set all diagnostic 
variables, calculated by NCL, to lower-case to distinguish them from fields directly 
available from the netCDF files. 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-9 

List of available diagnostics: 
avo  Absolute Vorticity [10-5 s-1] 
pvo  Potential Vorticity [PVU] 
eth  Equivalent PotentialTtemperature [K] 
cape_2d  Returns 2D fields mcape/mcin/lcl/lfc  
cape_3d  Returns 3D fields cape/cin 
dbz  Reflectivity [dBZ] 
mdbz  Maximum Reflectivity [dBZ]  
geopt/geopotential  Full Model Geopotential [m2 s-2]  
helicity  Storm Relative Helicity [m-2/s-2] 
updraft_helicity  Updraft Helicity [m-2/s-2] 
lat  Latitude (will return either XLAT or XLAT_M,  

 depending on which is available) 
lon  Longitude (will return either XLONG or XLONG_M,  

 depending on which is available) 
omg  Omega 
p/pres  Full Model Pressure [Pa] 
pressure  Full Model Pressure [hPa]  
pw  Precipitable Water 
rh2  2m Relative Humidity [%] 
rh  Relative Humidity [%]  
slp  Sea Level Pressure [hPa]  
ter  Model Terrain Height [m] (will return either HGT or HGT_M, 

 depending on which is available) 
td2  2m Dew Point Temperature [C]  
td  Dew Point Temperature [C]  
tc  Temperature [C]  
tk  Temperature [K]  
th/theta  Potential Temperature [K]  
tv  Virtual Temperature 
twb  Wetbulb Temperature 
times  Times in file (note this return strings - recommended) 
Times  Times in file (note this return characters) 
ua  U component of wind on mass points  
va  V component of wind on mass points  
wa  W component of wind on mass points 
uvmet10  10m U and V components of wind rotated to earth coordinates  
uvmet  U and V components of wind rotated to earth coordinates  
z/height  Full Model Height [m] 

 
  
 
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-10 

wrf_user_list_times (nc_file)  
Usage: times = wrf_user_list_times (a) 
  
Obtain a list of times available in the input file. The function returns a 1D array containing 
the times (type: character) in the input file.  
This is an outdated function – best to use wrf_user_getvar(nc_file,”times”,it) 
 
 
wrf_contour (nc_file, wks, data, res)  
Usage: contour = wrf_contour (a, wks, ter, opts) 
  
Returns a graphic (contour), of the data to be contoured. This graphic is only created, but 
not plotted to a wks. This enables a user to generate many such graphics and overlay them, 
before plotting the resulting picture to the wks. 
  
The returned graphic (contour) does not contain map information, and can therefore be 
used for both real and idealized data cases.  
  
This function can plot both line contours and shaded contours. Default is line contours. 
  
Many resources are set for a user, and most can be overwritten. Below is a list of resources 
you may want to consider changing before generating your own graphics: 
 
Resources unique to ARW WRF Model data 
opts@MainTitle : Controls main title on the plot. 
opts@MainTitlePos : Main title position – Left/Right/Center. Default is Left. 
opts@NoHeaderFooter : Switch off all Headers and Footers. 
opts@Footer : Add some model information to the plot as a footer. Default is True. 
opts@InitTime : Plot initial time on graphic. Default is True. If True, the initial time will 
be extracted from the input file. 
opts@ValidTime : Plot valid time on graphic. Default is True. A user must set 
opts@TimeLabel to the correct time. 
opts@TimeLabel : Time to plot as valid time. 
opts@TimePos : Time position – Left/Right. Default is “Right”. 
opts@ContourParameters : A single value is treated as an interval. Three values 
represent: Start, End, and Interval. 
opts@FieldTitle : Overwrite the field title - if not set the field description is used for the 
title.  
opts@UnitLabel : Overwrite the field units - seldom needed as the units associated with 
the field will be used.  
opts@PlotLevelID : Use to add level information to the field title. 
 
General NCL resources (most standard NCL options for cn and lb can be set by the user 
to overwrite the default values) 
opts@cnFillOn : Set to True for shaded plots. Default is False. 
opts@cnLineColor : Color of line plot. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-11 

opts@lbTitleOn : Set to False to switch the title on the label bar off. Default is True. 
opts@cnLevelSelectionMode ; opts @cnLevels ; opts@cnFillColors ; 
optr@cnConstFLabelOn : Can be used to set contour levels and colors manually.  
  
 
wrf_vector (nc_file, wks, data_u, data_v, res)  
Usage: vector = wrf_vector (a, wks, ua, va, opts) 
  
Returns a graphic (vector) of the data. This graphic is only created, but not plotted to a wks. 
This enables a user to generate many graphics, and overlay them, before plotting the 
resulting picture to the wks. 
  
The returned graphic (vector) does not contain map information, and can therefore be used 
for both real and idealized data cases.  
  
Many resources are set for a user, and most can be overwritten. Below is a list of resources 
you may want to consider changing before generating your own graphics: 
  
Resources unique to ARW WRF Model data 
opts@MainTitle : Controls main title on the plot. 
opts@MainTitlePos : Main title position – Left/Right/Center. Default is Left. 
opts@NoHeaderFooter : Switch off all Headers and Footers. 
opts@Footer : Add some model information to the plot as a footer. Default is True. 
opts@InitTime : Plot initial time on graphic. Default is True. If True, the initial time will 
be extracted from the input file. 
opts@ValidTime : Plot valid time on graphic. Default is True. A user must set 
opts@TimeLabel to the correct time. 
opts@TimeLabel : Time to plot as valid time. 
opts@TimePos : Time position – Left/Right. Default is “Right”. 
opts@ContourParameters : A single value is treated as an interval. Three values 
represent: Start, End, and Interval. 
opts@FieldTitle : Overwrite the field title - if not set the field description is used for the 
title.  
opts@UnitLabel : Overwrite the field units - seldom needed as the units associated with 
the field will be used.  
opts@PlotLevelID : Use to add level information to the field title.  
opts@NumVectors : Density of wind vectors. 
 
General NCL resources (most standard NCL options for vc can be set by the user to 
overwrite the default values) 
opts@vcGlyphStyle : Wind style. “WindBarb” is default.  
  
 
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-12 

wrf_map_overlays (nc_file, wks, (/graphics/), pltres, mpres) 
Usage: plot = wrf_map_overlays (a, wks, (/contour,vector/), pltres, mpres) 
  
Overlay contour and vector plots generated with wrf_contour and wrf_vector. Can overlay 
any number of graphics. Overlays will be done in the order given, so always list shaded 
plots before line or vector plots, to ensure the lines and vectors are visible and not hidden 
behind the shaded plot.  
  
A map background will automatically be added to the plot. Map details are controlled with 
the mpres resource. Common map resources you may want to set are: 
mpres@mpGeophysicalLineColor ; mpres@mpNationalLineColor ; 

mpres@mpUSStateLineColor ; mpres@mpGridLineColor ; 
mpres@mpLimbLineColor ; mpres@mpPerimLineColor 

  
If you want to zoom into the plot, set mpres@ZoomIn to True, and mpres@Xstart, 

mpres@Xend, mpres@Ystart, and mpres@Yend to the corner x/y positions of the 
zoomed plot.  

  
pltres@NoTitles : Set to True to remove all field titles on a plot.  
pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots. 

Must set pltres@PlotTitle to desired new plot title. 
 
If you want to generate images for a panel plot, set pltres@PanelPot to True. 
  
If you want to add text/lines to the plot before advancing the frame, set pltres@FramePlot 
to False. Add your text/lines directly after the call to the wrf_map_overlays function. Once 
you are done adding text/lines, advance the frame with the command “frame (wks)”.  
 
 
wrf_overlays (nc_file, wks, (/graphics/), pltres) 
Usage: plot = wrf_overlays (a, wks, (/contour,vector/), pltres) 
  
Overlay contour and vector plots generated with wrf_contour and wrf_vector. Can overlay 
any number of graphics. Overlays will be done in the order given, so always list shaded 
plots before line or vector plots, to ensure the lines and vectors are visible and not hidden 
behind the shaded plot.  
  
Typically used for idealized data or cross-sections, which does not have map background 
information. 
  
pltres@NoTitles : Set to True to remove all field titles on a plot.  
pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots. 

Must set pltres@PlotTitle to desired new plot title. 
 
If you want to generate images for a panel plot, set pltres@PanelPot to True. 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-13 

If you want to add text/lines to the plot before advancing the frame, set pltres@FramePlot 
to False. Add your text/lines directly after the call to the wrf_overlays function. Once you 
are done adding text/lines, advance the frame with the command “frame (wks)”.   
  
 
wrf_map (nc_file, wks, res) 
Usage: map = wrf_map (a, wks, opts) 
  
Create a map background.  
As maps are added to plots automatically via the wrf_map_overlays function, this 
function is seldom needed as a stand-alone.  
  
 
 wrf_user_intrp3d (var3d, H, plot_type, loc_param, angle, res) 
  
This function is used for both horizontal and vertical interpolation. 
  
var3d: The variable to interpolate. This can be an array of up to 5 dimensions. The 3 right-

most dimensions must be bottom_top x south_north x west_east. 
H: The field to interpolate to. Either pressure (hPa or Pa), or z (m). Dimensionality must 

match var3d. 
plot_type: “h” for horizontally- and “v” for vertically-interpolated plots. 
loc_param: Can be a scalar, or an array, holding either 2 or 4 values.  
For plot_type = “h”: 
      This is a scalar representing the level to interpolate to. 
      Must match the field to interpolate to (H). 

When interpolating to pressure, this can be in hPa or Pa (e.g. 500., to interpolate to 
500 hPa). When interpolating to height this must in in m (e.g. 2000., to interpolate 
to 2 km). 

For plot_type = “v”:  
This can be a pivot point though which a line is drawn – in this case a single x/y 
point (2 values) is required. Or this can be a set of x/y points (4 values), indicating 
start x/y and end x/y locations for the cross-section.  

angle:  
Set to 0., for plot_type = “h”, or for plot_type = “v” when start and end locations 
of cross-section are supplied in loc_param.  
If a single pivot point was supplied in loc_param, angle is the angle of the line that 
will pass through the pivot point. Where: 0. is SN, and 90. is WE. 

res:  
Set to False for plot_type = “h”, or for plot_type = “v” when a single pivot point 
is supplied. Set to True if start and end locations are supplied.  

  
 
 
wrf_user_intrp2d (var2d, loc_param, angle, res) 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-14 

This function interpolates a 2D field along a given line. 
  
var2d: The 2D field to interpolate. This can be an array of up to 3 dimensions. The 2 right-

most dimensions must be south_north x west_east. 
loc_param:  

An array holding either 2 or 4 values.  
This can be a pivot point though which a line is drawn - in this case a single x/y 
point (2 values) is required.  Or this can be a set of x/y points (4 values), indicating 
start x/y and end x/y locations for the cross-section.  

angle:  
Set to 0 when start and end locations of the line are supplied in loc_param.  
If a single pivot point is supplied in loc_param, angle is the angle of the line that 
will pass through the pivot point. Where: 0. is SN, and 90. is WE. 

res:  
Set to False when a single pivot point is supplied. Set to True if start and end 
locations are supplied.  

 
 
wrf_user_ll_to_ij (nc_file, lons, lats, res) 
Usage: loc = wrf_user_latlon_to_ij (a, 100., 40., res)  
Usage: loc = wrf_user_latlon_to_ij (a, (/100., 120./), (/40., 50./), res) 
 
Converts a lon/lat location to the nearest x/y location. This function makes use of map 
information to find the closest point; therefore this returned value may potentially be 
outside the model domain. 
 
lons/lats can be scalars or arrays. 
 
Optional resources: 
res@returnInt - If set to False, the return values will be real (default is True with integer 
return values) 
res@useTime - Default is 0. Set if you want the reference longitude/latitudes to come from 
a specific time - one will only use this for moving nest output, which has been stored in a 
single file. 
 
loc(0,:) is the x (WE) locations, and loc(1,:) the y (SN) locations. 
 
 
wrf_user_ij_to_ll (nc_file, i, j, res) 
Usage: loc = wrf_user_latlon_to_ij (a, 10, 40, res)  
Usage: loc = wrf_user_latlon_to_ij (a, (/10, 12/), (/40, 50/), res) 
 
Convert an i/j location to a lon/lat location. This function makes use of map information to 
find the closest point, so this returned value may potentially be outside the model domain. 
 
i/j can be scalars or arrays. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-15 

 
Optional resources: 
res@useTime - Default is 0. Set if you want the reference longitude/latitudes to come from 
a specific time - one will only use this for moving nest output, which has been stored in a 
single file. 
 
loc(0,:) is the lons locations, and loc(1,:) the lats locations. 
 
 
wrf_user_unstagger (varin, unstagDim) 
 
This function unstaggers an array, and returns an array on ARW WRF mass points. 
 
varin: Array to be unstaggered. 
unstagDim: Dimension to unstagger. Must be either "X", "Y", or "Z". This is case 

sensitive. If you do not use one of these strings, the returning array will be 
unchanged. 

 
 
wrf_wps_dom (wks, mpres, lnres, txres) 
 
A function has been built into NCL to preview where a potential domain will be placed 
(similar to plotgrids.exe from WPS). 
 
The lnres and txres resources are standard NCL Line and Text resources. These are used 
to add nests to the preview. 
 
The mpres are used for standard map background resources like:  

mpres@mpFillOn ; mpres@mpFillColors ; mpres@mpGeophysicalLineColor ; 
mpres@mpNationalLineColor ; mpres@mpUSStateLineColor ; 
mpres@mpGridLineColor ; mpres@mpLimbLineColor ; 
mpres@mpPerimLineColor 

 
Its main function, however, is to set map resources to preview a domain. These resources 
are similar to the resources set in WPS. Below is an example of how to display 3 nested 
domains on a Lambert projection. (The output is shown below). 
 
mpres@max_dom           = 3 
mpres@parent_id         = (/ 1,    1,   2 /) 
mpres@parent_grid_ratio = (/ 1,    3,   3 /) 
mpres@i_parent_start    = (/ 1,   31,  15 /) 
mpres@j_parent_start    = (/ 1,   17,  20 /) 
mpres@e_we              = (/ 74, 112, 133/) 
mpres@e_sn              = (/ 61,  97, 133 /) 
mpres@dx                = 30000. 
mpres@dy                = 30000. 
mpres@map_proj          = "lambert" 
mpres@ref_lat           = 34.83 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-16 

mpres@ref_lon           = -81.03 
mpres@truelat1          = 30.0 
mpres@truelat2          = 60.0 
mpres@stand_lon         = -98.0 
 

 
 
 
 

NCL built-in Functions 
 
A number of NCL built-in functions have been created to help users calculate simple 
diagnostics. Full descriptions of these functions are available on the NCL web site 
(http://www.ncl.ucar.edu/Document/Functions/wrf.shtml). 
 
 
wrf_avo  Calculates absolute vorticity. 
wrf_cape_2d  Computes convective available potential energy (CAPE), 

convective inhibition (CIN), lifted condensation level (LCL), 
and level of free convection (LFC). 

wrf_cape_3d  Computes convective available potential energy (CAPE) and 
convective inhibition (CIN). 

wrf_dbz  Calculates the equivalent reflectivity factor. 
wrf_eth Calculates equivalent potential temperature 
wrf_helicity Calculates storm relative helicity 
wrf_ij_to_ll  Finds the longitude, latitude locations to the specified model 

grid indices (i,j).  
wrf_ll_to_ij  Finds the model grid indices (i,j) to the specified location(s) in 

longitude and latitude.  
wrf_omega Calculates omega 
wrf_pvo  Calculates potential vorticity.  
wrf_rh  Calculates relative humidity. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-17 

wrf_slp  Calculates sea level pressure. 
wrf_smooth_2d
  

Smooth a given field. 

wrf_td  Calculates dewpoint temperature in [C]. 
wrf_tk  Calculates temperature in [K]. 
wrf_updraft_helicity Calculates updraft helicity 
wrf_uvmet Rotates u,v components of the wind to earth coordinates. 
wrf_virual_temp Calculates virtual temperature 
wrf_wetbulb Calculates wetbulb temperature 

 

Adding diagnostics using FORTRAN code 
  
It is possible to link your favorite FORTRAN diagnostics routines to NCL. It is easier to 
use FORTRAN 77 code, but NCL also recognizes basic FORTRAN 90 code. 
  
Let’s use a routine that calculates temperature (K) from theta and pressure.  
 
FORTRAN 90 routine called myTK.f90 
subroutine compute_tk (tk, pressure, theta, nx, ny, nz) 
implicit none 
  
!! Variables 
    integer  :: nx, ny, nz 
    real, dimension (nx,ny,nz) :: tk, pressure, theta 
 
!! Local Variables 
    integer :: i, j, k 
    real, dimension (nx,ny,nz):: pi  
  
    pi(:,:,:) = (pressure(:,:,:) / 1000.)**(287./1004.) 
    tk(:,:,:) = pi(:,:,:)*theta(:,:,:) 
  
return 
end subroutine compute_tk 

 
 
For simple routines like this, it is easiest to re-write the routine into a FORTRAN 77 
routine. 
 
 
 
 
FORTRAN 77 routine called myTK.f 
        subroutine compute_tk (tk, pressure, theta, nx, ny, nz) 
        implicit none 
  
C     Variables 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-18 

        integer  nx, ny, nz 
        real   tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz) 
 
C     Local Variables 
        integer  i, j, k 
        real   pi 
 
        DO k=1,nz 
          DO j=1,ny   
            DO i=1,nx     
               pi=(pressure(i,j,k) / 1000.)**(287./1004.) 
               tk(i,j,k) = pi*theta(i,j,k) 
            ENDDO 
          ENDDO 
        ENDDO 
 
      return 
      end 

 
Add the markers NCLFORTSTART and NCLEND to the subroutine as indicated 
below. Note, that local variables are outside these block markers.  
 
FORTRAN 77 routine called myTK.f, with NCL markers added 
C NCLFORTSTART 
        subroutine compute_tk (tk, pressure, theta, nx, ny, nz) 
        implicit none 
  
C     Variables 
        integer  nx, ny, nz 
        real   tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz) 
 
C NCLEND 
 
C     Local Variables 
        integer  i, j, k 
        real   pi 
 
        DO k=1,nz 
          DO j=1,ny   
            DO i=1,nx     
               pi=(pressure(i,j,k) / 1000.)**(287./1004.) 
               tk(i,j,k) = pi*theta(i,j,k) 
            ENDDO 
          ENDDO 
        ENDDO 
 
      return 
      end 

 
Now compile this code using the NCL script WRAPIT. 
  

WRAPIT myTK.f 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-19 

NOTE: If WRAPIT cannot be found, make sure the environment variable NCARG_ROOT 
has been set correctly. 
  
If the subroutine compiles successfully, a new library will be created, called myTK.so. 
This library can be linked to an NCL script to calculate TK. See how this is done in the 
example below: 
  

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"  
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl” 
external myTK "./myTK.so"   
  
begin 
  
 t = wrf_user_getvar (a,”T”,5) 
 theta = t + 300 
 p = wrf_user_getvar (a,”pressure”,5) 
  
 dim = dimsizes(t) 
 tk = new( (/ dim(0), dim(1), dim(2) /), float) 
  
            myTK :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0)) 
  
end 

 
Want to use the FORTRAN 90 program? It is possible to do so by providing an interface 
block for your FORTRAN 90 program. Your FORTRAN 90 program may also not contain 
any of the following features: 
- pointers or structures as arguments,  
- missing/optional arguments,  
- keyword arguments, or  
- if the procedure is recursive. 

 
Interface block for FORTRAN 90 code, called myTK90.stub 
C NCLFORTSTART 
        subroutine compute_tk (tk, pressure, theta, nx, ny, nz) 
 
        integer  nx, ny, nz 
        real   tk(nx,ny,nz) , pressure(nx,ny,nz), theta(nx,ny,nz) 
 
C NCLEND 

 
Now compile this code using the NCL script WRAPIT. 
  

WRAPIT myTK90.stub myTK.f90 
  
NOTE: You may need to copy the WRAPIT script to a locate location and edit it to point 
to a FORTRAN 90 compiler. 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-20 

If the subroutine compiles successfully, a new library will be created, called myTK90.so 
(note the change in name from the FORTRAN 77 library). This library can similarly be 
linked to an NCL script to calculate TK. See how this is done in the example below: 
  

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"  
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl” 
external myTK90 "./myTK90.so"   
  
begin  
 t = wrf_user_getvar (a,”T”,5) 
 theta = t + 300 
 p = wrf_user_getvar (a,”pressure”,5) 
  
 dim = dimsizes(t) 
 tk = new( (/ dim(0), dim(1), dim(2) /), float) 
  
            myTK90 :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0)) 
  
end 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-21 

RIP4 

RIP (which stands for Read/Interpolate/Plot) is a Fortran program that invokes NCAR 
Graphics routines for the purpose of visualizing output from gridded meteorological data 
sets, primarily from mesoscale numerical models. It was originally designed for sigma-
coordinate-level output from the PSU/NCAR Mesoscale Model (MM4/MM5), but was 
generalized in April 2003 to handle data sets with any vertical coordinate, and in particular, 
output from the Weather Research and Forecast (WRF) modeling system. It can also be 
used to visualize model input or analyses on model grids. It has been under continuous 
development since 1991, primarily by Mark Stoelinga at both NCAR and the University of 
Washington. 
 
The RIP users' guide (http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm) is essential 
reading.  
  

Code history  
  
Version 4.0: reads WRF-ARW real output files 
Version 4.1: reads idealized WRF-ARW datasets 
Version 4.2: reads all the files produced by WPS 
Version 4.3: reads files produced by WRF-NMM model  
Version 4.4: add ability to output different graphical types 
Version 4.5: add configure/compiler capabilities  
Version 4.6: current version – only bug fix changes between 4.5 and 4.6 
(This document will only concentrate on running RIP4 for WRF-ARW. For details on 
running RIP4 for WRF-NMM, see the WRF-NMM User’s Guide:  
http://www.dtcenter.org/wrf-nmm/users/docs/overview.php)  
  

Necessary software  
  
RIP4 only requires low-level NCAR Graphics libraries. These libraries have been merged 
with the NCL libraries since the release of NCL version 5 (http://www.ncl.ucar.edu/), so if 
you don’t already have NCAR Graphics installed on your computer, install NCL version 
5. 
    
Obtain the code from the WRF-ARW user’s web site: 
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html  
 
Unzip and untar the RIP4 tar file. The tar file contains the following directories and files:  

• CHANGES, a text file that logs changes to the RIP tar file. 
• Doc/, a directory that contains documentation of RIP, most notably the Users' 

Guide (ripug). 
• README, a text file containing basic information on running RIP. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-22 

• arch/, directory containing the default compiler flags for different machines. 
• clean, script to clean compiled code. 
• compile, script to compile code. 
• configure, script to create a configure file for your machine. 
• color.tbl, a file that contains a table, defining the colors you want to have 

available for RIP plots. 
• eta_micro_lookup.dat, a file that contains "look-up" table data for the Ferrier 

microphysics scheme. 
• psadilookup.dat, a file that contains "look-up" table data for obtaining 

temperature on a pseudoadiabat. 
• sample_infiles/, a directory that contains sample user input files for RIP and 

related programs.  
• src/, a directory that contains all of the source code files for RIP, RIPDP, and 

several other utility programs.  
• stationlist, a file containing observing station location information.  

 

Environment Variables  

An important environment variable for the RIP system is RIP_ROOT.  
RIP_ROOT should be assigned the path name of the directory where all your RIP program 
and utility files (color.tbl, stationlist, lookup tables, etc.) reside.  
Typically (for cshrc shell): 

setenv RIP_ROOT /my-path/RIP4 

The RIP_ROOT environment variable can also be overwritten with the variable rip_root 
in the RIP user input file (UIF). 

A second environment variable you need to set is NCARG_ROOT.  
Typically (for cshrc shell): 

setenv NCARG_ROOT /usr/local/ncarg     ! for NCARG V4 
setenv NCARG_ROOT /usr/local/ncl       ! for NCL V5 
 

Compiling RIP and associated programs 
 
Since the release of version 4.5, the same configure/compile scripts available in all other 
WRF programs have been added to RIP4. To compile the code, first configure for your 
machine by typing:  
  

./configure 
  
You will see a list of options for your computer (below is an example for a Linux machine): 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-23 

Will use NETCDF in dir: /usr/local/netcdf-pgi  
-----------------------------------------------------------  
Please select from among the following supported platforms.  
1.  PC Linux i486 i586 i686 x86_64, PGI compiler 
2.  PC Linux i486 i586 i686 x86_64, g95 compiler 
3.  PC Linux i486 i586 i686 x86_64, gfortran compiler 
4.  PC Linux i486 i586 i686 x86_64, Intel compiler 
 
Enter selection [1-4] 
 
 
Make sure the netCDF path is correct. 
Pick compile options for your machine. 
 
This will create a file called configure.rip. Edit compile options/paths, if necessary. 
 
To compile the code, type:  
  

./compile 
  
After a successful compilation, the following new files should be created. 
 

rip RIP post-processing program. 
Before using this program, first convert the input data to the correct 
format expected by this program, using the program ripdp 

ripcomp This program reads-in two rip data files and compares their content. 
ripdp_mm5 RIP Data Preparation program for MM5 data  
ripdp_wrfarw 
ripdp_wrfnmm 

RIP Data Preparation program for WRF data 

ripinterp This program reads-in model output (in rip-format files) from a 
coarse domain and from a fine domain, and creates a new file which 
has the data from the coarse domain file interpolated (bi-linearly) 
to the fine domain.  The header and data dimensions of the new file 
will be that of the fine domain, and the case name used in the file 
name will be the same as that of the fine domain file that was read-
in. 

ripshow This program reads-in a rip data file and prints out the contents of 
the header record.  

showtraj Sometimes, you may want to examine the contents of a trajectory 
position file. Since it is a binary file, the trajectory position file 
cannot simply be printed out. showtraj, reads the trajectory position 
file and prints out its contents in a readable form.  When you run 
showtraj, it prompts you for the name of the trajectory position file 
to be printed out.  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-24 

tabdiag If fields are specified in the plot specification table for a trajectory 
calculation run, then RIP produces a .diag file that contains values 
of those fields along the trajectories. This file is an unformatted 
Fortran file; so another program is required to view the diagnostics. 
tabdiag serves this purpose.  

upscale This program reads-in model output (in rip-format files) from a 
coarse domain and from a fine domain, and replaces the coarse data 
with fine data at overlapping points. Any refinement ratio is 
allowed, and the fine domain borders do not have to coincide with 
coarse domain grid points. 

  
 

Preparing data with RIPDP 

RIP does not ingest model output files directly. First, a preprocessing step must be executed 
that converts the model output data files to RIP-format data files. The primary difference 
between these two types of files is that model output data files typically contain all times 
and all variables in a single file (or a few files), whereas RIP data has each variable at each 
time in a separate file. The preprocessing step involves use of the program RIPDP (which 
stands for RIP Data Preparation). RIPDP reads-in a model output file (or files), and 
separates out each variable at each time.  
 

Running RIPDP  

The program has the following usage:  

ripdp_XXX [-n namelist_file] model-data-set-name [basic|all] 
data_file_1 data_file_2 data_file_3 ... 

Above, the "XXX" refers to "mm5", "wrfarw", or "wrfnmm". 
The argument model-data-set-name can be any string you choose, that uniquely defines 
this model output data set. 
 
The use of the namelist file is optional. The most important information in the namelist is 
the times you want to process. 
 
As this step will create a large number of extra files, creating a new directory to place these 
files in will enable you to manage the files easier  (mkdir RIPDP). 
 

e.g.  ripdp_wrfarw  RIPDP/arw  all  wrfout_d01_*   
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-25 

The RIP user input file  

Once the RIP data has been created with RIPDP, the next step is to prepare the user input 
file (UIF) for RIP (see Chapter 4 of the RIP users’ guide for details). This file is a text file, 
which tells RIP what plots you want, and how they should be plotted. A sample UIF, called 
rip_sample.in, is provided in the RIP tar file. This sample can serve as a template for the 
many UIFs that you will eventually create.  

A UIF is divided into two main sections. The first section specifies various general 
parameters about the set-up of RIP, in a namelist format (userin - which controls the 
general input specifications; and trajcalc - which controls the creation of trajectories). The 
second section is the plot specification section, which is used to specify which plots will 
be generated.  

namelist: userin 

Variable Value Description 
idotitle 1 Controls first part of title. 
title ‘auto’ Defines your own title, or allow RIP to generate 

one. 
titlecolor ‘def.foreground’ Controls color of the title. 
iinittime 1 Prints initial date and time (in UTC) on plot. 
ifcsttime 1 Prints forecast lead-time (in hours) on plot. 
ivalidtime 1 Prints valid date and time (in both UTC and local 

time) on plot. 
inearesth 0 This allows you to have the hour portion of the 

initial and valid time be specified with two 
digits, rounded to the nearest hour, rather than 
the standard 4-digit HHMM specification. 

timezone -7.0 Specifies the offset from Greenwich time. 
iusdaylightrule 1 Flag to determine if US daylight saving should 

be applied. 
ptimes 9.0E+09 Times to process. 

This can be a string of times (e.g. 0,3,6,9,12,) 
or a series in the form of A,-B,C, which means 
"times from hour A, to hour B, every C hours" 
(e.g. 0,-12,3,). Either ptimes or iptimes can be 
used, but not both. You can plot all available 
times, by omitting both ptimes and iptimes from 
the namelist, or by setting the first value 
negative. 

ptimeunits ‘h’ Time units. This can be ‘h’ (hours), ‘m’ 
(minutes), or ‘s’ (seconds). Only valid with 
ptimes. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-26 

iptimes 99999999 Times to process. 
This is an integer array that specifies desired 
times for RIP to plot, but in the form of 8-digit 
"mdate" times (i.e. YYMMDDHH). Either ptimes 
or iptimes can be used, but not both. You can plot 
all available times by omitting both ptimes and 
iptimes from the namelist, or by setting the first 
value negative. 

tacc 1.0 Time tolerance in seconds. 
Any time in the model output that is within tacc 
seconds of the time specified in ptimes/iptimes 
will be processed. 

flmin, flmax, 
fbmin, ftmax 

.05, .95,.10, .90 Left, right, bottom and top frame limit 

ntextq 0 Text quality specifier (0=high; 1=medium; 
2=low). 

ntextcd 0 Text font specifier [0=complex (Times); 
1=duplex (Helvetica)]. 

fcoffset 0.0 This is an optional parameter you can use to 
"tell" RIP that you consider the start of the 
forecast to be different from what is indicated by 
the forecast time recorded in the model output. 
Examples: fcoffset=12 means you consider hour 
12 in the model output to be the beginning of the 
true forecast. 

idotser 0 Generates time-series output files (no plots); 
only an ASCII file that can be used as input to a 
plotting program. 

idescriptive 1 Uses more descriptive plot titles. 
icgmsplit 0 Splits metacode into several files. 
maxfld 10 Reserves memory for RIP. 
ittrajcalc 0 Generates trajectory output files (use namelist 

trajcalc when this is set). 
imakev5d 0 Generate output for Vis5D 
ncarg_type ‘cgm’ Outputs type required. Options are ‘cgm’ 

(default), ‘ps’, ‘pdf’, ‘pdfL’, ‘x11’. Where ‘pdf’ 
is portrait and ‘pdfL’ is landscape. 

istopmiss 1 This switch determines the behavior for RIP 
when a user-requested field is not available. The 
default is to stop. Setting the switch to 0 tells RIP 
to ignore the missing field and to continue 
plotting.  

rip_root ‘/dev/null’ Overwrites the environment variable 
RIP_ROOT. 

  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-27 

Plot Specification Table 
 
The second part of the RIP UIF consists of the Plot Specification Table. The PST provides 
all of the user control over particular aspects of individual frames and overlays.  
  
The basic structure of the PST is as follows:  

• The first line of the PST is a line of consecutive equal signs. This line, as well as 
the next two lines, is ignored by RIP. It is simply a banner that says this is the start 
of the PST section. 

• After that, there are several groups of one or more lines, separated by a full line of 
equal signs. Each group of lines is a frame specification group (FSG), and it 
describes what will be plotted in a single frame of metacode. Each FSG must end 
with a full line of equal signs, so that RIP can determine where individual frames 
start and end.  

• Each line within a FGS is referred to as a plot specification line (PSL). An FSG that 
consists of three PSL lines will result in a single metacode frame with three over-
laid plots. 
 

Example of a frame specification groups (FSG's):  
  ============================================== 
    feld=tmc; ptyp=hc; vcor=p; levs=850; > 
    cint=2; cmth=fill; cosq=-32,light.violet,-24, 
    violet,-16,blue,-8,green,0,yellow,8,red,> 
    16,orange,24,brown,32,light.gray  
  feld=ght; ptyp=hc; cint=30; linw=2  
  feld=uuu,vvv; ptyp=hv; vcmx=-1; colr=white; intv=5  
  feld=map; ptyp=hb  
  feld=tic; ptyp=hb 
_=============================================== 

  
 
This FSG will generate 5 frames to create a single plot (as shown below): 

• Temperature in degrees C (feld=tmc). This will be plotted as a horizontal contour 
plot (ptyp=hc), on pressure levels (vcor=p). The data will be interpolated to 850 
hPa. The contour intervals are set to 2 (cint=2), and shaded plots (cmth=fill) will 
be generated with a color range from light violet to light gray. 

• Geopotential heights (feld=ght) will also be plotted as a horizontal contour plot. 
This time the contour intervals will be 30 (cint=30), and contour lines with a line 
width of 2 (linw=2) will be used. 

• Wind vectors (feld=uuu,vvv), plotted as barbs (vcmax=-1). 
• A map background will be displayed (feld=map), and 
• Tic marks will be placed on the plot (feld=tic). 

  
  
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-28 

 

Running RIP  

Each execution of RIP requires three basic things: a RIP executable, a model data set and 
a user input file (UIF). The syntax for the executable, rip, is as follows:  

rip [-f] model-data-set-name rip-execution-name  

In the above, model-data-set-name is the same model-data-set-name that was used in 
creating the RIP data set with the program ripdp.  
 
rip-execution-name is the unique name for this RIP execution, and it also defines the name 
of the UIF that RIP will look for.  
 
The –f option causes the standard output (i.e., the textual print out) from RIP to be written 
to a file called rip-execution-name.out. Without the –f option, the standard output is sent to 
the screen. 

 
e.g.  rip  -f  RIPDP/arw  rip_sample 

    
If this is successful, the following files will be created: 
 

rip_sample.TYPE - metacode file  with requested plots 
rip_sample.out  - log file (if –f  used) ; view this file if a problem occurred 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-29 

 
The default output TYPE is a ‘cgm’, metacode file. To view these, use the command ‘idt’. 
 

e.g.  idt   rip_sample.cgm 
 

For high quality images, create pdf or ps images directly (ncarg_type = pdf / ps). 
   

See the Tools section in Chapter 10 of this User’s Guide for more information concerning 
other types of graphical formats and conversions between graphical formats. 
 
  
Examples of plots created for both idealized and real cases are available from: 
http://www2.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm 
  

 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-30 

ARWpost 

The ARWpost package reads-in WRF-ARW model data and creates GrADS output files. 
Since version 3.0 (released December 2010), vis5D output is no longer supported. More 
advanced 3D visualization tools, like VAPOR and IDV, have been developed over the last 
couple of years, and users are encouraged to explore those for their 3D visualization needs.  
  
The converter can read-in WPS geogrid and metgrid data, and WRF-ARW input and output 
files in netCDF format. Since version 3.0 the ARWpost code is no longer dependant on the 
WRF IO API. The advantage of this is that the ARWpost code can now be compiled and 
executed anywhere without the need to first install WRF. The disadvantage is that GRIB1 
formatted WRF output files are no longer supported.  
  
 

Necessary software  
 
GrADS software - you can download and install GrADS from http://grads.iges.org/. The 
GrADS software is not needed to compile and run ARWpost, but is needed to display the 
output files.  
 
  
Obtain the ARWpost TAR file from the WRF Download page 
(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html) 
 
 
Unzip and untar the ARWpost tar file. 

The tar file contains the following directories and files:  

• README, a text file containing basic information on running ARWpost. 
• arch/, directory containing configure and compilation control. 
• clean, a script to clean compiled code. 
• compile, a script to compile the code. 
• configure, a script to configure the compilation for your system. 
• namelist.ARWpost, namelist to control the running of the code. 
• src/, directory containing all source code. 
• scripts/, directory containing some grads sample scripts. 
• util/, a directory containing some utilities.  

 
 

Environment Variables  
 
Set the environment variable NETCDF to the location where your netCDF libraries are 
installed. Typically (for cshrc shell): 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-31 

 
setenv NETCDF /usr/local/netcdf 

 

Configure and Compile ARWpost  
 
To configure - Type: 
  

./configure 
  
You will see a list of options for your computer (below is an example for a Linux 
machine): 
 
 
Will use NETCDF in dir: /usr/local/netcdf-pgi  
-----------------------------------------------------------  
Please select from among the following supported platforms.  
1. PC Linux i486 i586 i686, PGI compiler 
2. PC Linux i486 i586 i686, Intel compiler 
 
Enter selection [1-2] 
 
 
Make sure the netCDF path is correct. 
Pick the compile option for your machine 
  
 
 
 To compile - Type: 
 

./compile 
  
If successful, the executable ARWpost.exe will be created. 
  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-32 

Edit the namelist.ARWpost file  
  
Set input and output file names and fields to process (&io) 
 
 

Variable Value Description 
 
&datetime 
start_date; 
end_date 

 Start and end dates to process. 
Format: YYYY-MM-DD_HH:00:00 

interval_seconds 0 Interval in seconds between data to process. If data is 
available every hour, and this is set to every 3 hours, 
the code will skip past data not required. 

tacc 0 Time tolerance in seconds. 
Any time in the model output that is within tacc 
seconds of the time specified will be processed. 

debug_level 0 Set this higher for more print-outs that can be useful 
for debugging later. 

 
&io 
input_root_name ./ Path and root name of files to use as input. All files 

starting with the root name will be processed. Wild 
characters are allowed. 
  

output_root_name ./ Output root name. When converting data to GrADS, 
output_root_name.ctl and output_root_name.dat will 
be created.  
  

output_title Title as 
in WRF 
file 

Use to overwrite title used in GrADS .ctl file. 

mercator_defs .False. Set to true if mercator plots are distorted. 
split_output .False. Use if you want to split our GrADS output files into 

a number of smaller files (a common .ctl file will be 
used for all .dat files). 

frames_per_outfile 1 If split_output is .True., how many time periods are 
required per output (.dat) file. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-33 

plot ‘all’ Which fields to process. 
‘all’ – all fields in WRF file 
‘list’ – only fields as listed in the ‘fields’ variable. 
‘all_list’ – all fields in WRF file and all fields listed 
in the ‘fields’ variable. 
 
Order has no effect, i.e., ‘all_list’ and ‘list_all’ are 
similar. 
 
If ‘list’ is used, a list of variables must be supplied 
under ‘fields’. Use ‘list’ to calculate diagnostics. 

fields  Fields to plot. Only used if ‘list’ was used in the ‘plot’ 
variable.  

 
&interp 
interp_method 0  0 - sigma levels,  

-1 - code-defined "nice" height levels,  
 1 - user-defined height or pressure levels 

interp_levels  Only used if interp_method=1 
 
Supply levels to interpolate to, in hPa (pressure) or 
km (height). Supply levels bottom to top. 

extrapolate .false. Extrapolate the data below the ground if interpolating 
to either pressure or height. 

  
Available diagnostics:  
 
cape - 3d cape  
cin - 3d cin  
mcape - maximum cape  
mcin - maximum cin  
clfr - low/middle and high cloud fraction 
dbz - 3d reflectivity  
max_dbz - maximum reflectivity 
geopt - geopotential 
height - model height in km  
lcl - lifting condensation level  
lfc - level of free convection  
pressure - full model pressure in hPa  
rh - relative humidity  
rh2 - 2m relative humidity  
theta - potential temperature 
tc - temperature in degrees C 
tk - temperature in degrees K  
td - dew point temperature in degrees C  
td2 - 2m dew point temperature in degrees C  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-34 

slp - sea level pressure  
umet and vmet - winds rotated to earth coordinates  
u10m and v10m - 10m winds rotated to earth coordinates  
wdir - wind direction  
wspd - wind speed coordinates  
wd10 - 10m wind direction  
ws10 - 10m wind speed  
 

Run ARWpost 
 
Type: 

./ARWpost.exe 
  
This will create the output_root_name.dat and output_root_name.ctl files required as input 
by the GrADS visualization software. 
 
 
  
 
NOW YOU ARE READY TO VIEW THE OUTPUT 
 
For general information about working with GrADS, view the GrADS home 
page: http://grads.iges.org/grads/  
  
To help users get started, a number of GrADS scripts have been provided: 

• The scripts are all available in the scripts/ directory. 
• The scripts provided are only examples of the type of plots one can generate with 

GrADS data. 
• The user will need to modify these scripts to suit their data (e.g., if you do not 

specify 0.25 km and 2 km as levels to interpolate to when you run the "bwave" data 
through the converter, the "bwave.gs" script will not display any plots, since it will 
specifically look for these levels). 

• Scripts must be copied to the location of the input data. 
 
 

GENERAL SCRIPTS 
  
cbar.gs  Plot color bar on shaded plots (from GrADS home page)  
rgbset.gs  Some extra colors (Users can add/change colors from color number 20 

to 99)  



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-35 

skew.gs Program to plot a skewT 
 
TO RUN TYPE: run skew.gs (needs pressure level TC,TD,U,V as 
input)  
User will be prompted if a hardcopy of the plot must be created (- 1 for 
yes and 0 for no). 
If 1 is entered, a GIF image will be created.  
Need to enter lon/lat of point you are interested in  
Need to enter time you are interested in  
Can overlay 2 different times 

plot_all.gs Once you have opened a GrADS window, all one needs to do is run 
this script.  
It will automatically find all .ctl files in the current directory and list 
them so one can pick which file to open. 
Then the script will loop through all available fields and plot the ones a 
user requests. 

  
  

SCRIPTS FOR REAL DATA 
    
real_surf.gs Plot some surface data 

Need input data on model levels  
plevels.gs  Plot some pressure level fields 

Need model output on pressure levels 
rain.gs Plot total rainfall 

Need a model output data set (any vertical coordinate), that contain 
fields "RAINC" and "RAINNC" 

cross_z.gs Need z level data as input  
Will plot a NS and EW cross section of RH and T (C)  
Plots will run through middle of the domain 

zlevels.gs Plot some height level fields 
Need input data on height levels 
Will plot data on 2, 5, 10 and 16km levels 

input.gs Need WRF INPUT data on height levels 
  
 

SCRIPTS FOR IDEALIZED DATA 
    
bwave.gs Need height level data as input  

Will look for 0.25 and 2 km data to plot 
grav2d.gs  Need normal model level data 
hill2d.gs Need normal model level data 
qss.gs Need height level data as input.  

Will look for heights 0.75, 1.5, 4 and 8 km to plot 
sqx.gs Need normal model level data a input 
sqy.gs Need normal model level data a input 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-36 

  
Examples of plots created for both idealized and real cases are available from: 
http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/ARWpost/   
 
  
Trouble Shooting 
 
The code executes correctly, but you get "NaN" or "Undefined Grid" for all fields  
when displaying the data. 
  
Look in the .ctl file.  

a) If the second line is: 

options byteswapped  
 
Remove this line from your .ctl file and try to display the data again. 
If this SOLVES the problem, you need to remove the -Dbytesw option from 
configure.arwp 

b) If the line below does NOT appear in your .ctl file: 

options byteswapped  
 
ADD this line as the second line in the .ctl file. 
Try to display the data again. 
If this SOLVES the problem, you need to ADD the -Dbytesw option for 
configure.arwp 

The line "options byteswapped" is often needed on some computers (DEC alpha as an 
example). It is also often needed if you run the converter on one computer and use another 
to display the data.   
  

  

  
  
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-37 

NCEP Unified Post Processor (UPP) 

UPP Introduction 

The NCEP Unified Post Processor has replaced the WRF Post Processor (WPP). The 
UPP software package is based on WPP but has enhanced capabilities to post-process 
output from a variety of NWP models, including WRF-NMM, WRF-ARW, Non-
hydrostatic Multi-scale Model on the B grid (NMMB), Global Forecast System (GFS), 
and Climate Forecast System (CFS).  At this time, community user support is provided 
for the WRF-based systems and NMMB.   
 
In addition to the option to output fields on the model’s native vertical levels, UPP 
interpolates output from the model’s native grids to National Weather Service (NWS) 
standard levels (pressure, height, etc.) and standard output grids (AWIPS, Lambert 
Conformal, polar-stereographic, etc.) in NWS and World Meteorological Organization 
(WMO) GRIB format. With the release of UPPv3.0, preliminary capabilities to output in 
GRIB Edition 2 (GRIB2) format for select models has been included and a simple 
template is available for users to modify to fit their needs.    Caution should be taken 
when utilizing GRIB2; exhaustive testing has not been conducted and it is recommend to 
use this feature in testing/exploratory mode at this time.  Updates will be provided as 
GRIB2 output capabilities become available and  more comprehensive information will 
be included in the Users’ Guide.   
 
UPP incorporates the Joint Center for Satellite Data Assimilation (JCSDA) Community 
Radiative Transfer Model (CRTM) to compute model derived brightness temperature 
(TB) for various instruments and channels. This additional feature enables the generation 
of a number of simulated satellite products including GOES and AMSRE products for 
WRF-NMM, Hurricane WRF (HWRF), WRF-ARW and GFS. For CRTM 
documentation, refer to http://www.orbit.nesdis.noaa.gov/smcd/spb/CRTM. 
 

UPP Software Requirements 

The Community Unified Post Processor requires the same Fortran and C compilers used 
to build the WRF model.  In addition, the netCDF library, the JasPer library, the PNG 
library, Zlib, and the WRF I/O API libraries, which are included in the WRF model tar 
file, are also required.  UPP uses WRF I/O libraries for data processing of all models and 
as a result UPP is dependent on a WRF build.  The JasPer library, PNG library, and Zlib 
are new requirements with the release of UPPv2.0 and higher, due to the addition GRIB2 
capabilities.  NCEP provides these necessary codes for download: 
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/ 
 
The UPP has some sample visualization scripts included to create graphics using either 
GrADS (http://grads.iges.org/grads/grads.html) or GEMPAK 
(http://www.unidata.ucar.edu/software/gempak/index.html).  These are not part of the 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-38 

UPP installation and need to be installed separately if one would like to use either 
plotting package.   
 
UPP has been tested on LINUX platforms (with PGI, Intel and GFORTRAN compilers).  
 

Obtaining the UPP Code  

The UPP package can be downloaded from: 
http://www.dtcenter.org/upp/users/downloads/index.php 
 
 
UPP Functionalities 
 
The UPP, 

• is compatible with WRF v3.3 and higher. 
• can be used to post-process WRF-ARW, WRF-NMM, NMMB, GFS, and CFS 

forecasts (community support provided for WRF-based and NMMB 
forecasts).   

• can ingest WRF history files (wrfout*) in two formats: netCDF and binary.  
• can ingest NMMB history files (nmmb_hist*) in binary.  

 
The UPP is divided into two parts:  
 

Unipost   
i. Interpolates the forecasts from the model’s native vertical coordinate to 
NWS standard output levels (e.g., pressure, height) and computes mean sea 
level pressure. If the requested parameter is on a model’s native level, then no 
vertical interpolation is performed.  
ii. Computes diagnostic output quantities (e.g., convective available potential 
energy, helicity, relative humidity).  
iii. Outputs the results in NWS and WMO standard GRIB1 format (for GRIB 
documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/). 
iv. Destaggers the WRF-ARW forecasts from a C-grid to an A-grid. 
v. Outputs two navigation files, copygb_nav.txt (for WRF-NMM output 
only) and copygb_hwrf.txt (for WRF-ARW and WRF-NMM).  These files 
can be used as input for copygb.  

1. copygb_nav.txt: This file contains the GRID GDS of a Lambert 
Conformal Grid similar in domain and grid spacing to the one used to 
run the WRF-NMM. The Lambert Conformal map projection works 
well for mid-latitudes. 

2. copygb_hwrf.txt: This file contains the GRID GDS of a Latitude-
Longitude Grid similar in domain and grid spacing to the one used to 
run the WRF model. The latitude-longitude grid works well for tropics. 

 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-39 

Copygb  
1. Destaggers the WRF-NMM forecasts from the staggered native E-grid to a 

regular non-staggered grid. (Since unipost destaggers WRF-ARW output 
from a C-grid to an A-grid, WRF-ARW data can be displayed directly 
without going through copygb.) 

2. Destaggers the NMMB forecasts from the staggered native B-grid to a 
regular non-staggered grid. 

3. Interpolates the forecasts horizontally from their native grid to a standard 
AWIPS or user-defined grid (for information on AWIPS grids, see 
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.
html). 

4. Outputs the results in NWS and WMO standard GRIB1 format (for GRIB 
documentation, see 
http://www.nco.ncep.noaa.gov/pmb/docs/).   

 
 
 
Full UPP documentation available at:  
 

http://www.dtcenter.org/upp/users/docs/user_guide/V3/u
pp_users_guide.pdf 
http://www.dtcenter.org/upp/users/index.php 

 
 

VAPOR 

VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar 
Researchers.  VAPOR was developed at NCAR to provide interactive visualization and 
analysis of numerically simulated fluid dynamics. The current (2.3) version of VAPOR has 
many capabilities for 3D visualization of WRF-ARW simulation output, including the 
ability to directly import wrfout files, and support for calculating derived variables that are 
useful in visualizing WRF output.    
 

Basic capabilities of VAPOR with WRF-ARW output 
 

• Direct Volume rendering (DVR) 
Any 3D variable in the WRF data can be viewed as a density.  Users control 
transparency and color to view temperature, water vapor, clouds, etc.  in 3D.  
 

• Flow 
- Display barbs associated with 2D or 3D field magnitudes.  Barbs can also be 
positioned at a specified height above the terrain and aligned to the WRF data grid. 
- Draw 2D and 3D streamlines and flow arrows, showing the wind motion and 
direction, and how wind changes in time. 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-40 

- Path tracing (unsteady flow) enables visualization of trajectories that particles take 
over time.  Users control when and where the particles are released. 
- Flow images (image based flow visualization) can be used to provide an animated 
view of wind motion in a planar section, positioned anywhere in the scene. 
- Field line advection can be used to animate the motion of streamlines of any vector 
field in a moving wind field. 
 

• Isosurfaces 
The isosurfaces of variables are displayed interactively.  Users can control iso-
values, color and transparency of the isosurfaces. Isosurfaces can be colored 
according to the values of another variable. 
 

• Contour planes and Probes 
3D variables can be intersected with arbitrarily oriented planes.  Contour planes can 
be interactively positioned.  Users can interactively pinpoint the values of a variable 
and establish seed points for flow integration. Wind and other vector fields can be 
animated in the probe plane. 
 

• Two-dimensional variable visualization 
2D (horizontal) WRF variables can be color-mapped and visualized in the 3D 
scene.  They can be viewed on a horizontal plane in the scene, or mapped onto the 
terrain surface. 
 

• Animation 
Control the time-stepping of the data, for interactive replaying and for recording 
animated sequences. 
 

• Image display 
Tiff images can be displayed in the 3D scene. If the images are georeferenced (i.e. 
geotiffs) then they can be automatically positioned at the correct latitude/longitude 
coordinates. Images can be mapped to the terrain surface, or aligned to an axis-
aligned plane. Several useful georeferenced images are preinstalled with VAPOR, 
including political boundary maps, and the NASA Blue Marble earth image.  
VAPOR also provides several utilities for obtaining geo-referenced images from 
the Web. Images with transparency can be overlaid on the terrain images, enabling 
combining multiple layers of information. 
 

• Analysis capabilities 
VAPOR (versions 2.1+) has an embedded Python calculation engine.  Derived 
variables can be easily calculated with Python expressions or programs and these 
will be evaluated as needed for use in visualization.  VAPOR provides Python 
scripts to calculate the following variables from WRF output: 
 CTT:  Cloud-top temperature 
 DBZ:  3D radar reflectivity 
 DBZ_MAX: radar reflectivity over vertical column 
 ETH: equivalent potential temperature 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-41 

 RH: relative humidity 
 PV: potential vorticity 
 SHEAR: horizontal wind hear 
 SLP: 2D sea-level pressure 
 TD: dewpoint temperature 
 TK: temperature in degrees Kelvin  
Instructions for calculating and visualizing these and other variables are provided 
in the document, “Using Python with VAPOR” on the VAPOR website. 
. 
 
Derived variables can also be calculated in IDL and imported into the current 
visualization session.  Variables can also be calculated in other languages (e.g. 
NCL) and adjoined to the Vapor Data Collection.  Documentation of these 
capabilities can be found in the Documentation menu on the VAPOR website 
http://www.vapor.ucar.edu. 
 

VAPOR requirements 
 
VAPOR is supported on Linux, Mac, and Windows systems. VAPOR works best with a 
recent graphics card (say 1-2 years old).  The advanced features of VAPOR perform best 
with nVidiaä, ATIä or AMDä graphics accelerators.  
 
VAPOR is installed on NCAR visualization systems.  Users with UCAR accounts can 
connect their (Windows, Linux or Mac) desktops to the NCAR visualization systems using 
NCAR’s VNC-based remote visualization services, to run VAPOR and visualize the results 
remotely.  Instructions for using NCAR visualization services are at:  
https://www2.cisl.ucar.edu/resources/geyser_caldera/visualization 
Contact dasg@ucar.edu  or vapor@ucar.edu for assistance. 
 

VAPOR support resources 
 
The VAPOR website: http://www.vapor.ucar.edu includes software, documentation, 
example data, and links to other resources. The document "Getting started with VAPOR 
and WRF"  
(http://www.vapor.ucar.edu/docs/getting-started-vapor/getting-started-vapor-and-wrf) 
has an overview of the various capabilities that are useful in visualizing WRF data with 
VAPOR. 
 
The VAPOR Sourceforge website (http://sourceforge.net/projects/vapor) enables users to 
post bugs, request features, download software, etc. 
 
Users of VAPOR on NCAR visualization systems should contact dasg@ucar.edu for 
support. 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-42 

Users are encouraged to provide feedback.  Questions, problems, bugs etc. should be 
reported to vapor@ucar.edu. The VAPOR development priorities are set by users as well 
as by the VAPOR steering committee, a group of turbulence researchers who are interested 
in improving the ability to analyze and visualize time-varying simulation results.  Post a 
feature request to the VAPOR SourceForge website 
(http://sourceforge.net/projects/vapor), or e-mail vapor@ucar.edu if you have requests or 
suggestions about improving VAPOR capabilities. 

 

Basic steps for using VAPOR to visualize WRF-ARW data 
 

1. Install VAPOR 
 

VAPOR installers for Windows, Macintosh and Linux are available on the VAPOR 
home page, http://www.vapor.ucar.edu/.  
For most users, a binary installation is fine.  Installation instructions are also provided 
in the VAPOR documentation pages, http://www.vapor.ucar.edu/docs/install. 
 
After VAPOR is installed, it is necessary to perform user environment setup on Unix 
or Mac, before executing any VAPOR software.  These setup instructions are provided 
on the VAPOR binary install documentation pages: 
http://www.vapor.ucar.edu/docs/install.  

 
 

2. (Optional) Convert WRF output data to VAPOR Data Collection 
 

Starting with VAPOR 2.0, you can directly load WRF-ARW output files into VAPOR.  
From the VAPOR menu select “Import data into current session---WRF-ARW”. 
Alternately, if your data is very large, you will be able to visualize it more interactively 
by converting it to a Vapor Data Collection (VDC).  
 
A VAPOR VDC consists of (1) a metadata file (file type .vdf) that describes an entire 
VAPOR data collection, and (2) a directory of multi-resolution data files where the 
actual data is stored.  The metadata file is created by the command wrfvdfcreate, and 
the multi-resolution data files are written by the command wrf2vdf.  The simplest way 
to create a VAPOR data collection is using the vdcwizard application, which is installed 
with VAPOR.  Also there are command-line tools wrfvdfcreate and wrf2vdf that can be 
used to convert the WRF-ARW output data to a VDC. 
 
Using vdcwizard, you specify the name of the .vdf file and all the wrfout files that are 
to be used.  First the .vdf file is created, then all the wrfout files are processed creating 
a VDC. 
 
3. Visualize the WRF data 

 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-43 

From the command line, issue the command “vaporgui”, or double-click the VAPOR 
desktop icon (on Windows or Mac).  This will launch the VAPOR user interface.   
 
To directly import WRF-ARW (NetCDF) output files, click on the Data menu, and 
select “Import WRF output files into default session”.  Then select all the wrfout files 
you want to visualize and click “open”.  If instead you converted your data to a VAPOR 
Data Collection, then, from the Data menu, choose “Load a dataset into default 
session”, and select the metadata file that you associated with your converted WRF 
data. 

 

 

 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-44 

  
 

To visualize the data, select a renderer tab (DVR, Iso, Flow, 2D, Image, Barbs, or 
Probe), chose the variable(s) to display, and then, at the top of the tab, check the box 
labeled “Instance:1”, to enable the renderer.  For example, the above top image 
combines volume, flow and isosurface visualization with a terrain image. The bottom 
image illustrates hurricane Ike, as it made landfall in 2008. The Texas terrain has a map 
of US Counties applied to it, and an NCL image of accumulated rainfall is shown at 
ground level in the current region.  

 
4. Read the VAPOR Documentation  
 
VAPOR documentation is provided on the Website http://www.vapor.ucar.edu.  For a 
quick overview of capabilities of VAPOR with WRF data, see “Getting started with 
VAPOR and WRF”: 
http://www.vapor.ucar.edu/docs/getting-started-vapor/getting-started-vapor-and-wrf.  
 
A short tutorial, showing how to use VAPOR to visualize hurricane Katrina WRF 
output files, is provided at http://docs.vapor.ucar.edu/tutorials/hurricane-katrina. 
 
Additional documents on the VAPOR website (http://www.vapor.ucar.edu) provide 
more information about visualization of WRF data.  Information is also available in the 
VAPOR user interface to help users quickly get the information they need, and showing 
how to obtain the most useful visualizations.  Note the following resources: 

 
 -   The Georgia Weather Case Study 
 (http://www.vapor.ucar.edu/sites/default/files/docs/GeorgiaCaseStudy.pdf) provides a 

step-by-step tutorial, showing how to use most of the VAPOR features that are useful 
in WRF visualization.  However this material is based on an older version of VAPOR. 

 
- Creation of geo-referenced images to use with WRF data is discussed in the web 

document “Preparation of Georeferenced Images”. 
(http://www.vapor.ucar.edu/docs/vapor-data-preparation/preparation-

georeferenced-images) 
 
- "Using NCL with VAPOR to visualize WRF-ARW data": 

(http://www.vapor.ucar.edu/sites/default/files/docs/VAPOR-WRF-NCL.pdf)  
is a tutorial that shows how to create geo-referenced images from NCL plots, and to 
insert them in VAPOR scenes. 
 

- Fuller documentation of the capabilities of the VAPOR user interface is provided in 
the VAPOR GUI General Guide: 
(http://www.vapor.ucar.edu/docs/vaporgui-help). 

 
- The VAPOR Users' Guide for WRF Typhoon Research: 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-45 

(http://www.vapor.ucar.edu/sites/default/files/docs/Typhoon.pdf)  
provides a tutorial for using VAPOR on typhoon data, including instructions for 
preparing satellites images and NCL plots to display in the scene.  This document is 
also fairly old. 

 

To understand the meaning or function of an element in the VAPOR user interface: 
Tool tips:  Place the cursor over a widget for a couple of seconds and a one-sentence 
description will be provided.  

Context-sensitive help:  From the Help menu, click on “?Explain This”, and then click with 
the left mouse button on a GUI element, to obtain a longer technical explanation of the 
functionality. 

Web help:  From the vaporgui Help menu, various help topics associated with the current 
context can be selected.  These will launch a Web browser displaying detailed information 
about the selected topic. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



POST-PROCESSING 
 

 
WRF-ARW V3: User’s Guide 9-46 

 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-1 

  

Chapter 10: Utilities and Tools 
 

Table of Contents 

• Introduction  
• read_wrf_nc 
• iowrf 
• p_interp 
• TC Bogus Scheme  
• v_interp 
• proc_oml.f 
• Tools 

 
 

Introduction 

This chapter contains a number of short utilities to read and manipulate WRF-ARW data.  
 
Also included in this chapter are references to some basic third party software, which can 
be used to view/change input and output data files. 

 

read_wrf_nc  

 
This utility allows a user to look at a WRF netCDF file at a glance. 
  
What is the difference between this utility and the netCDF utility ncdump?  
 

• This utility has a large number of options, to allow a user to look at the specific 
part of the netCDF file in question. 

• The utility is written in Fortran 90, which will allow users to add options. 
• This utility can be used for both WRF-ARW and WRF-NMM cores.   

It can be used for geogrid, metgrid and wrf input / output files.   
Only 3 basic diagnostics are available, pressure / height / tk, these can be 
activated with the -diag option (these are only available for wrfout files) 
 

Obtain the read_wrf_nc utility from the WRF Download page 
(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html) 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-2 

  

Compile  
 
The code should run on any machine with a netCDF library (If you port the code to a 
different machine, please forward the compile flags to wrfhelp@ucar.edu) 
  
To compile the code, use the compile flags at the top of the utility. 
 
e.g., for a LINUX  machine you need to type: 

 
pgf90  read_wrf_nc.f  -L/usr/local/netcdf/lib   
   -lnetcdf  -lm  -I/usr/local/netcdf/include   
   -Mfree  -o read_wrf_nc  

  
If successful, this will create the executable: read_wrf_nc 
 

Run  
./read_wrf_nc  wrf_data_file_name  [-options] 

  
options : [-h / help] [-att] [-m] [-M z] [-s]  

[-S x y z] [-v VAR] [-V VAR] [-w VAR]  
[-t t1 [t2]] [-times]  
[-ts xy X  Y  VAR VAR ....] 
[-ts ll  lat lon VAR VAR ....]  
[-lev z] [-rot] [-diag]  
[-EditData VAR] 

 
Options:      (Note: options [-att] ; [-t] and [-diag] can be used with other 

options) 
-h / help Print help information. 
-att Print global attributes. 
-m Print list of fields available for each time, plus the min and max 

values for each field. 
-M z Print list of fields available for each time, plus the min and max 

values for each field. 
The min and max values of 3d fields will be for the z level of 
the field. 

-s Print list of fields available for each time, plus a sample value 
for each field. 
Sample value is taken from the middle of model domain. 

-S x y z Print list of fields available for each time, plus a sample value 
for each field. 
Sample value is at point x y z in the model domain. 

-t t1 [t2] Apply options only to times t1 to t2. 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-3 

t2 is optional. If not set, options will only apply to t1. 
-times Print only the times in the file. 
-ts Generate time series output. A full vertical profile for each 

variable will be created. 
-ts xy X  Y  VAR VAR ….. 

will generate time series output for all VAR’s at location 
X/Y 

-ts ll lat lon VAR VAR ….. 
will generate time series output for all VAR’s at x/y 
location nearest to lat/lon 

-lev z Work only with option –ts 
Will only create a time series for level z 

-rot Work only with option –ts 
Will rotate winds to Earth coordinates 

-diag Add if you want to see output for the diagnostics temperature 
(K), full model pressure and model height (tk, pressure, height) 

-v VAR Print basic information about field VAR. 
-V VAR Print basic information about field VAR, and dump the full field 

out to the screen. 
-w VAR Write the full field out to a file VAR.out 
  Default Options are [-att –s] 

 
 
SPECIAL option: -EditData VAR 
 
This option allows a user to read a WRF netCDF file, change a specific field, and write it 
BACK into the WRF netCDF file. 
This option will CHANGE your CURRENT WRF netCDF file so TAKE CARE when 
using this option. 
ONLY one field at a time can be changed; therefore, if you need 3 fields changed, you will 
need to run this program 3 times, each with a different "VAR" 
IF you have multiple times in your WRF netCDF file – by default ALL times for variable 
"VAR" WILL be changed. If you only want to change one time period, also use the “-t” 
option. 
 
HOW TO USE THIS OPTION:  
 
Make a COPY of your WRF netCDF file before using this option 
  
EDIT the subroutine USER_CODE 
 

ADD an IF-statement block for the variable you want to change. This is to prevent 
a variable getting overwritten by mistake. 
 
For REAL data arrays, work with the array "data_real" and for INTEGER data 
arrays, work with the array "data_int".  



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-4 

 
Example 1:  
If you want to change all (all time periods too) values of U to a constant 10.0 m/s, 
you would add the following IF-statement: 
   else if ( var == 'U') then  
     data_real = 10.0 
 
Example 2:  
If you want to change a section of the LANDMASK data to SEA points: 
   else if ( var == 'LANDMASK') then  
     data_real(10:15,20:25,1) = 0  
 
Example 3:  
Change all ISLTYP category 3 values into category 7 values (NOTE this is an 
INTEGER field): 
   else if ( var == 'ISLTYP') then  
     where (data_int == 3 ) 
       data_int = 7 
     end where 

  
Compile and run the program. 
You will be asked if this is really what you want to do. 
ONLY the answer "yes" will allow the change to take effect. 

 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-5 

iowrf  

This utility allows a user to do some basic manipulation on WRF-ARW netCDF files. 
  

• The utility allows a user to thin the data; de-stagger the data; or extract a box from 
the data file. 

 
Obtain the iowrf utility from the WRF Download page: 
(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html). 
  

Compile  
 
The code should run on any machine with a netCDF library (If you port the code to a 
different machine, please forward the compile flags to wrfhelp@ucar.edu). 
  
To compile the code, use the compile flags at the top of the utility. 
 
e.g., for a LINUX  machine you need to type:  
 

pgf90 iowrf.f  -L/usr/local/netcdf/lib  -lnetcdf  -lm  
-I/usr/local/netcdf/include  -Mfree  -o iowrf  

  
If successful, this will create the executable: iowrf 
 

Run  
  

./iowrf  wrf_data_file_name  [-options] 
  

options : [-h / help] [-thina X] [-thin X] [-box {}] 
[-A] [-64bit] 

  
-thina X Thin the data with a ratio of 1:X 

Data will be averaged before being fed back 
-thin X Thin the data with a ratio of 1:X 

No averaging will be done 
-box {} Extract a box from the data file. X/Y/Z can be controlled 

independently. e.g., 
-box x 10 30 y 10 30 z 5 15 
-box x 10 30 z 5 15 
-box y 10 30 
-box z 5 15 

-A De-stagger the data – no thinning will take place 
-64bit Allow large files (> 2GB) to have read / write access 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-6 

p_interp  

This utility interpolates WRF-ARW netCDF output files to user-specified pressure levels. 
Several new capabilities have been supported in p_interp since October 2010.  These 
includes: 

• The ability to output fields needed to create met_em files, which can be used as 
input to real.exe.  This output can be used to change the vertical resolution of WRF 
input files.  Output from p_interp can also be used as input to TC bogusing or 
OBSGRID. 

• A new namelist option is included to split input files containing multiple times into 
multiple output files, each with a separate time.   

• p_interp can be compiled and ran in parallel to improve the time needed to 
processes large input files. 

• Output from p_interp can now also be read directly by MET 
(http://www.dtcenter.org/met/users/index.php), removing the requirement to first 
run WPP before WRF-ARW data can be processed by the MET toolkit.  
 

 
Obtain the p_interp utility from the WRF Download page: 
(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html). 
  
 

Compile  
 
The code should run on any machine with a netCDF library (If you port the code to a 
different machine, please forward the compile flags to wrfhelp@ucar.edu) 
  
To compile the code, use the compile flags at the top of the utility. 
 
e.g., for a serial compile on a LINUX machine you need to type:  
 

pgf90 p_interp.F90  -L/usr/local/netcdf/lib   
-lnetcdf  -lm  -I/usr/local/netcdf/include   
-Mfree  -o p_interp 

 
 e.g., for a parallel compile on an IBM machine you need to type:  
 

mpxlf_r -qfree=f90 -L/usr/local/netcdf/lib -lnetcdf  
  -lm -I/usr/local/netcdf/include -o p_interp 

p_interp.F90 -WF,-D_MPI 
 
If successful, this will create the executable: p_interp 
 
 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-7 

Edit the Namelist 
 
Edit the associated namelist.pinterp file.  (see namelist options below). 
 

&io Default value Description 

path_to_input ./ Path to input data 

input_name None – must 
be set in 
namelist 

File name(s) of wrfout files. 

Use wild character if more than one file is processed. 

path_to_output ./ Path where output data will be written 

output_name ‘ ’ If no name is specified, the output will be written to 
input_name_PLEV 

process ‘all’ Indicate which fields to process. 

‘all’ fields in wrfout file (diagnostics PRES, TT, 
HGT & RH will automatically be calculated); 
‘list’ of fields as indicated in ‘fields’ 

fields ‘ ’ List of fields to process, if ‘list’ is used in parameter 
‘process’ 

debug .false. Set to .true. for more debugging  

mpi_debug .false. Set to .true. for additional output that may be 
helpful when debugging parallel code. 

bit64 .false. Allow large files (> 2GB) to have read / write access. 

met_em_output .false. Set to .true. to calculate the output fields needed 
in a met_em file.  These files are used as input to 
real.exe. 

split_output .false. .true. will output each time in the input file to a 
separate output file. 

 

&interp_in Default Value Description 

interp_levels -99999. List of pressure levels to interpolate data to 

extrapolate 0 0 - set values below ground and above model top to 
missing values (default) 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-8 

1 - extrapolate below ground, and set above model 
top to model top values 

interp_method 1 1 - linear in p-interpolation (default) 
2 - linear in log-p-interpolation 

unstagger_grid .false. Set to .true. to unstagger the data on output 

 

If met_em_output is set to .true. in the namelist, other options also need to be set: 
split_output   = .true. 
unstagger_grid = .false. 
extrapolate    = 1 
process        = 'all' 
 

If you do not set any of the first 3 options as shown above, they will be reset automatically 
in the code.  If process is set to 'list', the code will stop and the user will have to set 
process to 'all'. 
 
Also note that p_interp will stop if met_em* files already exist in the path_to_output 
directory.  This is to reduce the change of overwriting any met_em* files created by 
metgrid.exe. 
 

Run  
  
To run p_interp compiled with the serial options, type 
 

./p_interp  
 
For distributed memory systems, some form of mpirun will be needed to run the 
executable.  To run p_interp (compiled with parallel options) interactively, and using x 
processors, the command may look like: 
 

mpirun –np x ./p_interp 
 

On some systems, parallel interactive jobs may not be an option, in which case the 
command would be 
 

mpirun ./p_interp 
 
to run in a batch script.  On some IBM systems, the parallel job launcher may be poe or 
mpirun.lsf, rather than mpirun. 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-9 

TC Bogus Scheme   

The ARW core for the WRF modeling system provides a simple Tropical Cyclone (TC) 
Bogussing scheme. It can remove an existing tropical storm, and may optionally bogus in 
a Rankine vortex for the new tropical storm. The input to the program is a single time-
period and single domain of metgrid data, and a few namelist variables from the 
namelist.input file that describes the bogus TC’s location and strength.  The output 
is also a metgrid-like file.  The scheme is currently only set up to process isobaric data.  
After running the tc.exe program, the user must manually rename the files so that the 
real.exe program can read the modified input.  
 

Namelist Options  
 
The namelist information for the TC scheme is located in an optional namelist record &tc.  
Only a single domain is processed.  Users with multiple domains should horizontally-
interpolate the generated meteorological fields to the fine-grid domains.  Alternatively, 
users may run the tc.exe program on separate metgrid output files for different 
domains, though this is not recommended. 
 
insert_bogus_storm logical, insert a bogus storm 
remove_storm logical, removes an existing storm 
num_storm integer, number of storms to bogus, currently must be set 

to 1 
latc_loc real, latitude of bogus storm (+ north, - south) 
lonc_loc real, longitude of bogus storm (+ east, - west)  
vmax_meters_per_second real, maximum observed sustained wind speed (m/s) 
rmax real, radius from the cyclone center to where the maximum 

wind speed occurs (m) 
vmax_ratio real, scale factor for model’s Rankine vortex 

 
Note: If insert_bogus_storm is set to true then remove_storm should be set to 
false.  If remove_storm is set to true then insert_bogus_storm should be set to 
false. 
 
The value for vmax_ratio should be about 0.75 for a 45-km domain and about 0.90 for 
a 15-km domain (use these values to interpolate other for other resolutions).  This is a 
representativeness scale factor.  The observed maximum wind speed is not appropriate for 
an entire grid cell when the domain is fairly coarse.   
 
For example, assume that a cyclone report came in with the storm centered at 25o N and 
75o W, where the maximum sustained winds were observed to be 120 kts, with the 
maximum winds about 90 km from the storm center.  With a 45-km coarse grid model 
domain, the namelist.input file would be: 
 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-10 

 
 
 &tc 
 insert_bogus_storm = .true. 
 remove_storm = .false. 
 latc_loc = 25.0 
 lonc_loc = -75.0 
 vmax_meters_per_second = 61.7 
 rmax = 90000.0 
 vmax_ratio = 0.75 
 / 
 

Program tc.exe  
 
The program tc.exe is automatically built along with the rest of the ARW executables.  
This, however, is a serial program. For the time being, it is the best to build this program 
using serial and no-nesting options. 
 

Running tc.exe  
 
1) Run all of the WPS programs as normal (geogrid, ungrib, and metgrid). 
2) As usual, link-in the metgrid output files into either the test/em_real or the run 
directory. 
3) Edit the namelist.input file for usage with the tc.exe program. Add-in the 
required fields from the &tc record, and only process a single time period. 
4) Run tc.exe 
5) Rename the output file, auxinput1_d01_<date> to the name that the real.exe 
program expects, met_em.d01.<date>, note that this will overwrite your original 
metgrid.exe output file for the initial time period. 
6) Edit the namelist.input file to process all of the time periods for the real.exe 
program.  

 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-11 

v_interp  

This utility can be used to add vertical levels in WRF-ARW netCDF input. An example of 
the usage would be one-way nesting, via the program ndown. Since the program ndown 
does not do ‘vertical nesting’ prior to Version 3.2, namely adding vertical levels, this 
program can be used after running ndown to achieve the same results. Starting from 
Version 3.2, vertical levels may be added in the program ndown, via the namelist option 
‘vert_refine_fact’, which allows one to refine vertical levels by an integer factor. 
 
 
The v_interp utility program can be obtained from the WRF Download page: 
(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html) 
  
 

Compile  
 
The code should be easily built and ran on any machine with a netCDF library. To compile 
the code, use the compile flags shown at the top of the utility program. 
 
e.g., for a LINUX  machine and pgf90 compiler, one may type:  
 

pgf90 v_interp.f  -L/usr/local/netcdf/lib -lnetcdf \   
-I/usr/local/netcdf/include  \  
-Mfree  -o v_interp 

  
If successful, this will create the executable: v_interp 
 
 

Run  
  
Edit the namelist file namelist.v_interp (see namelist options below) for the number 
of new vertical levels (nvert) and the new set of levels (nlevels). To find out the 
existing model levels, check the original WRF namelist.input file used to create the 
input files, or type the following: 
 

ncdump –v ZNW wrfinput_d01 
 

The executable takes two arguments on the command line: 
 

./v_interp file file_new 
 
where file is the input file you want to add the vertical levels to, and file_new is the 
output file that contains more vertical levels. To run the program for wrfinput file, type 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-12 

 
./v_interp wrfinput_d01 wrfinput_d01_new 
 

For the wrfbdy file, type 
  

./v_interp wrfbdy_d01 wrfbdy_d01_new 
 

namelists: 
 

 
&newlevels 
nvert Number of new vertical levels (staggered) 
nlevels Values of new model levels 

 
 
Program Notes: 
 
When adding vertical levels, please keep the first- and the last-half levels the same as in 
the input file, itself. A problem may occur if levels are added outside the range. 
 
For the wrfbdy file, please keep the input file name as wrfbdy_* since the program keys-
in on the file name in order to do the interpolation for special boundary arrays. 
 
 
 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-13 

proc_oml.f  

This utility may be used to process 3D HYCOM (http://www.hycom.org) ocean model 
temperature data in netCDF format to produce initial ocean mixed layer depth field (H0ML) 
for use in a WRF simulation that uses the simple ocean mixed layer model option 
(omlcall = 1, and oml_hml0 < 0). The program estimates two fields from the HYCOM 
data: 1) effective mixed layer depth based on the idea of ocean heat content (H0ML); and 
2) mean ocean temperature in the top 200 m depth (TMOML). This is used as the lower limit 
for cooling SST’s in the wake of a hurricane. 
 
To download the proc_oml.f utility, please see: 
http://www2.mmm.ucar.edu/wrf/users/hurricanes/util.html 
 

Compile 
 
To compile the code, use the compile flags shown at the top of the utility program. 
For example, for a LINUX  machine and pgf90 compiler one may type:  
 
pgf90 proc_oml.f  -L/usr/local/netcdf/lib –lnetcdf \   

-I/usr/local/netcdf/include -Mfree  -o proc_oml.f 
  
If successful, this will create the executable: proc_oml 
 

Run  
  
To run the program, type 
 
./proc_oml ocean-data-file.nc yyyymmddhh 
 
where ‘ocean-data-file.nc’ is the HYCOM ocean data file, and yyyymmddhh is 
the 10-digit date when the data is valid for (e.g. 2005082700). Successfully running the 
program will produce an output file, MLD, which is in intermediate format as if it were 
produced by the WPS/ungrib program. 
 
To use this field in WPS/metgrid, add it to ‘constant_name’ as below: 
 
 constant_name = ‘MLD’, 
 
V3.2 WPS/metgrid has the additional fields in METGRID.TBL for proper horizontal 
interpolation. For more information, please refer to the following presentation, at  
http://www2.mmm.ucar.edu/wrf/users/tutorial/hurricanes/AHW_nest_ocean.pdf 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-14 

Tools 

Below is a list of tools that are freely available, and can be used very successfully to 
manipulate model data (both WRF model data, as well as other GRIB and netCDF 
datasets). 
  

Converting Graphics  
  

ImageMagick 
  
ImageMagick is a software suite to create, edit, and compose bitmap images. It can 
read, convert and write images in a variety of formats (over 100) including DPX, 
EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and TIFF. 
Use ImageMagick to translate, flip, mirror, rotate, scale, shear and transform 
images, adjust image colors, apply various special effects, or draw text, lines, 
polygons, ellipses and B_zier curves. 

  
The software package is freely available from, http://www.imagemagick.org. 
Download and installation instructions are also available from this site. 
  
Examples of converting data with ImageMagick software: 

convert  file.pdf file.png 
convert  file.png file.bmp  
convert  file.pdf  file.gif 
convert  file.ras file.png 

  
ImageMagick cannot convert ncgm (NCAR Graphics) file format to other file 
formats. 
  
  
Converting ncgm (NCAR Graphics) file format 
  
NCAR Graphics has tools to convert ncgm files to raster file formats. Once files 
are in raster file format, ImageMagick can be used to translate the files into other 
formats. 
  
For ncgm files containing a single frame, use ctrans.  

ctrans  -d sun  file.ncgm  file.ras 
 
For ncgm files containing multiple frames, first use med (metafile frame editor) and 
then ctrans. med will create multiple single frame files called medxxx.ncgm 

med -e '1,$ split $' file.ncgm 
ctrans  -d sun_ med001.ncgm > med001.ras 

 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-15 

 Basic Unix Commands  
 

The WRF model is run on any Unix/Linux machine. Some basic Unix commands 
are required to work in this environment. There are numerous web sites one can 
visit to learn more about basic and advanced Unix commands. A couple of basic 
Unix commands are listed below, as well as some web sites where users can obtain 
more information.  
 

mkdir / rmdir To make (mkdir) or remove (rmdir) directories. 
cd To change to a new directory. 
ls List the files and directories in a directory . 
ls -l Lists your files in 'long format', which contains lots of useful 

information, e.g. the exact size of the file, who owns the file and 
who has the right to look at it, and when it was last modified. 

ls –lrt Lists your files in 'long format', in order of time stamp, and 
reverse order. 

rm Remove files. 
more Shows the first part of a file, just as much as will fit on one 

screen. Just hit the space bar to see more or q to quit. 
cat Shows the entire file on the screen. 
head Shows the first couple of lines of a file on screen. 
tail Shows the last couple of lines of a file on screen. 
grep Find lines that match patterns in files. 
mv Rename or move a file. 
cp Copy a file to a different name or location. 
pwd Shows the directory path you are currently in. 
ln -sf Makes a symbolic (-s) link (ln) of a file. The file will appear to 

be in two locations, but is only physically in one location. (The 
–f option ensures that if the target file already exists, then it will 
first be unlink so that the link may occur correctly.) 

vi / emacs File editors. For new users, emacs may be an easier editor to 
work with, as vi requires some extra understanding to navigate 
between the command and insert modes, whereas emacs 
functions more like a conventional editor.  

 
http://mally.stanford.edu/~sr/computing/basic-unix.html 
http://pangea.stanford.edu/computing/unix/shell/commands.php  
http://www.math.harvard.edu/computing/unix/unixcommands.html  
http://www.washington.edu/computing/unix/unixqr.html  
http://en.wikipedia.org/wiki/List_of_Unix_utilities  
http://www.cs.colostate.edu/helpdocs/vi.html   
 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-16 

 

Design WRF model domains 
  

WPS/util/plotgrids.ncl 
Is an NCL script, which can either plot the domain on screen, or create a variety of 
different output types (pdf, ps, ncgm).   This script must be ran in the same directory 
where the namelist.wps resides. This script only works with NCL version 6.1.0 
or newer. If you still have an older version of NCL you can still use the 
plotgrids_old.ncl script.  
  
Read more about this utility in Chapter 3 of this Users Guide.  

  

Display ungrib (intermediate) files 
  

WPS/util/plotfmt.ncl 
Is an NCL script that can be used to display intermediate files created by 
WPS/ungrib.exe. 
  
If you have created intermediate files manually, it is a very good practice to use this 
utility to display the data in your files first before running WPS/metgrid.exe.  
Note: If you plan on manually creating intermediate files, refer to 
http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Basics/IM_files/index.html for 
detailed information about the file formats and sample programs. 
 
This script reads intermediate files and can output the graphics in a variety of 
different output formats (on the screen, pdf, ps, ncgm). The script requires NCL 
version 6.2.0 or newer. An input file much be supplied, e.g: 
 
     ncl plotfmt.ncl 'filename="FILE:2005-06-01_00"’ 
 
 
WPS/util/int2nc.exe, can be used to convert intermediate files created by 
WPS/ungrib.exe into netCDF files. 
 
WPS/util/plotfmt_nc.ncl 
Is an NCL script, which can plot the netCDF output files created by int2nc.exe.  
This script must be run in the same directory where the netCDF files reside.  The 
file to be plotted should be entered on the command line, e.g., 
 
ncl plotfmt_nc.ncl ‘inputFILE=”FILE:2005-06-01_00.nc”’ 
  
Read more about these utilities in Chapter 3 of this Users Guide. 

  



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-17 

netCDF data 
  

netCDF stands for network Common Data Form. 
Most of the information below can be used for WRF netCDF data, as well as other 
netCDF datasets. 
netCDF is one of the current supported data formats chosen for WRF I/O API.  
  
  
Advantages of using netCDF? 
Most graphical packages support netCDF file formats 
netCDF files are platform-independent (big-endian / little-endian)  
A lot of software already exists that can be used to process/manipulate netCDF data 
  
  
Documentation:  
http://www.unidata.ucar.edu/ (General netCDF documentation) 
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-f90/ (NETCDF User’s 
Guide for FORTRAN) 
  
  
Utilities: 
ncdump  
This is part of the netCDF libraries. Reads a netCDF file and prints information 
about the dataset. e.g. 

ncdump –h file  (print header information) 
ncdump –v VAR file  (print header information and the  

full field VAR) 
ncdump –v Times file   (a handy way to see how many  

times are available in a WRF output file) 
  

ncview 
Displays netCDF data graphically. No overlays, no maps and no manipulation of 
data possible. 
http://meteora.ucsd.edu/~pierce/ncview_home_page.html 

  
ncBrowse  
Displays netCDF data graphically. Some overlays, maps and manipulation of data 
are possible. 
http://www.epic.noaa.gov/java/ncBrowse/ 
  
read_wrf_nc 
A utility to display basic information about WRF netCDF files. 
  
iowrf 
A utility to do some basic file manipulation on WRF-ARW netCDF files.  
  



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-18 

p_interp 
A utility to interpolate WRF-ARW netCDF output files to user specified pressure 
levels. 
  
netCDF operators  
http://nco.sourceforge.net/  
Stand-alone programs that can be used to manipulate data (by performing grid point 
averaging / file differencing / file ‘appending’). A couple of available programs are 
listed below, see the above link for a list of all available programs. 
  
ncdiff 
Difference between two files; e.g. 
ncdiff  input1.nc input2.nc output.nc 

  
ncrcat  
Writes specified variables / times to a new file; e.g. 
ncrcat -v RAINNC wrfout* RAINNC.nc 
ncrcat -d Time,0,231 –v  RAINNC  wrfout* RAINNC.nc 

  
ncra  
Averages variables and writes to a new file; e.g.  
ncra -v OLR  wrfout* OLR.nc 
 

ncks (nc kitchen sink)  
Combination of NCO tools all in one (handy: one tool for multiple operations). An 
especially handy use of this tool is to split large files into smaller files, e.g.  
  ncks –A –F –d Time,1,1 wrfout* -o wrfout_time1.nc 

  

 



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-19 

GRIB data 
  

Documentation and Decoders 
Documentation and decoders for both GRIB1 and GRIB2 can be found here: 
http://rda.ucar.edu/#!GRIB  
Some of the utilities that are worth looking at is the unpackgrib2.c and grib2to1.c 
code. 
  
GRIB codes 
  
It is important to understand the GRIB codes to know which fields are available in 
your dataset. For instance, NCEP uses the GRIB1 code 33 for the U-component of 
the wind, and 34 for the V-component. Other centers may use different codes, so 
always obtain the GRIB codes from the center you get your data from.  
  
GRIB2 uses 3 codes for each field - product, category and parameter. 
We would most often be interested in product 0 (Meteorological products). 
Category refers to the type of field; e.g., category 0 is temperature, category 1 is 
moisture and category 2 is momentum. Parameter is the field number.  
So whereas GRIB1 only uses code 33 for the U-component of the wind, GRIB2 
will use 0,2,2, for the U-component, and 0,2,3 for the V-component.  
  
Display GRIB header/field information 

  
GRIB1 data 
WPS/util/g1print.exe  
wgrib  

  
GRIB2 data 
WPS/util/g2print.exe  
wgrib2  
 
Both wgrib and wgrib2 are available from the http://rda.ucar.edu/#!GRIB 
web site.  

  
Convert GRIB data to netCDF format 
ncl_grib2nc (http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml)   
 
Displaying GRIB files 
GRIB data can, amongst other, be displayed with GrADS with the use of the 
grib2ctl.pl script (http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html) 
and Panoply (http://www.giss.nasa.gov/tools/panoply/).  
 

  



UTILITIES AND TOOLS 
 

 
WRF-ARW V3: User’s Guide 10-20 

Model Verification  
 

MET is designed to be a highly configurable, state-of-the-art suite of verification tools. 
It was developed using output from the Weather Research and Forecasting (WRF) 
modeling system, but may be applied to the output of other modeling systems as well. 

 
MET provides a variety of verification techniques, including: 
• Standard verification scores, comparing gridded model data to point-based 

observations 
• Standard verification scores, comparing gridded model data to gridded observations 
• Object-based verification method, comparing gridded model data to gridded 

observations 
 

http://www.dtcenter.org/met/users/index.php  
  
 
 
 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-1 
 

  

 Appendix A: WRF-Fire  

Table of Contents 

• Introduction  
• WRF-Fire in idealized cases 
• Fire variables in namelist.input 
• namelist.fire 
• Running WRF-Fire on real data 
◦ Building the code 
◦ Fire variables in namelist.wps 
◦ Geogrid  
◦ Conversion to geogrid format 
◦ Editing GEOGRID.TBL 
◦ Ungrib and Metgrid 
◦ Running real case and WRF-Fire 

• Fire state variables  
• WRF-Fire software 
◦ WRF-Fire coding conventions 
◦ Parallel execution 
◦ Software layers 
◦ Initialization in idealized case 

 

Introduction 

A wildland fire module named WRF-Fire has been added to WRF ARW to allow users to 
model the growth of a wildland fire and the dynamic feedbacks with the atmosphere.  It is 
implemented as a physics package with two-way coupling between the fire behavior and 
the atmospheric environment allowing the fire to alter the atmosphere surrounding it, i.e. 
‘create its own weather’. Here we address the mechanics, options, parameters, and 
datasets for using this module. 

The wildland fire module is currently a simple two-dimensional model of a surface fire, 
that is, a fire that spreads through fuels on the ground, such as grass, shrubs, and the litter 
from trees that has fallen to the surface. It does not yet contain the algorithms needed to 
represent crown fires, which consume and spread through the tree canopies.  The user 
specifies the time, location, and shape of a fire ignition. The evolution of the fireline, the 
interface enclosing the burning region, is implemented by the level set method. The level 
set function is advanced by the Runge-Kutta method of order 2, with spatial discretization 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-2 
 

by the Godunov method.  The rate at which this interface expands is calculated at all 
points along it using a point-based semi-empirical formula for estimating the rate of 
spread of the surface fire based upon the Rothermel (1972) formula, which calculates the 
fire rate of spread as a function of local fuel conditions, wind, and terrain slope.  A semi-
empirical formula is used as a parameterization since turbulent combustion cannot be 
resolved at the spatial scales of atmospheric models; thus, all physical processes involved 
in propagating the fire are assumed to be represented in this relationship.  Importantly, 
the winds used to drive the fire are interpolated from nearby low-level wind velocities, 
which are themselves perturbed by the fire.  Once the fireline has passed by, the ignited 
fuel continues to burn - the mass of fuel is assumed to decay exponentially with time after 
ignition, the rate depending on the size of the fuel particles making up the fuel complex: 
fine fuels such as grass are consumed rapidly, while fuels with larger diameters such as 
twigs and downed logs are consumed slowly.  The fuel burned in each time step is 
converted to sensible and latent heat source terms for the lowest levels of the WRF 
atmospheric model state, where the water vapor source arises from the release of the 
intrinsic moisture in cellulosic fuels and the additional moisture absorbed by fuels from 
their environment, the fuel moisture content. The e-folding depth over which the heat and 
vapor distributed is set by the user, based on results from wildland fire measurements.   
The fire may not progress to locations where the local fuel moisture content is greater 
than the moisture content of extinction.  

Additional parameters and datasets beyond a standard WRF atmospheric simulation are 
required and are described here. The surface fuel available to be burned at each point is 
categorized using the Anderson classification system for “fuel models” (3 grass-
dominated types, 4 shrub-dominated types, 3 types of forest litter, and 3 levels of logging 
slash) which we will henceforth refer to as “fuel categories” to limit confusion. Each of 
these fuel categories is assigned a set of typical properties consisting of the fuel load (the 
mass per unit area) and numerous physical properties having to do with fuel geometry, 
arrangement, and physical makeup.  The user may make the fuels spatially homogeneous 
by using one fuel category for the whole domain, alter fuel properties, add custom fuel 
categories, or (for real data experiments) project a spatially heterogeneous map of fuel 
categories onto the domain from fuel mapping datasets. The user also sets the number of 
ignitions, their time, location, and shape, and the fuel moisture content, an important 
factor in fire behavior. 

One time step of the fire model is performed for every WRF time step. The fire model 
runs on a refined grid that covers the same region as the innermost WRF domain. The fire 
module supports both distributed and shared memory parallel execution. 

Other References 

• Users may wish to review Anderson’s fuel classification system (Anderson, H. E. 
1982. Aids to determining fuel models for estimating fire behavior. USDA For. 
Serv. Gen. Tech. Rep. INT-122, 22p. Intermt. For. and  Range Exp. Stn., Ogden, 
Utah 84401) at http://www.fs.fed.us/rm/pubs_int/int_gtr122.pdf  (verified 1/4/10). 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-3 
 

• The original report introducing Rothermel’s semi-empirical formulas (Rothermel, 
R. C.  1972.  A mathematical model for predicting fire spread in wildland 
fuels.   Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, 
Intermountain Forest and Range Experiment Station. 40 p.) is available at 
http://www.treesearch.fs.fed.us/pubs/32533  (verified 1/4/10). 

• The following paper describes the WRF-Fire module and applies WRF with 
WRF-Fire in simulations to test the sensitivity of fire growth to environmental 
factors such as wind speed, fuel load and moisture, and fuel model in the daytime 
convective boundary layer: 

Coen, J. L. , M. Cameron, J. Michalakes, E. Patton, P. Riggan, and K. Yedinak, 
2013: WRF-Fire: Coupled Weather-Wildland Fire Modeling with the Weather 
Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16-38. 
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-12-023.1 

 

WRF-Fire in idealized cases 

To perform a simulation including a fire, follow the installation instructions in Chapter 5 
to configure WRF and set up the environment.  For an idealized case, use  

./compile em_fire 

to build WRF for one of the several supplied ideal examples. This will create the links 
wrf.exe and ideal.exe in the directory test/em_fire.  

The directory test/em_fire contains two fire test cases - hill_simple and 
two_fires. The files necessary for running these are in the top-level em_fire 
directory.  To run a fire case, it will be necessary to have files named 
'namelist.input' and 'input_sounding' in the em_fire/ directory.  If you 
wish to use one of the provided test cases, you will need to link them to their generic 
names (for example, for the two_fires case): 

ln -sf namelist.input_two_fires namelist.input 

ln -sf input_sounding_two_fires input_sounding 

Currently the default namelist.input file is linked to the hill_simple case.  If 
you wish to make your own test case, you will simply need to create the files 
namelist.input and input_sounding that will correspond to your case (it is 
advised to start by modifying an existing copy from another case). 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-4 
 

Once you have the namelist.input and input_sounding linked to the correct 
case files, you can run by typing: 

./ideal.exe 

./wrf.exe 

The file namelist.input contains an additional section &fire with parameters of 
the fire model and ignition coordinates. The file namelist.fire contains an 
additional namelist used to enter custom fuel properties.  

 

Fire variables in namelist.input 

 
Variable names Value Description 
&domains  Domain definition 
sr_x 10 The fire mesh is 10 times finer than the 

innermost atmospheric mesh in the x 
direction. This number must be even. 

sr_y 10 The fire mesh is 10 times finer than the 
innermost atmospheric mesh in the y 
direction. This number must be even. 

&fire  Fire  ignition and fuel parameters 
ifire 0 No fires will be simulated. 
 1 Fires will be simulated, using the tracer 

scheme to represent the flaming front 
interface (not active). 

 2 Fires will be simulated, using the level set 
method to represent the movement of the 
interface. 

fire_fuel_read 0 How to set the fuel data 
-1: real data from WPS 

  0: set to a homogeneous  distribution of 
fire_fuel_cat everywhere 

  1: The spatial distribution of fuel categories 
is to be specified as a function of  terrain 
altitude. (The user specifies a custom 
function.) 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-5 
 

fire_num_ignitions 3 Number of ignition lines, max. 5 allowed 
fire_ignition_start_x1 1000. x coordinate of the start point of the ignition 

line 1. All ignition coordinates are given in m 
from the lower left corner of the innermost 
domain  

fire_ignition_start_y1 500. x coordinate of the start point of the ignition 
line 1 

fire_ignition_end_x1 1000. y coordinate of the end point of the ignition 
line 1. Point ignition (actually a small circle) 
is obtained by specifying the end point the 
same as the start point. 

fire_ignition_end_y1 1900.  y coordinate of the end point of the ignition 
line 1 

fire_ignition_radius1 18. Everything within 
fire_ignition_radius1 meters from 
the ignition location will be ignited. 

fire_ignition_time1 2. Time of ignition in s since the start of the run 
fire_ignition_start_x2 

… 
 Up to 5 ignition lines may be given. Ignition 

parameters with the number higher than 
fire_num_ignitions are ignored.  

fire_ignition_time5   
fire_print_msg 1 0: no messages from the fire scheme 

1: progress messages from the fire scheme 
fire_print_file 0 0: no files written (leave as is) 
  1: fire model state written every 10 s into 

files that can be read in Matlab.  
 
There are several more variables in the namelist for developers’ use only to further 
develop and tune the numerical methods. Do not alter unless directed to do so.  

 

namelist.fire 

This file serves to redefine the fuel categories if the user wishes to alter the default fuel 
properties. 
 
Variable names Description 
&fuel_scalars Scalar fuel constants 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-6 
 

cmbcnst The energy released per unit fuel burned for cellulosic fuels 
(constant, 1.7433e7 J kg-1). 

hfgl The threshold heat flux from a surface fire at which point a 
canopy fire is ignited above (in W m-2). 

fuelmc_g Surface fuel, fuel moisture content (in percent expressed in 
decimal form, from 0.00 – 1.00). 

nfuelcats Number of fuel categories defined (default: 13) 
no_fuel_cat The number of the dummy fuel category specified to be used 

where there is no fuel 
&fuel_categories Domain specifications 
fgi The initial mass loading of surface fuel (in kg m-2) in each fuel 

category 
fueldepthm Fuel depth (m) 
savr Fuel surface-area-to-volume-ratio (m-1) 
fuelmce Fuel moisture content of extinction (in percent expressed in 

decimal form, from 0.00 – 1.00). 
fueldens Fuel particle density lb ft-3 (32 if solid, 19 if rotten) 
st Fuel particle total mineral content. (kg minerals/kg wood) 
se Fuel particle effective mineral content. (kg minerals – kg 

silica)/kg wood 
weight Weighting parameter that determines the slope of the mass loss 

curve. This can range from about 5 (fast burn up) to 1000 (i.e. a 
40% decrease in mass over 10 minutes). 

ichap Is this a chaparral category to be treated differently using an 
empirical rate of spread relationship that depends only on wind 
speed? (1: yes, this is a chaparral category and should be 
treated differently; 0: no, this is not a chaparral category or 
should not be treated differently). Primarily used for Fuel 
Category 4. 

  
  
  

 

 

Running WRF-Fire on real data 

Building the code 

Running WRF with real data is a complicated process of converting data formats and 
interpolating to the model grid.  This process is simplified by the WRF Preprocessing 
System (WPS).  The purpose of this section is to summarize the use of this system and to 
highlight the differences in its use between fire and ordinary atmospheric simulations.  



FIRE 
 

 
WRF-ARW V3: User’s Guide A-7 
 

For more complete documentation of WPS, see Chapter 3 of the WRF-ARW User’s 
Guide. 
 
WPS consists of three utility programs: geogrid.exe, ungrib.exe, and 
metgrid.exe.  Each program is designed to take existing data sets and 
convert/interpolate them into an intermediate format.   The build system for WPS is 
similar to that of WRF.  NetCDF must be installed and the environment variable 
NETCDF should be set to the installation prefix.  Run the configure script in the main 
WPS directory, pick a configuration option from the list, and then run compile.  Note that 
WRF itself must be built prior to compiling WPS.  In addition, the build process assumes 
that WRF exists in ../WRFV3/.  WRF should be configured as described in Section 3 
and compiled with the command 
 
./compile em_real >& compile.log 
 
The WPS can be configured from inside the top level directory wrf-fire/WPS with the 
command  
 
./configure 
 
and compiled in the same directory with the command 
 
./compile >& compile.log 
 
Upon successful completion the three binaries listed above should exist in the current 
directory. 
Because the WPS programs are, for the most part, not processor intensive, it is not 
generally necessary to compile these programs for parallel execution, even if they do 
support it.  Typical usage of WRF with real data involves doing all of the preprocessing 
work either locally on a workstation or on the head node of a supercomputer.  The 
intermediate files are all architecture independent, so they can be transferred between 
computers safely.  If you intend to use a supercomputer for the main simulation, it is 
advisable to generate the WPS output locally and transfer the met_em files to the 
computer you will be using for WRF-Fire.  The met_em files are much smaller than the 
wrfinput and wrfbdy files and can be transported easily.  This also eases the process of 
dealing with the dependencies of the python scripts described below because it may not 
be easy or even possible to meet these requirements on a shared parallel computer. 

 

Fire variables in namelist.wps 

The simulation domain is described in the file namelist.wps.  This namelist contains 
four sections, one for each of the main binaries created in WPS and one shared among 
them all.  This file, as distributed with WRF-Fire, is set up for a test case useful for 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-8 
 

testing, but in general one needs to modify it for each simulation domain.  The following 
table lists namelist options that can be modified.  Other options in this file are generally 
not necessary to change for WRF-Fire simulations.  See the WRF-ARW User’s Guide for 
more information. 
 
Variable names Description 
&share Shared name list options 
max_dom Number of nested domains to use 
start_date/end_dat
e 

Starting/ending date and time to process atmospheric data in 
the format YYYY-MM-DD_hh:mm:ss.  These times should 
coincide with reanalysis cycles for your atmospheric data 
(hours 00,03,06,09,12, etc. for 3 hour NARR data).  The 
simulation window in which you are interested in running must 
be inside this interval. 

Subgrid_ratio_[xy] The refinement ratio from the atmospheric grid to the fire grid. 
interval_seconds Number of seconds between each atmospheric dataset.  (10800 

for 3 hour NARR data) 
&geogrid Domain specifications 
parent_id When using nested grids, the parent of the current grid, or 0 if it 

is the highest level. 
parent_grid_ratio The refinement ratio from the parent grid (ignored for top level 

grid) (only 3 or 5 is supported by WRF) 
[ij]_parent_start The indices on the parent grid of the lower left corner of the 

current grid (ignored for top-level grid) 
E_we/e_sn The size of the grid in the x/y axis 
dx/dy Resolution of the grid in the x/y axis 
map_proj, 
true_lat[12], 
stand_lon 

Projection specifications.  Lambert is typically used for central 
latitudes such as the continental US.   For small domains, the 
projection used does not matter much. 

ref_x/ref_y Grid index of a reference point with known geographic 
location.  Defaults to the center of the domain. 

ref_lon/ref_lat The location (longitude/latitude) of the reference point. 
geog_data_path Absolute or relative path to geogrid data released with WPS 

(http://www2.mmm.ucar.edu/wrf/src/wps_files/geog_v3.1.tar.g
z) 

Geogrid  

The geogrid executable acts exclusively on static datasets (those that don’t change from 
day to day) such as surface elevation and land use.  Because these datasets are static, they 
can be obtained as a single set of files from the main WPS distribution website in 
resolutions of 10 minutes, 2 minutes, and 30 seconds.  The geogrid executable extracts 
from these global data sets what it needs for the current domain.  While resolutions of 
this magnitude are acceptable for ordinary atmospheric simulations, these datasets are too 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-9 
 

coarse for a high-resolution fire simulation.  In particular, a WRF-Fire simulation will 
require two additional data sets not present in the standard data. 

 
NFUEL_CAT 

The variable NFUEL_CAT contains Anderson 13 fuel category data.  This data can be 
obtained for the US from the USGS seamless data access server at: 
http://landfire.cr.usgs.gov/viewer/.  Using the zooming and panning controls, the user can 
select the desired region with LANDFIRE 13 Anderson Fire Behavior Fuel Models box 
selected.  This will open a new window where the user can request the data in specific 
projections and data formats. 
 

ZSF 
The variable ZSF contains high resolution terrain height information similar to that in the 
HGT variable present in atmospheric simulations; however, the standard topographical 
data set is only available at a maximum resolution of 30 arc seconds (about 900 meters).  
For a simulation using the WRF-Fire routines, data resolution of at least 1/3 of an arc 
second is desirable to include the effect of local terrain slope on the rate of spread.  Such 
a dataset is available for the US at http://seamless.usgs.gov/.  This is another USGS 
seamless data access server similar to that of LANDFIRE.  The desired dataset on this 
server is listed under elevation and is called 1/3” NED.   

Conversion to geogrid format 

Once one has collected the necessary data from USGS servers or elsewhere, it is 
necessary to convert it from the given format (such as geotiff, Arcgrid, etc.) into geogrid 
format.  The format specification of the geogrid format is given in the WPS section of the 
WRF users guide.  The process of this conversion is somewhat technical; however, work 
is in progress to automate it.   

Editing GEOGRID.TBL 

In order to include your custom data into the WPS output, you must add a description of 
it in the GEOGRID.TBL file, which is located, by default, in the geogrid subdirectory of 
the main WPS distribution.  In addition to the standard options described in the WPS 
users guide, there is one additional option that is necessary for defining data for fire grid 
variables.  For them, there is a subgrid option, which is off by default.  For fire grid data, 
one should add the option subgrid=yes to indicate that the variable should be defined on a 
refined subgrid with a refinement ratio defined by the subgrid_ratio_[xy] option in the 
WPS namelist.  For example, typical table entries would appear as follows: 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-10 
 

 
This table assumes that the converted data resides as a subdirectory of the standard data 
directory given in the namelist under the option geog_data_path.  The NFUEL_CAT data 
should reside in landfire/ and ZSF in highres_elev/.  In general, the only options that 
should be modified by the user are the rel_path or abs_path options. 
Once the data has been obtained and converted and the geogrid table has been properly 
set up, the user can run: 
./geogrid.exe 
which will create files such as geo_em.d01.nc that contain the interpolated static data 
fields. 

Ungrib and Metgrid 

The ungrib executable performs initial processing on atmospheric data.  There are many 
different datasets that can be used as input to ungrib.  One must obtain this data manually 
for a given simulation.  Because fire simulations will be at a much higher resolution than 
most atmospheric simulations, it is advisable to get as high resolution data as possible.  
The 32 km resolution data from the North American Regional Reanalysis (NARR) is 
likely a good choice.  This data is available freely from 
https://dss.ucar.edu/datazone/dsszone/ds608.0/NARR/3HRLY_TAR/.  For real data WRF 
runs, three individual datasets from this website are required: 3d, flx, and sfc.  To use 
them, download the files for the appropriate date/time and extract them somewhere on 
your file system.  The files have the naming convention, NARR3D_200903_0103.tar.  
NARR indicates it comes from the NARR model, 3D indicates that it is the atmospheric 
data fields, and 200903_0103 indicates that it contains data from March 1st through 3rd of 
2009.  Once these files are extracted, they must be linked into the main WPS directory 
with the command link_grib.csh.  It takes as arguments all of the files extracted from the 
dataset.  For example, if you extracted these files to /home/joe/mydata, then you 
would issue the command:  

=============================== 
name=NFUEL_CAT 
        priority=1 
        dest_type=categorical 
        dominant_only=NFUEL_CAT 
        z_dim_name=fuel_cat 
        halt_on_missing=yes 
        
interp_option=default:nearest_neighbor+average_16pt+search 
        rel_path=default:landfire/ 
        subgrid=yes 
============================== 
name = ZSF 
        priority = 1 
        dest_type = continuous 
        halt_on_missing=yes 
        interp_option = default:four_pt 
        rel_path=default:highres_elev/ 
        subgrid=yes 
============================== 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-11 
 

 
./link_grib.csh /home/joe/mydata/*  
into the top level WPS directory.  Each atmospheric dataset requires a descriptor table 
known as a variable table to be present.  WPS comes with several variable tables that 
work with most major data sources.  These files reside in 
WPS/ungrib/Variable_Tables/.  The appropriate file must be linked into the top 
level WPS directory as the file Vtable.  For NARR data, type:  
 
ln –sf ungrib/Variable_Tables/Vtable.NARR Vtable 
 
Once this has been done, everything should be set up properly to run the ungrib 
command: 
 
./ungrib.exe 
 
Finally, the program metgrid combines the output of ungrib and geogrid to create a series 
of files, which can be read by WRF’s real.exe.  This is accomplished by 
 
./metgrid.exe 
 
Assuming everything completed successfully, you should now have a number of files 
named something like met_em.d01.2009-03-01_12:00:00.nc.  These should 
be copied or linked to your WRFV3/test/em_real directory.  If any errors occur 
during execution of ungrib or metgrid, then make sure you have downloaded all of the 
necessary atmospheric data and that the variable table and namelist are configured 
properly.   

 

Running real case and WRF-Fire 

First copy or link the met_em files generated by metgrid into test/em_real.  If the 
simulation is being done locally, this can be accomplished by running in wrf-
fire/WRFV3/test/em_real 
 
ln –sf ../../../WPS/met_em* . 
 
The namelist for WRF in the file namelist.input must now be edited to reflect the 
domain configured in WPS.  In addition to the fire-specific settings listed in Section 4.3 
regarding the ideal simulation, a number of other settings must be considered as listed 
below.  See Chapter 5 for more details on these settings. 
 
Variable Description 
&time_control  



FIRE 
 

 
WRF-ARW V3: User’s Guide A-12 
 

start_xxx/end_xxx These describe the starting and ending date and time 
of the simulation.  They must coincide with the 
start_date/end_date given in namelist.wps. 

run_xxx The amount of time to run the simulation. 
interval_seconds Must coincide with interval seconds from 

namelist.wps. 
restart_interval A restart file will be generated every x minutes.  The 

simulation can begin from a restart file rather than 
wrfinput.  This is controlled by the namelist variable 
‘restart’. 

&domains All grid settings must match those given in the 
geogrid section of namelist.wps. 

num_metgrid_levels The number of vertical levels of the atmospheric data 
being used.  This can be determined from the met_em 
files: 
ncdump -h met_em* | grep 
'num_metgrid_levels =' 

sr_x/sr_y Fire grid refinement.  This must match that given in 
namelist.wps as subgrid_ratio_x/subgrid_ratio_y. 

p_top_requested The default is 5000, but may need to be edited if there 
is an error executing real.  If so, just set this to 
whatever it tells you in the error message. 

 
Once the namelist is properly configured, run the real executable: 
 
./real.exe 
 
and then run wrf: 
 
./wrf.exe 

Fire state variables  

A number of array variables were added to the registry to the WRF state in order to 
support the fire model. They are available in the wrfout* files created when running 
WRF. All fire array variables are based at the centers of the fire grid cells. Their values in 
the strips at the upper end of width sr_x in the x direction and sr_y in the y direction 
are unused and are set to zero by WRF. 
 
The following variables can be used to interpret the fire model output.  
 
LFN level set function. Node (i,j) is on fire if 

LFN(i,j)<=0 
FXLONG, FXLAT longitude and latitude of the nodes 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-13 
 

FGRNHFX ground heat flux from the fire (W/m2), 
averaged over the cell 

FGRNQFX ground heat flux from the fire (W/m2), 
averaged over the cell 

ZSF terrain elevation above sea level (m) 
UF,VF surface wind 
FIRE_AREA approximate part of the area of the cell that 

is on fire, between 0 and 1 

 

WRF-Fire software 

This section is intended for programmers who wish to modify or extend the fire module.  

WRF-Fire coding conventions 

The fire module resides in WRF physics layer and conforms to WRF Coding 
Conventions. The wildland fire-related subroutines maintain the conventions as they 
apply to on atmospheric grids, adapts them to 2D surface-based computations, and 
follows analogous conventions on the fire grid. In particular, these routines may not 
maintain any variables or arrays that persist between calls, and may not use common 
blocks, allocatable variables, or pointer variables. Work arrays with variable bounds may 
be declared only as automatic; thus, they are freed between on exit from the subroutine 
where they are declared. All grid-sized arrays that should persist between calls to the 
wildland fire-related subroutines must be created in WRF through the registry 
mechanism, and passed to these as arguments. 
 
In addition, the wildland fire-related subroutines may not call any WRF routines directly 
but only through a utility layer. All variables in the wildland fire-related subroutines are 
based at grid centers. Grid dimensions are passed in argument lists as 
 
ifds,ifde,jfds,jfde, & ! fire domain dims 
ifms,ifme,jfms,jfme, & ! fire memory dims 
ifps,ifpe,jfps,jfpe, & ! fire patch dims (may be omitted) 
ifts,ifte,jfts,jfte, & ! fire tile dims 
 
Atmosphere grid 2D variables are declared with dimension(ims:ime, jms:jme). 
Fire grid variables are declared with dimension(ifms:ifme, jfms:jfme). 
Loops on the fire grid are always over a tile. The index variable names, the order of the 
loops, and the bounds are required exactly as in the code fragment below.  
do j=jfts,jfte 

do i=ifts,ifte 
         fire_variable(i,j)=…      



FIRE 
 

 
WRF-ARW V3: User’s Guide A-14 
 

 
In loops that need to index more than one grid at the same time (such as computations on 
a submesh, or interpolation between atmosphere and fire) the index variable names must 
always begin with i j. 
 
 

Parallel execution 

In these routines, all computational subroutines are called from a thread that services a 
single tile. There is no code running on a patch. Loops may update only array entries 
within in the tile but they may read other array entries in adjacent tiles, for example for 
interpolation or finite differences. The values of arrays that may be read between adjacent 
tiles are synchronized outside of the computational routines. Consequently, the values of 
a variable that was just updated may be used from an adjacent tile only in the next call to 
the computational subroutines, after the required synchronization was done outside.  
Synchronization within a patch is by exiting the OpenMP loop. Synchronization of the 
values between patches is by explicit HALO calls on the required variables and with the 
required width. HALOs are provided by the WRF infrastructure and specified in the 
registry.  
 
The overall structure of the parallelism is spread over multiple software layers, 
subroutines and source files. The computation is organized in stages, controlled by the 
value of ifun. 
 
! the code executes on a single patch 
! if distributed memory, we are one of the MPI processes 
 
do ifun=ifun_start,ifun_end ! what to do 
 
  if(ifun.eq.1)then  ! this HALO needed before stage ifun=1 

#include "SOME_HALO.inc" ! communicate between patches 
  endif 
... 
!$OMP PARALLEL DO  
  do ij=1,num_tiles ! parallel loop over tiles 
 
 if(ifun.eq.1)then   ! one of the initialization stages 
  call some_atmosphere_to_fire_interpolation(…) 
 endif 
 ... 
 call fire_model(…,ifun,…) ! call the actual model 
     ! for some values of ifun, fire_model may do nothing 
 
 if(ifun.eq.6)then   ! fire step done 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-15 
 

  call some_fire_to_atmosphere_computation(…) 
 endif 
 
  enddo ! end parallel loop over tiles 
  ! array variables are synchronized between tiles now 
 
enddo ! end ifun loop 

Software layers 

The wildland fire-related subroutines are called from WRF file 
dyn_em/module_first_rk_step_part1. The output of these routines (the heat 
and moisture tendencies) are stored on exit from these routines and added to the 
tendencies in WRF later in a call to update_phy_ten from 
dyn_em/module_first_rk_step_part2 
The wildland fire-related subroutines themselves consist of  the following files in the 
phys directory, each constituting a distinct software layer: 
 
module_fr_fire_driver.F Fire driver layer. These subroutines are called 
directly from WRF. All parallelism is contained here. The rest of the routines are  called 
on a single tile. 
 
module_fr_fire_atm.F Atmosphere-fire interaction layer. These routines are 
the interface between the fire and the atmosphere and interpolate between them.  
 
module_fr_fire_model.F Fire front representation and advancement layer. 
This routine calls the core and the physics layers.  Formulated in terms of the fire grid 
only, it is intended to be independent of particular mathematical methods used in the core 
layer. 
 
module_fr_fire_core.F Core layer: This contains numerical algorithms for fire 
front advancement and the rate of fuel consumption calculation. It calls the physics layer 
for the fire spread rate. 
 
module_fr_fire_phys.F Fire physics layer. This contains algorithms for 
calculating the rate of spread of the fire front in terms of the fire environment and 
associated initialization.  
 
module_fr_fire_util.F Utilities layer.  This layer is used by all other layers. It 
declares scalar switches and parameters and contains all interpolation and other service 
routines that may be general in nature  and the interface to WRF routines such as 
messages and error exits. To maintain independence in WRF, this is the only layer that 
may call any WRF routines. 
 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-16 
 

fr_fire_params_args.h This include file contains subroutine argument lists to 
pass through all arguments that are needed in the fire rate of spread algorithm in the 
physics layer. It is only necessary to write this long argument list once given the WRF 
requirement that arrays may be passed as arguments only, and not shared globally, say, as 
pointers. Also, it maintains the independence of the core layer from the physics layer and 
the modularity of the wildland fire-related subroutines in WRF. 
 
fr_fire_params_decl.h Include file with the matching declarations. 
 

Initialization in idealized case 

The initialization of model arrays in the idealized case is done in the file  
dyn_em/module_initialize_fire.F 
 
This file was adapted from other initialization files in the same directory and extended to 
deal with wildland fire-related variables.  
 
a. Vertically stretched grid 

 
Because of the fine meshes used in fire modeling, the user may wish to search for the text 
grid%znw(k) and modify the following loop to assure a desired refinement of the 
vertical atmospheric grid near the Earth surface: 

 
DO k=1, kde 

grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) &  
- exp(-1./z_scale))/(1.-exp(-1./z_scale) 

ENDDO 
 

b Topography 

The relevant code is found by searching for the text 
 
!******* set terrain height 
 
The terrain height needs to be set consistently in the atmosphere model in the array 
grid%ht and in the fire model array grid%zsf at the finer resolution.  In the supplied 
examples, controlled by namelist.input variables fire_mountain_type, 
fire_mountain_start_x, fire_mountain_start_y, 
fire_mountain_end_x, fire_mountain_end_y, and 
fire_mountain_height, both arrays are set consistently from an algebraic formula 
(a cosine hill or a cosine ridge).  
 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-17 
 

It is possible, though not recommended, to set only grid%ht and have the fire module 
interpolate the terrain height from the atmosphere mesh by specifying 
fire_topo_from_atm=1 in namelist.input. This will result in blocky terrain with 
discontinuous terrain gradients, which will affect fire spread patterns. 
 
Note that in a real run, the user should leave fire_topo_from_atm=0 and both 
terrain height arrays are set consistently at the best available resolution from the WPS. 
 
The user should not modify the code immediately after the setting of the terrain height 
arrays, which initializes a number of atmosphere variables consistently with the terrain 
height. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FIRE 
 

 
WRF-ARW V3: User’s Guide A-18 
 

 
 



!



!


