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Chapter 1

Introduction

The development of the Weather Research and Forecasting (WRF) modeling system is a multi-
agency effort intended to provide a next-generation mesoscale forecast model and data assim-
ilation system that will advance both the understanding and prediction of mesoscale weather
and accelerate the transfer of research advances into operations. The model is being devel-
oped as a collaborative effort among the NCAR Mesoscale and Microscale Meteorology (MMM)
Division, the National Oceanic and Atmospheric Administration’s (NOAA) National Centers
for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department
of Defense’s Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the
Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the
Federal Aviation Administration (FAA), along with the participation of a number of university
scientists.

The WRF model is designed to be a flexible, state-of-the-art, portable code that is efficient
in a massively parallel computing environment. A modular single-source code is maintained
that can be configured for both research and operations. It offers numerous physics options,
thus tapping into the experience of the broad modeling community. Advanced data assimilation
systems are being developed and tested in tandem with the model. WRF is maintained and
supported as a community model to facilitate wide use, particularly for research and teaching,
in the university community. It is suitable for use in a broad spectrum of applications across
scales ranging from meters to thousands of kilometers. Such applications include research and
operational numerical weather prediction (NWP), data assimilation and parameterized-physics
research, downscaling climate simulations, driving air quality models, atmosphere-ocean cou-
pling, and idealized simulations (e.g boundary-layer eddies, convection, baroclinic waves). With
WRF as a common tool in the university and operational centers, closer ties will be promoted
between these communities, and research advances will have a direct path to operations. These
hallmarks make the WRF modeling system unique in the history of NWP in the United States.

The principal components of the WRF system are depicted in Figure 1.1. The WRF Software
Framework (WSF) provides the infrastructure that accommodates multiple dynamics solvers,
physics packages that plug into the solvers through a standard physics interface, programs
for initialization, and the WRF variational data assimilation (WRF-Var) system. As of this
writing there are two dynamics solvers in the WSF: the Advanced Research WRF (ARW) solver
(originally referred to as the Eulerian mass or “em” solver) developed primarily at NCAR,
and the NMM (Nonhydrostatic Mesoscale Model) solver developed at NCEP, which will be
documented and supported to the community by the Developmental Testbed Center (DTC).

1



Obs Data,
Analyses,
Forecast

Post Processors,
Verification

WRF Software Framework

Standard Physics Interface

Physics Packages

Dynamics Solvers

ARW Solver

NMM Solver
…

Initialization

WRF-Var

Figure 1.1: WRF system components.

While there are multiple solvers, and while not all physics are available to both solvers, the
WSF is common to all components.

1.1 Advanced Research WRF

The ARW system consists of the ARW dynamics solver together with other components of the
WRF system needed to produce a simulation. Thus, it also encompasses physics schemes, ini-
tialization routines, and a data assimilation package. The ARW shares the WSF, the framework
common to all WRF modeling system components, including the NMM solver. Similarly, the
physics packages are available to both the ARW and NMM solvers. In this vein, it should be
understood that the association of a component of the WRF system with the ARW does not
preclude it from being a component of any other WRF configuration. The following section
highlights the major features of the ARW system, Version 2, and reflects elements of WRF
Version 2, which was first released in May 2004.

This technical note will focus on the scientific and algorithmic approaches in the ARW.
Discussed are the ARW solver, available physics options, initialization capabilities, boundary
conditions, and grid-nesting techniques. The WSF provides the software infrastructure for all
WRF configurations and is documented separately (Michalakes et al., 1999, 2004). The WRF-
Var program, a component of the broader WRF system, has been adapted from MM5 3DVAR
(Barker et al., 2004) and is encompassed within the ARW. As a separate document detailing the
broader WRF-Var system will be forthcoming, this technical note will focus on a summary of
the changes and updates implemented to adapt this data assimilation capability from the MM5
to WRF. For those seeking information on running the ARW modeling system, details on its
use are contained in the ARW User’s Guide (Wang et al., 2004).

2



1.2 Major Features of the ARW System

ARW Solver

• Equations: Fully compressible, Euler nonhydrostatic with a run-time hydrostatic option
available. Conservative for scalar variables.

• Prognostic Variables: Velocity components u and v in Cartesian coordinate, vertical velocity
w, perturbation potential temperature, perturbation geopotential, and perturbation sur-
face pressure of dry air. Optionally, turbulent kinetic energy and any number of scalars
such as water vapor mixing ratio, rain/snow mixing ratio, and cloud water/ice mixing
ratio.

• Vertical Coordinate: Terrain-following hydrostatic-pressure, with vertical grid stretching per-
mitted. Top of the model is a constant pressure surface.

• Horizontal Grid: Arakawa C-grid staggering.
• Time Integration: Time-split integration using a 3rd order Runge-Kutta scheme with smaller

time step for acoustic and gravity-wave modes.
• Spatial Discretization: 2nd to 6th order advection options in horizontal and vertical.
• Turbulent Mixing and Model Filters: Sub-grid scale turbulence formulation in both coordi-

nate and physical space. Divergence damping, external-mode filtering, vertically implicit
acoustic step off-centering. Explicit filter option also available.

• Initial Conditions: Three dimensional for real-data, and one-, two- and three-dimensional
using idealized data. A number of test cases are provided.

• Lateral Boundary Conditions: Periodic, open, symmetric, and specified options available.
• Top Boundary Conditions: Gravity wave absorbing (diffusion or Rayleigh damping). w = 0

top boundary condition at constant pressure level.
• Bottom Boundary Conditions: Physical or free-slip.
• Earth’s Rotation: Full Coriolis terms included.
• Mapping to Sphere: Three map projections are supported for real-data simulation: polar

stereographic, Lambert-conformal, and Mercator. Curvature terms included.
• Nesting: One-way, two-way, and moving nests.

Model Physics

• Microphysics: Bulk schemes ranging from simplified physics suitable for mesoscale modeling
to sophisticated mixed-phase physics suitable for cloud-resolving modeling.

• Cumulus parameterizations: Adjustment and mass-flux schemes for mesoscale modeling in-
cluding NWP.

• Surface physics: Multi-layer land surface models ranging from a simple thermal model to full
vegetation and soil moisture models, including snow cover and sea ice.

• Planetary boundary layer physics: Turbulent kinetic energy prediction or non-localK schemes.
• Atmospheric radiation physics: Longwave and shortwave schemes with multiple spectral

bands and a simple shortwave scheme. Cloud effects and surface fluxes are included.

3



WRF-Var System

• Incremental formulation of the model-space cost function.
• Quasi-Newton or conjugate gradient minimization algorithms.
• Analysis increments on un-staggered Arakawa-A grid.
• Representation of the horizontal component of background error B via recursive filters (re-

gional) or power spectra (global). The vertical component is applied through projection
onto climatologically-averaged eigenvectors of vertical error. Horizontal/vertical errors are
non-separable (horizontal scales vary with vertical eigenvector).

• Background cost function (Jb) preconditioning via a control variable transform U defined as
B = UUT .

• Flexible choice of background error model and control variables.
• Climatological background error covariances estimated via either the NMC-method of aver-

aged forecast differences or suitably averaged ensemble perturbations.
• Unified 3D-Var (4D-Var under development), global and regional, multi-model capability.

WRF Software Framework

• Highly modular, single-source code for maintainability.
• Portable across a range of available computing platforms.
• Support for multiple dynamics solvers and physics modules.
• Separation of scientific codes from parallelization and other architecture-specific codes.
• Input/Output Application Program Interface (API) enabling various external packages to be

installed with WRF, hence allowing WRF to easily support various data formats.
• Efficient execution on a range of computing platforms (distributed and shared memory, vector

and scalar types).
• Use of Earth System Modeling Framework (ESMF) timing package.
• Model coupling API enabling WRF to be coupled with other models such as ocean, and land

models.
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Chapter 2

Governing Equations

The ARW dynamics solver integrates the compressible, nonhydrostatic Euler equations. The
equations are cast in flux form using variables that have conservation properties, following the
philosophy of Ooyama (1990). The equations are formulated using a terrain-following mass
vertical coordinate (Laprise, 1992). In this chapter we define the vertical coordinate and present
the flux form equations in Cartesian space, we extend the equations to include the effects of
moisture in the atmosphere, and we further augment the equations to include projections to the
sphere.

2.1 Vertical Coordinate and Variables

η

1.0

0.8

0.6

0.4

0.2

0
P

ht
 = constant

P
hs

Figure 2.1: ARW η coordinate.

The ARW equations are formulated using a
terrain-following hydrostatic-pressure vertical co-
ordinate denoted by η and defined as

η = (ph−pht)/µ where µ = phs−pht. (2.1)

ph is the hydrostatic component of the pressure,
and phs and pht refer to values along the surface
and top boundaries, respectively. The coordinate
definition (2.1), proposed by Laprise (1992), is
the traditional σ coordinate used in many hydro-
static atmospheric models. η varies from a value
of 1 at the surface to 0 at the upper boundary of
the model domain (Fig. 2.1). This vertical coor-
dinate is also called a mass vertical coordinate.

Since µ(x, y) represents the mass per unit area
within the column in the model domain at (x, y),
the appropriate flux form variables are

V = µv = (U, V,W ), Ω = µη̇, Θ = µθ. (2.2)

v = (u, v, w) are the covariant velocities in the
two horizontal and vertical directions, respec-
tively, while ω = η̇ is the contravariant ‘vertical’
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velocity. θ is the potential temperature. Also appearing in the governing equations of the ARW
are the non-conserved variables φ = gz (the geopotential), p (pressure), and α = 1/ρ (the inverse
density).

2.2 Flux-Form Euler Equations

Using the variables defined above, the flux-form Euler equations can be written as

∂tU + (∇ ·Vu)− ∂x(pφη) + ∂x(pφx) = FU (2.3)

∂tV + (∇ ·Vv)− ∂y(pφη) + ∂y(pφy) = FV (2.4)

∂tW + (∇ ·Vw)− g(∂ηp− µ) = FW (2.5)

∂tΘ + (∇ ·Vθ) = FΘ (2.6)

∂tµ+ (∇ ·V) = 0 (2.7)

∂tφ+ µ−1[(V · ∇φ)− gW ] = 0 (2.8)

along with the diagnostic relation for the inverse density

∂ηφ = −αµ, (2.9)

and the equation of state
p = p0(Rdθ/p0α)γ. (2.10)

In (2.3) – (2.10), the subscripts x, y and η denote differentiation,

∇ ·Va = ∂x(Ua) + ∂y(V a) + ∂η(Ωa),

and
V · ∇a = U∂xa+ V ∂ya+ Ω∂ηa,

where a represents a generic variable. γ = cp/cv = 1.4 is the ratio of the heat capacities for dry
air, Rd is the gas constant for dry air, and p0 is a reference pressure (typically 105 Pascals). The
right-hand-side (RHS) terms FU , FV , FW , and FΘ represent forcing terms arising from model
physics, turbulent mixing, spherical projections, and the earth’s rotation.

The prognostic equations (2.3) – (2.8) are cast in conservative form except for (2.8) which
is the material derivative of the definition of the geopotential. (2.8) could be cast in flux form
but we find no advantage in doing so since µφ is not a conserved quantity. We could also
use a prognostic pressure equation in place of (2.8) (see Laprise, 1992), but pressure is not a
conserved variable and we could not use a pressure equation and the conservation equation for Θ
(2.6) because they are linearly dependent. Additionally, prognostic pressure equations have the
disadvantage of possessing a mass divergence term multiplied by a large coefficient (proportional
to the sound speed) which makes spatial and temporal discretization problematic. It should be
noted that the relation for the hydrostatic balance (2.9) does not represent a constraint on the
solution, rather it is a diagnostic relation that formally is part of the coordinate definition. In the
hydrostatic counterpart to the nonhydrostatic equations, (2.9) replaces the vertical momentum
equation (2.5) and it becomes a constraint on the solution.
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2.3 Inclusion of Moisture

In formulating the moist Euler equations, we retain the coupling of dry air mass to the prognostic
variables, and we retain the conservation equation for dry air (2.7), as opposed to coupling the
variables to the full (moist) air mass and hence introducing source terms in the mass conservation
equation (2.7). Additionally, we define the coordinate with respect to the dry-air mass. Based
on these principles, the vertical coordinate can be written as

η = (pdh − pdht)/µd (2.11)

where µd represents the mass of the dry air in the column and pdh and pdht represent the
hydrostatic pressure of the dry atmosphere and the hydrostatic pressure at the top of the dry
atmosphere. The coupled variables are defined as

V = µdv, Ω = µdη̇, Θ = µdθ. (2.12)

With these definitions, the moist Euler equations can be written as

∂tU + (∇ ·Vu)η + µdα∂xp+ (α/αd)∂ηp∂xφ = FU (2.13)

∂tV + (∇ ·Vv)η + µdα∂yp+ (α/αd)∂ηp∂yφ = FV (2.14)

∂tW + (∇ ·Vw)η − g[(α/αd)∂ηp− µd] = FW (2.15)

∂tΘ + (∇ ·Vθ)η = FΘ (2.16)

∂tµd + (∇ ·V)η = 0 (2.17)

∂tφ+ µ−1
d [(V · ∇φ)η − gW ] = 0 (2.18)

∂tQm + (V · ∇qm)η = FQm (2.19)

with the diagnostic equation for dry inverse density

∂ηφ = −αdµd (2.20)

and the diagnostic relation for the full pressure (vapor plus dry air)

p = p0(Rdθm/p0αd)
γ (2.21)

In these equations, αd is the inverse density of the dry air (1/ρd) and α is the inverse density
taking into account the full parcel density α = αd(1 + qv + qc + qr + qi + ...)−1 where q∗ are
the mixing ratios (mass per mass of dry air) for water vapor, cloud, rain, ice, etc. Additionally,
θm = θ(1 + (Rv/Rd)qv) ≈ θ(1 + 1.61qv), and Qm = µdqm; qm = qv, qc, qi, ... .

2.4 Map Projections, Coriolis and Curvature Terms

The ARW solver currently supports three projections to the sphere— the Lambert conformal,
polar stereographic, and Mercator projections. These projections are described in Haltiner and
Williams (1980). These projections, and the ARW implementation of the map factors, assume
that the map factor transformations for x are y are identical at a given point; that is, the
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transformation is isotropic. Anisotropic transformations, such as a latitude-longitude grid, can
be accommodated by defining separate map factors for the x and y transformations.

In the ARW’s computational space, ∆x and ∆y are constants. Orthogonal projections to
the sphere require that the physical distances between grid points in the projection vary with
position in the grid. To transform the governing equations, a map scale factor m is defined as
the ratio of the distance in computational space to the corresponding distance on the earth’s
surface:

m =
(∆x,∆y)

distance on the earth
. (2.22)

The ARW solver includes the map-scale factors in the governing equations by redefining the
momentum variables as

U = µdu/m, V = µdv/m, W = µdw/m, Ω = µdη̇/m.

Using these redefined momentum variables, the governing equations, including map factors and
rotational terms, can be written as

∂tU +m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu) + µdα∂xp+ (α/αd)∂ηp∂xφ = FU (2.23)

∂tV +m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv) + µdα∂yp+ (α/αd)∂ηp∂yφ = FV (2.24)

∂tW +m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw)−m−1g[(α/αd)∂ηp− µd] = FW (2.25)

∂tΘ +m2[∂x(Uθ) + ∂y(V θ)] +m∂η(Ωθ) = FΘ (2.26)

∂tµd +m2[Ux + Vy] +m∂η(Ω) = 0 (2.27)

∂tφ+ µ−1
d [m2(Uφx + V φy) +mΩφη − gW ] = 0 (2.28)

∂tQm +m2[∂x(Uqm) + ∂y(V qm)] +m∂η(Ωqm) = FQm , (2.29)

and, for completeness, the diagnostic relation for the dry inverse density

∂ηφ = −αdµd, (2.30)

and the diagnostic equation for full pressure (vapor plus dry air)

p = p0(Rdθm/p0αd)
γ. (2.31)

The right-hand-side terms of the momentum equations (2.23) – (2.25) contain the Coriolis
and curvature terms along with mixing terms and physical forcings. The Coriolis and curvature
terms can be written as follows:

FUcor = +

(
f + u

∂m

∂y
− v

∂m

∂x

)
V − eW cosαr −

uW

re

(2.32)

FVcor = −
(
f + u

∂m

∂y
− v

∂m

∂x

)
U + eW sinαr −

vW

re

(2.33)

FWcor = +e(U cosαr − V sinαr) +

(
uU + vV

re

)
, (2.34)

where αr is the local rotation angle between the y-axis and the meridians, ψ is the latitude,
f = 2Ωe sinψ, e = 2Ωe cosψ, Ωe is the angular rotation rate of the earth, and re is the radius of
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the earth. In this formulation we have approximated the radial distance from the center of the
earth as the mean earth radius re, and we have not taken into account the change in horizontal
grid distance as a function of the radius. The terms containing m are the horizontal curvature
terms, those containing re relate to vertical (earth-surface) curvature, and those with e and f
are the Coriolis force. In idealized cases, the map scale factor m = 1, f is often taken to be
constant, and e = 0.

2.5 Perturbation Form of the Governing Equations

Before constructing the discrete solver, it is advantageous to recast the governing equations
using perturbation variables so as to reduce truncation errors in the horizontal pressure gradient
calculations in the discrete solver, in addition to reducing machine rounding errors in the vertical
pressure gradient and buoyancy calculations. For this purpose, new variables are defined as
perturbations from a hydrostatically-balanced reference state, and we define reference state
variables (denoted by overbars) that are a function of height only and that satisfy the governing
equations for an atmosphere at rest. That is, the reference state is in hydrostatic balance and
is strictly only a function of z. In this manner, p = p̄(z) + p′, φ = φ̄(z) + φ′, α = ᾱ(z) + α′,
and µd = µ̄d(x, y) + µ′d. Because the η coordinate surfaces are generally not horizontal, the
reference profiles p̄, φ̄, and ᾱ are functions of (x, y, η). The hydrostatically balanced portion
of the pressure gradients in the reference sounding can be removed without approximation to
the equations using these perturbation variables. The momentum equations (2.23) – (2.25) are
written as

∂tU +m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu) + (µdα∂xp
′ + µdα

′∂xp̄)

+(α/αd)(µd∂xφ
′ + ∂ηp

′∂xφ− µ′d∂xφ) = FU (2.35)

∂tV +m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv) + (µdα∂yp
′ + µdα

′∂yp̄)

+(α/αd)(µd∂yφ
′ + ∂ηp

′∂yφ− µ′d∂yφ) = FV (2.36)

∂tW +m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw)

−m−1g(α/αd)[∂ηp
′ − µ̄d(qv + qc + qr)] +m−1µ′dg = FW , (2.37)

and the mass conservation equation (2.27) and geopotential equation (2.28) become

∂tµ
′
d +m2[∂xU + ∂yV ] +m∂ηΩ = 0 (2.38)

∂tφ
′ + µ−1

d [m2(Uφx + V φy) +mΩφη − gW ] = 0. (2.39)

Remaining unchanged are the conservation equations for the potential temperature and scalars

∂tΘ +m2[∂x(Uθ) + ∂y(V θ)] +m∂η(Ωθ) = FΘ (2.40)

∂tQm +m2[∂x(Uqm) + ∂y(V qm)] +m∂η(Ωqm) = FQm . (2.41)

In the perturbation system the hydrostatic relation (2.30) becomes

∂ηφ
′ = −µ̄dα

′
d − αdµ

′
d. (2.42)

Equations (2.35) – (2.41), together with the equation of state (2.21), represent the equations
solved in the ARW. The RHS terms in these equations include the Coriolis terms (2.32) –
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(2.34), mixing terms (described in Chapter 4), and parameterized physics (described in Chapter
8). Also note that the equation of state (2.21) cannot be written in perturbation form because
of the exponent in the expression. For small perturbation simulations, accuracy for perturbation
variables can be maintained by linearizing (2.21) for the perturbation variables.
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Chapter 3

Model Discretization

3.1 Temporal Discretization

The ARW solver uses a time-split integration scheme. Generally speaking, slow or low-frequency
(meteorologically significant) modes are integrated using a third-order Runge-Kutta (RK3) time
integration scheme, while the high-frequency acoustic modes are integrated over smaller time
steps to maintain numerical stability. The horizontally propagating acoustic modes (including
the external mode present in the mass-coordinate equations using a constant-pressure upper
boundary condition) are integrated using a forward-backward time integration scheme, and ver-
tically propagating acoustic modes and buoyancy oscillations are integrated using a vertically
implicit scheme (using the acoustic time step). The time-split integration is similar to that first
developed by Klemp and Wilhelmson (1978) and analyzed by Skamarock and Klemp (1992).
The time-split RK3 scheme is described in general terms in Wicker and Skamarock (2002).
The primary differences between the descriptions found in the references and the ARW imple-
mentation are associated with our use of the mass vertical coordinate and a flux-form set of
equations, along with our use of perturbation variables for the acoustic component of the time-
split integration. The acoustic-mode integration is cast in the form of a correction to the RK3
integration.

3.1.1 Runge-Kutta Time Integration Scheme

The RK3 scheme, described in Wicker and Skamarock (2002), integrates a set of ordinary
differential equations using a predictor-corrector formulation. Defining the prognostic variables
in the ARW solver as Φ = (U, V,W,Θ, φ′, µ′, Qm) and the model equations as Φt = R(Φ), the
RK3 integration takes the form of 3 steps to advance a solution Φ(t) to Φ(t+ ∆t):

Φ∗ = Φt +
∆t

3
R(Φt) (3.1)

Φ∗∗ = Φt +
∆t

2
R(Φ∗) (3.2)

Φt+∆t = Φt + ∆tR(Φ∗∗) (3.3)

where ∆t is the time step for the low-frequency modes (the model time step). In (3.1) – (3.3),
superscripts denote time levels. This scheme is not a true Runge-Kutta scheme per se because,
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while it is third-order accurate for linear equations, it is only second-order accurate for nonlinear
equations. With respect to the ARW equations, the time derivatives Φt are the partial time
derivatives (the leftmost terms) in equations (2.35) – (2.41), and R(Φ) are the remaining terms
in (2.35) – (2.41).

3.1.2 Acoustic Integration

The high-frequency but meteorologically insignificant acoustic modes would severely limit the
RK3 time step ∆t in (3.1) – (3.3). To circumvent this time step limitation we use the approach
described in Wicker and Skamarock (2002). Additionally, to increase the accuracy of the split-
ting, we integrate a perturbation form of the governing equations using smaller acoustic time
steps within the RK3 large-time-step sequence. To form the perturbation equations for the RK3
time-split acoustic integration, we define small time step variables that are deviations from the
most recent RK3 predictor (denoted by the superscript t∗ and representing either Φt, Φ∗, or Φ∗∗

in (3.1) – (3.3)):

V′′ = V−Vt∗ , Ω′′ = Ω− Ωt∗ , Θ′′ = Θ−Θt∗ ,

φ′′ = φ′ − φ′
t∗
, α′′d = α′d − α′d

t∗
, µ′′d = µ′d − µ′

t∗

d .

The hydrostatic relation (i.e., the vertical coordinate definition) becomes

α′′d = − 1

µt∗
d

(
∂ηφ

′′ + αt∗

d µ
′′
d

)
. (3.4)

Additionally, we also introduce a version of the equation of state that is linearized about t∗,

p′′ =
c2s
αt∗

d

(
Θ′′

Θt∗
− α′′d
αt∗

d

− µ′′d
µt∗

d

)
, (3.5)

where c2s = γpt∗αt∗

d is the square of the sound speed. The linearized state equation (3.5) and
the vertical coordinate definition (3.4) are used to cast the vertical pressure gradient in (2.37)
in terms of the model’s prognostic variables. By combining (3.5) and (3.4), the vertical pressure
gradient can be expressed as

∂ηp
′′ = ∂η(C∂ηφ

′′) + ∂η

(
c2s
αt∗

d

Θ′′

Θt∗

)
, (3.6)

where C = c2s/µ
t∗αt∗2

. This linearization about the most recent large time step should be highly
accurate over the time interval of the several small time steps.

These variables along with (3.6) are substituted into the prognostic equations (2.35) – (2.41)
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and lead to the acoustic time-step equations:

δτU
′′ + µt∗αt∗∂xp

′′τ + (µt∗∂xp̄)α
′′τ + (α/αd)[µ

t∗∂xφ
′′τ + (∂xφ

t∗)(∂ηp
′′ − µ′′)τ ] = RU

t∗ (3.7)

δτV
′′ + µt∗αt∗∂yp

′′τ + (µt∗∂yp̄)α
′′τ + (α/αd)[µ

t∗∂yφ
′′τ + (∂yφ

t∗)(∂ηp
′′ − µ′′)τ ] = RV

t∗ (3.8)

δτµ
′′
d +m2[∂xU

′′ + ∂yV
′′]τ+∆τ +m∂ηΩ

′′τ+∆τ = Rµ
t∗ (3.9)

δτΘ
′′ +m2[∂x(U

′′θt∗) + ∂y(V
′′θt∗)]τ+∆τ +m∂η(Ω

′′τ+∆τθt∗) = RΘ
t∗ (3.10)

δτW
′′ −m−1g

[
(α/αd)t∗∂η(C∂ηφ′′) + ∂η

(
c2s
αt∗

Θ′′

Θt∗

)
− µ′′d

]τ

= RW
t∗ (3.11)

δτφ
′′ +

1

µt∗
d

[mΩ′′τ+∆τφη − gW ′′τ ] = Rφ
t∗ . (3.12)

The RHS terms in (3.7) – (3.12) are fixed for the acoustic steps that comprise the time integration
of each RK3 sub-step (i.e., (3.1) – (3.3)), and are given by

Rt∗

U =−m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu)− (µdα∂xp
′ − µdα

′∂xp̄)

− (α/αd)(µd∂xφ
′ − ∂ηp

′∂xφ+ µ′d∂xφ) + FU (3.13)

Rt∗

V =−m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv)− (µdα∂yp
′ − µdα

′∂yp̄)

− (α/αd)(µd∂yφ
′ − ∂ηp

′∂yφ+ µ′d∂yφ) + FV (3.14)

Rt∗

µd
=−m2[∂xU + ∂yV ] +m∂ηΩ (3.15)

Rt∗

Θ =−m2[∂x(Uθ) + ∂y(V θ)]−m∂η(Ωθ) + FΘ (3.16)

Rt∗

W =−m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw)

+m−1g(α/αd)[∂ηp
′ + µ̄d(qv + qc + qr)]−m−1µ′dg + FW (3.17)

Rt∗

φ =− µ−1
d [m2(Uφx + V φy) +mΩφη − gW ], (3.18)

where all variables in (3.13) – (3.18) are evaluated at time t∗ (i.e., using Φt, Φ∗, or Φ∗∗ for the
appropriate RK3 sub-step in (3.1) – (3.3)). Equations (3.7) – (3.12) utilize the discrete acoustic
time-step operator

δτa =
aτ+∆τ − aτ

∆τ
,

where ∆τ is the acoustic time step, and an acoustic time-step averaging operator

aτ =
1 + β

2
aτ+∆τ +

1− β

2
aτ , (3.19)

where β is a user-specified parameter (see Section 4.2.3).
The integration over the acoustic time steps proceeds as follows. Beginning with the small

time-step variables at time τ , (3.7) and (3.8) are stepped forward to obtain U ′′τ+∆τ and V ′′τ+∆τ .
Both µ′′τ+∆τ and Ω′′τ+∆τ are then calculated from (3.9). This is accomplished by first integrating
(3.9) vertically from the surface to the material surface at the top of the domain, which removes
the ∂ηΩ

′′ term such that

δτµd = m2

∫ 0

1

[∂xU
′′ + ∂yV

′′]τ+∆τdη. (3.20)
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After computing µ′′d
τ+∆τ from (3.20), Ω′′τ+∆τ is recovered by using (3.9) to integrate the ∂ηΩ

′′

term vertically using the lower boundary condition Ω′′ = 0 at the surface. Equation (3.10)
is then stepped forward to calculate Θ′′τ+∆τ . Equations (3.11) and (3.12) are combined to
form a vertically implicit equation that is solved for W ′′τ+∆τ subject to the boundary condition
W ′′ = V′′ · ∇h at the surface (z = h(x, y)) and p′ = 0 along the model top. φ′′τ+∆τ is then
obtained from (3.12), and p′′τ+∆τ and α′′d

τ+∆τ are recovered from (3.5) and (3.4).

3.1.3 Full Time-Split Integration Sequence

The time-split RK3 integration technique is summarized below. It consists of two primary
loops— an outer loop for the large-time-step Runge-Kutta integration, and an inner loop for
the acoustic mode integration.

Begin Time Step

Begin RK3 Loop: Steps 1, 2, and 3

(1) If RK3 step 1, compute and store FΦ

(i.e., physics tendencies for RK3 step, including mixing).

(2) Compute Rt∗
Φ , (3.13)–(3.18)

Begin Acoustic Step Loop: Steps 1 → n,
RK3 step 1, n = 1, ∆τ = ∆t/3;
RK3 step 2, n = ns/2, ∆τ = ∆t/ns;
RK3 step 3, n = ns, ∆τ = ∆t/ns.

(3) Advance horizontal momentum, (3.7) and (3.8)
(4) Advance µd (3.9) and compute Ω′′τ+∆τ then advance Θ (3.10)
(5) Advance W and φ (3.11) and (3.12)
(6) Diagnose p′′ and α′′ using (3.5) and (3.4)

End Acoustic Step Loop

(7) Scalar transport: Advance scalars (2.41)
over RK3 substep (3.1), (3.2) or (3.3)
(using mass fluxes U , V and Ω time-averaged over the acoustic steps).

(8) Compute p′ and α′ using updated prognostic variables in (2.31) and (2.42)

End RK3 Loop

(9) Compute non-RK3 physics (currently microphysics), advance variables.

End Time Step

Figure 3.1: Time step integration sequence. Here n represents the number of acoustic time
steps for a given substep of the RK3 integration, and ns is the ratio of the RK3 time step to
the acoustic time step for the second and third RK3 substeps.

In the RK3 scheme, physics can be integrated within the RK3 time integration (using a time
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forward step, i.e., step (1) in Fig. 3.1, or the RK3 time integration if higher temporal accuracy
is desired, i.e., in step (2)— implying a physics evaluation every RK3 substep) or external to it
using additive timesplitting, i.e., step (9).

Within the acoustic integration, the acoustic time step ∆τ is specified by the user through
the choice of ns (see Section 3.3.2). Within the first RK3 substep, however, a single acoustic
time step is used to advance the solution regardless of ns. Within the full RK3-acoustic timesplit
integration, this modified acoustic time step does not impose any additional stability constraints
(see Wicker and Skamarock, 2002).

The major costs in the model arise from the evaluation of the right hand side terms Rt∗ in
(3.7) – (3.12). The efficiency of the RK3 timesplit scheme arises from the fact that the RK3
time step ∆t is much larger than the acoustic time step ∆τ , hence the most costly evaluations
are only performed in the less-frequent RK3 steps.

3.1.4 Diabatic Forcing

Within the RK3 integration sequence outlined in Fig. 3.1, the RHS term Rt∗
Θ in the thermo-

dynamic equation (3.10) contains contributions from the diabatic physics tendencies that are
computed in step (1) at the beginning of the first RK3 step. This diabatic forcing is integrated
within the acoustic steps (specifically, in step 4 in the time integration sequence shown in Fig.
3.1). Additional diabatic contributions are integrated in an additive-time-split manner in step
(9) after the RK3 update is complete. Thus, the diabatic forcing computed in step (9) (the
microphysics in the current release of the ARW) does not appear in Rt∗

Θ from (3.10) in the
acoustic integration. We have discovered that this time splitting can excite acoustic waves and
can give rise to noise in the solutions for some applications. Note that the non-RK3 physics are
integrated in step (9) because balances produced in the physics are required at the end of the
time step (e.g., the saturation adjustment in the microphysics). So while moving these non-RK3
physics into step (1) would eliminate the noise, the balances produced by these physics would
be altered.

We have found that the excitation of the acoustic modes can be circumvented while leaving
the non-RK3 physics in step (9) by using the following procedure that is implemented in the
ARW. In step (1) of the integration procedure (Fig. 3.1), an estimate of the diabatic forcing
of Θ arising from the non-RK3 physics in step (9) is included in the diabatic forcing term
Rt∗

Θ in (3.10) (which is advanced in step 4). This estimated diabatic forcing is then removed
from the updated Θ after the RK3 integration is complete and before the evaluation of the
non-RK3 physics in step (9). We use the diabatic forcing from the previous time step as the
estimated forcing; hence this procedure results in few additional computations outside of saving
the diabatic forcing between time steps.

3.1.5 Hydrostatic Option

A hydrostatic option is available in the ARW solver. The time-split RK3 integration technique
summarized in Fig. 3.1 is retained, including the acoustic step loop. Steps (5) and (6) in the
acoustic-step loop, where W and φ are advanced and p′′ and α′′ are diagnosed, are replaced by
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(1), the diagnosis of the hydrostatic pressure using the definition of the vertical coordinate

δηph =
αd

α
µd =

(
1 +

∑
qm
)
µd,

followed by (2), the diagnosis of αd using the equation of state (2.31) and the prognosed θ, and
(3), the diagnosis of the geopotential using the hydrostatic equation

δηφ
′ = −µ̄dα

′
d − µ′dαd.

The vertical velocity w can be diagnosed from the geopotential equation, but it is not needed in
the solution procedure. The acoustic step loop advances gravity waves, including the external
mode, when the hydrostatic option is used; there are no horizontally propagating acoustic modes
in this hydrostatic system.

3.2 Spatial Discretization

The spatial discretization in the ARW solver uses a C grid staggering for the variables as shown
in Fig. 3.2. That is, normal velocities are staggered one-half grid length from the thermodynamic
variables. The variable indices, (i, j) for the horizontal plane and (i, k) for the vertical plane,
indicate variable locations where (x, y, η) = (i∆x, j∆y, k∆η). We will denote the points where
θ is located as being mass points, and likewise we will denote locations where u, v, and w are
defined as u points, v points, and w points, respectively. Not shown in Fig. 3.2 are the column
mass µ, defined at the (i, j) points (mass points) on the discrete grid, the geopotential φ that
is defined at the w points, and the moisture variables qm are defined at the mass points. The
diagnostic variables used in the model, the pressure p and inverse density α, are computed at
mass points. The grid lengths ∆x and ∆y are constants in the model formulation; changes in
the physical grid lengths associated with the various projections to the sphere are accounted
for using the map factors introduced in Section 2.4. The vertical grid length ∆η is not a fixed
constant; it is specified in the initialization. The user is free to specify the η values of the model
levels subject to the constraint that η = 1 at the surface, η = 0 at the model top, and η decreases
monotonically between the surface and model top. Using these grid and variable definitions, we
can define the spatial discretization for the ARW solver.

3.2.1 Acoustic Step Equations

We begin by defining the column-mass-coupled variables relative to the uncoupled variables.
The vertical velocity is staggered only in k, so it can be coupled directly to the column mass
with no averaging or interpolation. The horizontal velocities are horizontally staggered relative
to the column mass such that the continuous variables are represented discretely as

U =
µdu

m
→ µd

xu

mx , V =
µdv

m
→ µd

yv

my ,

where the discrete operator ax denotes a linear interpolation operator. The grid lengths ∆x and
∆y are constant, hence in this case the operator reduces to ax = (ai+1/2 + ai−1/2)/2.
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Figure 3.2: Horizontal and vertical grids of the ARW

Using these definitions, we can write the spatially discrete acoustic step equations
(3.7) – (3.12) as

δτU
′′ + µt∗

x
αt∗

x
δxp

′′τ + (µt∗
x
δxp̄)α′′

τ x

+(α/αd)
x
[µt∗

x
δxφ′′

τ η
+ (δxφt∗

η
)(δηp′′

xη
− µ′′

x
)τ ] = Rt∗

U (3.21)

δτV
′′ + µt∗

y
αt∗

y
δyp

′′τ + (µt∗
y
δyp̄)α′′

τ y

+(α/αd)
y
[µt∗

y
δyφ′′

τ η
+ (δyφt∗

η
)(δηp′′

yη
− µ′′

y
)τ ] = Rt∗

V (3.22)

δτµ
′′
d +m2[δxU

′′ + δyV
′′]τ+∆τ +mδηΩ

′′τ+∆τ = Rt∗

µ (3.23)

δτΘ
′′ +m2[δx(U

′′θt∗
x
) + δy(V

′′θt∗
y
)]τ+∆τ +mδη(Ω

′′τ+∆τθt∗
η
) = RΘ

t∗ (3.24)

δτW
′′ −m−1g

[
(α/αd)t∗

η
δη(Cδηφ′′) + δη

(
c2s
αt∗

Θ′′

Θt∗

)
− µ′′d

]τ

= RW
t∗ (3.25)

δτφ
′′ +

1

µt∗
d

[mΩ′′τ+∆τδηφ− gW ′′τ ] = Rφ
t∗ , (3.26)

where the discrete operator

δxa = ∆x−1(ai+1/2 − ai−1/2) (3.27)

with the operators δy and δη similarily defined. Additionally, the operator aη is a vertical
interpolation operator. Using the notation given for the vertically stretched grid depicted in
Fig. 3.2, it is defined as

aη|k+1/2 =
1

2

(
∆ηk

∆ηk+1/2

ak+1 +
∆ηk+1

∆ηk+1/2

ak

)
. (3.28)
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The operator vertically interpolates variables on mass levels k to the w levels (k+ 1
2
). It should

be noted that the vertical grid is defined such that vertical interpolation from w levels to mass
levels reduces to aη

k = (ak+1/2 + ak−1/2)/2 (see Fig. 3.2).
The RHS terms in the discrete acoustic step equations for momentum (3.21), (3.22) and

(3.25) are discretized as

Rt∗

U =− (µd
xαxδxp

′ − µd
xα′

x
δxp̄)− (α/αd)

x
(µd

xδxφ′
η − δηp′

xη
δxφ

η
+ µ′d

x
δxφ

η
)

+ FUcor + advection + mixing + physics (3.29)

Rt∗

V =− (µd
yαyδyp

′ − µd
yα′

y
δyp̄)− (α/αd)

y
(µd

yδyφ′
η − δηp′

yη
δyφ

η
+ µ′d

y
δyφ

η
)

+ FVcor + advection + mixing + physics (3.30)

Rt∗

W = m−1g(α/αd)
η
[δηp

′ + µ̄dqm
η]−m−1µ′dg

+ FWcor + advection + mixing + buoyancy + physics. (3.31)

3.2.2 Coriolis and Curvature Terms

The terms FUcor , FVcor , and FWcor in (3.29) – (3.31) represent Coriolis and curvature effects
in the equations. These terms in continuous form are given in (2.32) – (2.34). Their spatial
discretization is

FUcor = +
(
f

x
+ uxδym− vyδxm

x)
V

xy − exW
xη

cosαr
x − uW

xη

re

FVcor = −
(
f

y
+ uxδym− vyδxm

y)
U

xy
+ eyW

yη
sinαr

y − vW
yη

re

FWcor = +e(U
xη

cosαr − V
yη

sinαr) +

(
uxηU

xη
+ vyηV

yη

re

)
.

Here the operators ()
xy

= ()
xy

, and likewise for ()
xη

and ()
yη

.

3.2.3 Advection

The advection terms in the ARW solver are in the form of a flux divergence and are a subset of
the RHS terms in equations (3.13) – (3.18):

Rt∗

Uadv
=−m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu) (3.32)

Rt∗

Vadv
=−m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv) (3.33)

Rt∗

µadv
=−m2[Ux + Vy] +mΩη (3.34)

Rt∗

Θadv
=−m2[∂x(Uθ) + ∂y(V θ)]−m∂η(Ωθ) (3.35)

Rt∗

Wadv
=−m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw) (3.36)

Rt∗

φadv
=− µ−1

d [m2(Uφx + V φy) +mΩφη]. (3.37)

For the mass conservation equation, the flux divergence is discretized using a 2nd-order centered
approximation:

Rt∗

µadv
= −m2[δxU + δyV ]t

∗
+mδηΩ

t∗ . (3.38)
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In the current version of the ARW, the advection of vector quantities (momentum) and scalars
is performed using the RK3 time integration as outlined in Fig. 3.1. The spatial discretization
used in this approach is outlined in the next section. For many applications it is desirable to
use positive definite or monotonic advection schemes for scalar transport. In the next major
release of the ARW we will be including a forward-in-time scheme for scalar transport that has
positive definite and monotonic options. We describe that scheme in the section following the
description of the RK3 advection.

RK3 Advection

2nd through 6th order accurate spatial discretizations of the flux divergence are available in the
ARW for momentum, scalars and geopotential using the RK3 time-integration scheme (scalar
advection option 1, step 7 in the time-split integration sequence in Fig. 3.1). The discrete
operators can be illustrated by considering the flux divergence equation for a scalar q in its
discrete form:

Rt∗

qadv
= −m2[δx(Uq

xadv) + δy(V q
yadv)]−mδη(Ωq

ηadv). (3.39)

As in the pressure gradient discretization, the discrete operator is defined as

δx(Uq
xadv) = ∆x−1

[
(Uqxadv)i+1/2 − (Uqxadv)i−1/2

]
. (3.40)

The different order advection schemes correspond to different definitions for the operator qxadv .
The even order operators (2nd, 4th, and 6th) are

2nd order: (qxadv)i−1/2 =
1

2
(qi + qi−1)

4th order: (qxadv)i−1/2 =
7

12
(qi + qi−1)−

1

12
(qi+1 + qi−2)

6th order: (qxadv)i−1/2 =
37

60
(qi + qi−1)−

2

15
(qi+1 + qi−2) +

1

60
(qi+2 + qi−3),

and the odd order operators (3rd and 5th) are

3rd order: (qxadv)i−1/2 = (qxadv)4th

i−1/2

+ sign(U)
1

12

[
(qi+1 − qi−2)− 3(qi − qi−1)

]
5th order: (qxadv)i−1/2 = (qxadv)6th

i−1/2

− sign(U)
1

60

[
(qi+2 − qi−3)− 5(qi+1 − qi−2) + 10(qi − qi−1)

]
.

The even-order advection operators are spatially centered and thus contain no implicit dif-
fusion outside of the diffusion inherent in the RK3 time integration. The odd-order schemes are
upwind-biased, and the spatial discretization is inherently diffusive. As is evident in their for-
mulation, the odd-order schemes are comprised of the next higher (even) order centered scheme
plus an upwind term that, for a constant transport mass flux, is a diffusion term of that next
higher (even) order with a hyper-viscosity proportional to the Courant number (Cr). Further
details concerning RK3 advection can be found in Wicker and Skamarock (2002)
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Forward-In-Time Scalar Advection

A forward-in-time scalar advection scheme having monotonic and positive definite options will
be available in the next major release of the ARW. This option entails bypassing step (7) in the
time-split integration sequence in Fig. 3.1, and adding a single advection evaluation before step
(9), after the end of the RK3 loop in the integration sequence. The new advection algorithm is
patterned after Easter (1993) and can be written as follows

(µdq)
∗ = (µdq)

t +m2Fx(q
t) (3.41)

µ∗d = µt
d +m2Fx(I) (3.42)

q∗ = (µdq)
∗/(µd)

∗ (3.43)

(µdq)
∗∗ = (µdq)

∗ +m2Fy(q
∗) (3.44)

µ∗∗d = µ∗d +m2Fy(I) (3.45)

q∗∗ = (µdq)
∗∗/(µd)

∗∗ (3.46)

(µdq)
t+∆t = (µdq)

∗∗ +mFη(q
∗∗) (3.47)

µt+∆t
d = µ∗∗d +mFη(I) (3.48)

qt+∆t = (µdq)
t+∆t/µt+∆t

d . (3.49)

In (3.41) - (3.49) the operator

Fx(q) = −∆t∆x−1((U
t
q)i+1/2 − (U

t
q)i−1/2), (3.50)

with similar definitions for Fy and Fη, and I is a vector with all values equal to 1. The discrete
mass continuity equation ((3.42)+(3.45)+(3.48)) can be written as

δτµd = −m2[δxU
t
+ δyV

t
]−mδηΩ

t
. (3.51)

It can easily be seen that the scheme (3.41) - (3.49) collapses to (3.51) for q = I, and hence it is

consistent. The mass fluxes U
t
, V

t
, and Ω

t
, represent time-averaged values where the averaging

is performed over the final RK3 small-time-step cycle. Hence, the mass conservation equation
(3.51) produces the mass conservation equation integrated within the RK3 scheme. Equation
(3.51) is re-integrated within the time-split transport scheme only because a consistent column
mass µd is needed on the sub-steps to retrieve q from the prognostic variable µdq.

Any forward-in-time flux operator that is stable for Cr ≤ 1 can be used to evaluate the
operators Fx(q), Fy(q), or Fη(q). A scheme based on the Piecewise Parabolic Method (PPM)
has been implemented in the ARW. It is the non-monotonized PPM advection described in

Carpenter et al. (1990), and it provides the fluxes (U
t
q)i± 1

2
used in (3.50) in the flux divergence

operators. Defining qi as the control-volume average mixing ratio for cell i, zone edge values
qadv can be defined as

qadv
i+ 1

2
=
(
7(qi+1 + qi)− (qi+2 + qi−1)

)
/12. (3.52)

The flux through the i+ 1
2

face can be written as

(U
t
q)i+ 1

2
= U

t

i+ 1
2

[
qadv
i+ 1

2
− Cr(qadv

i+ 1
2
− qi)− Cr(1− Cr)(qadv

i− 1
2
− 2qi + qadv

i+ 1
2
)
]

(3.53)
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for Cr > 0, and

(U
t
q)i+ 1

2
= U

t

i+ 1
2

[
qadv
i+ 1

2
− Cr(qadv

i+ 1
2
− qi+1) + Cr(1 + Cr)(qadv

i+ 1
2
− 2qi+1 + qadv

i+ 3
2
)
]

(3.54)

for Cr < 0, where Cr = ui+ 1
2
∆t/∆x. In addition, to maintain second-order accuracy for the

time-split forward-in-time advection scheme, the sequence (3.41) – (3.49) is reversed every other
time step; that is, the flux divergence in η is computed first followed by y and then x. Finally,
the scheme has also been augmented for Courant numbers greater than one using the 1D “semi-
Lagrangian” flux calculation described in Lin and Rood (1996). More information about this
scheme and a description of the limiters can be found in Skamarock (2005).

3.3 Stability Constraints

There are two time steps that a user must specify when running the ARW: the model time step
(the time step used by the RK3 scheme, see Section 3.1.1) and the acoustic time step (used
in the acoustic sub-steps of the time-split integration procedure, see Section 3.1.2). Both are
limited by Courant numbers. In the following sections we describe how to choose time steps for
applications.

3.3.1 RK3 Time Step Constraint

The RK3 time step is limited by the advective Courant number u∆t/∆x and the user’s choice
of advection schemes— users can choose 2nd through 6th order discretizations for the advection
terms. The time-step limitations for 1D advection in the RK3 scheme using these advection
schemes is given in Wicker and Skamarock (2002), and is reproduced here.

Spatial order
Time Scheme

3rd 4th 5th 6th
Leapfrog Unstable 0.72 Unstable 0.62

RK2 0.88 Unstable 0.30 Unstable
RK3 1.61 1.26 1.42 1.08

Table 3.1: Maximum stable Courant numbers for one-dimensional linear advection. From Wicker
and Skamarock (2002).

As is indicated in the table, the maximum stable Courant numbers for advection in the RK3
scheme are almost a factor of two greater than those for the leapfrog time-integration scheme.
For advection in three spatial dimensions, the maximum stable Courant number is 1/

√
3 times

the Courant numbers given in Table 3.1. For stability, the time step used in the ARW should
produce a maximum Courant number less than that given by theory. Thus, for 3D applications,
the time step should satisfy the following equation:

∆tmax <
Crtheory√

3
· ∆x

umax

, (3.55)
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where Crtheory is the Courant number taken from the RK3 entry in Table 3.1 and umax is the
maximum velocity expected in the simulation. For example in real-data applications, where jet
stream winds may reach as high as 100 ms−1, the maximum time step would be approximately
80 s on a ∆x = 10 km grid using 5th order advection. Given additional constraint from the time
splitting, and to provide a safety buffer, we usually choose a time step that is approximately
25% less than that given by (3.55). This time step is typically a factor of two greater than that
used in leapfrog-based models. For those users familiar with the MM5 model, the rule of thumb
for choosing a time step is that the time step, in seconds, should be approximately 3 times
the horizontal grid distance, in kilometers. For the ARW, the time step (in seconds) should be
approximately 6 times the grid distance (in kilometers).

3.3.2 Acoustic Time Step Constraint

The forward-backward time integration scheme used in the ARW’s 2D explicit acoustic step
integration allows a maximum Courant number Crmax = cs∆τ/∆x < 1/

√
2, where cs is the

speed of sound. We typically use a more conservative estimate for this by replacing the limiting
value 1/

√
2 with 1/2. Thus, the acoustic time step used in the model is

∆τ < 2 · ∆x

cs
. (3.56)

For example, on a ∆x = 10 km grid, using a sound speed cs = 300 ms−1, the acoustic time
step given in (3.56) is approximately 17 s. In the ARW, the ratio of the RK3 time step to the
acoustic time step must be an even integer. For our example using a ∆x = 10 km grid in a
real-data simulation, we would specify the RK3 time step ∆t = 60s (i.e., 25% less than the 80 s
step given by (3.55), and an acoustic time step ∆τ = 15 s (i.e., 1/4 of the RK3 step, rounding
down the ∆τ = 17 s step given by (3.56)). Note that it is the ratio of the RK3 time step to the
acoustic time step that is the required input in the ARW.
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Chapter 4

Turbulent Mixing and Model Filters

A number of formulations for turbulent mixing and filtering are available in the ARW solver.
Some of these filters are used for numerical reasons. For example, divergence damping is used to
filter acoustic modes from the solution. Other filters are meant to represent sub-grid turbulence
processes that cannot be resolved on the chosen grid. These filters remove energy from the
solution and are formulated in part on turbulence theory and observations, or represent energy
sink terms in some approximation to the Euler equation. In this section, we begin by outlining
the formulation and discretization of turbulent mixing processes in the ARW solver commonly
associated with sub-gridscale turbulence as parameterized in cloud-scale models— the second-
order horizontal and vertical mixing. In large-scale models and most NWP models, vertical
mixing is parameterized within the planetary boundary layer (PBL) physics. Vertical mixing
parameterized within the PBL physics is described later in Chapter 8. Here we note that, when
a PBL parameterization is used, all other vertical mixing is disabled. Following the outline of
turbulent mixing parameterizations in this chapter, other numerical filters available in the ARW
solver are described.

4.1 Explicit Spatial Diffusion

The ARW solver has two formulations for spatial dissipation— diffusion along coordinate sur-
faces and diffusion in physical (x, y, z) space. In the following sections we present the diffusion
operators for these two formulations, followed by the four separate formulations that can be used
to compute the eddy viscosities. We conclude with a description of the prognostic turbulent
kinetic energy (TKE) equation used in one set of these formulations.

4.1.1 Horizontal and Vertical Diffusion on Coordinate Surfaces

For any model variable, horizontal and vertical second order spatial filtering on model coordinate
surfaces is considered part of the RHS terms in the continuous equations (2.35) – (2.41) and can
be expressed as follows for a model variable a:

∂t(µda) = ... + µd

[
m∂x(mKh∂xa) +m∂y(mKh∂ya)

]
+ g2(µdα)−1∂η(Kvα

−1∂ηa). (4.1)
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For the horizontal and vertical momentum equations, (4.1) is spatially discretized as

∂tU = ... + µd
xmx

[
δx(mKhδxu) + δy(m

xyKh
xy
δyu)

]
+ g2(µd

xαx)−1δη(Kv(α
xη)−1δηu)

∂tV = ... + µd
ymy

[
δx(m

xyKh
xy
δxv) + δy(mKhδyv)

]
+ g2(µd

yαy)−1δη(Kv(α
yη)−1δηv)

∂tW = ... + µdm
[
δx(m

xKh
xη
δxw) + δy(m

yKh
yη
δyw)

]
+ g2(µdα

η)−1δη(Kvα
−1δηw).

The spatial discretization for a scalar q, defined at the mass points, is

∂t(µdq) = ... + µdm
[
δx(m

xP−1
r Kh

x
δxq) + δy(m

yP−1
r Kh

y
δyq)

]
+ g2(µdα)−1δη(Kvα

−1δηq).

In the current ARW formulation for mixing on coordinate surfaces, the horizontal eddy viscosity
Kh is allowed to vary in space, whereas the vertical eddy viscosity does not vary in space; hence
there is no need for any spatial averaging of Kv. Additionally, note that the horizontal eddy
viscosity Kh is multiplied by the inverse turbulent Prandtl number P−1

r for horizontal scalar
mixing.

4.1.2 Horizontal and Vertical Diffusion in Physical Space

Coordinate Metrics

We use the geometric height coordinate in this physical space formulation. The coordinate
metrics are computed using the prognostic geopotential in the ARW solver. At the beginning
of each Runge-Kutta time step, the coordinate metrics are evaluated as part of the overall
algorithm. The definitions of the metrics are

zx = g−1δxφ and zy = g−1δyφ.

These metric terms are defined on w levels, and (zx, zy) are horizontally coincident with (u,v)
points. Additionally, the vertical diffusion terms are evaluated directly in terms of the geometric
height, avoiding the need for metric terms in the vertical.

Continuous Equations

The continuous equations for evaluating diffusion in physical space, using the velocity stress
tensor, are as follows for horizontal and vertical momentum:

∂tU = ... −m
[
∂xτ11 + ∂yτ12 − ∂z(zxτ11 + zyτ12)

]
− ∂zτ13 (4.2)

∂tV = ... −m
[
∂xτ12 + ∂yτ22 − ∂z(zxτ12 + zyτ22)

]
− ∂zτ23 (4.3)

∂tW = ... −m
[
∂xτ13 + ∂yτ23 − ∂z(zxτ13 + zyτ23)

]
− ∂zτ33. (4.4)

The stress tensor τ can be written as follows:

τ11 = −µdKhD11

τ22 = −µdKhD22

τ33 = −µdKvD33

τ12 = −µdKhD12

τ13 = −µdKhD13

τ23 = −µdKhD23.
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Symmetry sets the remaining tensor values; τ21 = τ12, τ31 = τ13, and τ32 = τ23. The stress tensor
τ is calculated from the deformation tensor D. The continuous deformation tensor is defined as

D11 = 2m2
[
∂x(m

−1u)− zx∂z(m
−1u)

]
D22 = 2m2

[
∂y(m

−1v)− zy∂z(m
−1v)

]
D33 = 2 ∂zw

D12 = m2
[
∂y(m

−1u)− zy∂z(m
−1u) + ∂x(m

−1v)− zx∂z(m
−1v)

]
D13 = m2

[
∂x(m

−1w)− zx∂z(m
−1w)

]
+∂z(u)

D23 = m2
[
∂y(m

−1w)− zy∂z(m
−1w)

]
+∂z(v).

The deformation tensor is symmetric, hence D21 = D12, D31 = D13, and D32 = D23.
The diffusion formulation for scalars is

∂t(µdq) = ... +
[
m
(
∂x − ∂zzx

)(
µdmK(∂x − zx∂z)

)
+

m
(
∂y − ∂zzy

)(
µdmK(∂y − zy∂z)

)
+ ∂zµdK∂z

]
q. (4.5)

Spatial Discretization

Using the definition of the stress tensor, the spatial discretization of the ARW physical-space
diffusion operators for the horizontal and vertical momentum equations (4.2) - (4.4) are

∂tU = ... −mx
[
δxτ11 + δyτ12 − δz(zxτ11

xη + zy
xyτ12

yη)
]
− δzτ13

∂tV = ... −my
[
δyτ22 + δxτ12 − δz(zyτ22

yη + zx
xyτ12

xη)
]
− δzτ23

∂tW = ... −m
[
δxτ13 + δyτ23 − δz(zx

xητ13
xη + zy

yητ23
yη)
]
− δzτ33.

The discrete forms of the stress tensor and deformation tensor are

τ11 = −µdKhD11

τ22 = −µdKhD22

τ33 = −µdKvD33

τ12 = −µd
xyKh

xy
D12

τ13 = −µd
xKh

xη
D13

τ23 = −µd
yKh

yη
D23,

and

D11 = 2m2
[
δx(m−1

x
u)− zx

xηδz(m−1
x
u)
]

D22 = 2m2
[
δy(m−1

y
v)− zy

xηδz(m−1
y
v)
]

D33 = 2 δzw

D12 = (mxy)2

[
δy(m−1

x
u)− zy

xηδz(m−1
x
u)

yη

+ δx(m−1
y
v)− zx

yηδz(m−1
y
v)

xη
]

D13 = m2

[
δx(m

−1w)− zxδz(m−1w)
xη
]
+δzu

D23 = m2

[
δy(m

−1w)− zyδz(m−1w)
yη
]
+δzv.
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The spatial discretization for the scalar diffusion (4.5) is

∂t(µdq) = ... +m
[
δx
(
µd

xH1(q)
)
− µdδz

(
zx

xH1(q)
xη)]

+m
[
δy
(
µd

yH2(q)
)
− µdδz

(
zy

yH2(q)
yη)]

+ µdδz
(
Kv

η
δzq
)
,

where

H1(q) = mxKh
x(
δxq − zxδz(q

xη)
)
,

H2(q) = myKh
y(
δyq − zyδz(q

yη)
)
.

4.1.3 Computation of the Eddy Viscosities

There are four options for determining the eddy viscosities Kh and Kv in the ARW solver.

External specification of Kh and Kv

Constant values for Kh and Kv can be input in the ARW namelist.

Kh determined from the horizontal deformation

The horizontal eddy viscosity Kh can be determined from the horizontal deformation using a
Smagorinsky first-order closure approach. In this formulation, the eddy viscosity is defined and
discretized as

Kh = C2
s l

2

[
0.25(D11 −D22)

2 +D2
12

xy
] 1

2

.

The deformation tensor components have been defined in the previous section. The length scale
l = (∆x∆y)1/2 and Cs is a constant with a typical value Cs = 0.25. For scalar mixing, the
eddy viscosity is divided by the turbulent Prandtl number Pr that typically has a value of 1/3
(Deardorff, 1972). This option is most often used with a planetary boundary layer scheme that
independently handles the vertical mixing.

3D Smagorinsky Closure

The horizontal and vertical eddy viscosities can be determined using a 3D Smagorinsky turbu-
lence closure. This closure specifies the eddy viscosities as

Kh,v = C2
s l

2
h,v max

[
0., D2 −

(
P−1

r N2
)1/2
]
, (4.6)

where

D =
1

2

[
D2

11 +D2
22 +D2

33

]
+
(
D12

xy)2
+
(
D13

xη)2
+
(
D23

yη)2
,

and N is the Brunt-Väisälä frequency; the computation of N , including moisture effects, is
outlined in Section 4.1.4.
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If ∆x is less than the user-specified critical length scale lcr, then the length scale used for
calculating both Kh and Kv in (4.6) is lh,v = (∆x∆y∆z)1/3 (and Kh = Kv = K). If ∆x is
greater than an critical length scale lcr, then the length scale lh =

√
∆x∆y in the calculation

of the horizontal eddy viscosity Kh using (4.6), and lv = ∆z for the calculation of the vertical
eddy viscosity Kv using (4.6).

Additionally, the eddy viscosities for scalar mixing are divided by the turbulent Prandtl
number Pr = 1/3.

Prognostic TKE Closure

For the predicted turbulent kinetic energy option (TKE; see section 4.1.4), the eddy viscosities
are computed using

Kh,v = Cklh,v

√
e,

where e is the turbulent kinetic energy (a prognostic variable in this scheme), Ck is a constant
(typically 0.15 < Ck < 0.25), and l is a length scale.

If the grid spacing ∆x is less than the critical length scale lcr, then

lh,v = min
[
(∆x∆y∆z)1/3, 0.76

√
e/N

]
for N2 > 0,

lh,v = (∆x∆y∆z)1/3 for N2 ≤ 0

(see section 4.1.4 for the calculation of N2). Both the horizontal and vertical eddy viscosities
are multiplied by an inverse turbulent Prandtl number P−1

r = 1 + 2l/(∆x∆y∆z)1/3 for scalar
mixing. In this case (lcr > ∆x) the horizontal and vertical eddy viscosities are equivalent.

If the grid spacing ∆x is greater than the critical length scale lcr, then lh =
√

∆x∆y for the
calculation of Kh. For calculating Kv,

lv = min
[
∆z, 0.76

√
e/N

]
for N2 > 0,

lv = ∆z for N2 ≤ 0.

The eddy viscosity used for mixing scalars is divided by a turbulent Prandtl number Pr. The
Prandtl number is 1/3 for the horizontal eddy viscosity Kh, and P−1

r = 1+2l/∆z for the vertical
eddy viscosity Kv.

4.1.4 TKE equation for the 1.5 Order Turbulence Closure

The prognostic equation governing the evolution of the turbulent kinetic energy e is

∂t(µde) + (∇ ·Ve)η = µd( shear production + buoyancy + dissipation ). (4.7)

The time integration and the transport terms in (4.7) are integrated in the same manner as for
other scalars (as described in Chapter 3). The right-hand side source and sink terms for e are
given as follows.

Shear Production

The shear production term in (4.7) can be written as

shear production = KhD
2
11 +KhD

2
22 +KvD

2
33 +KhD2

12

xy
+KvD2

13

xη
+KvD2

23

yη
.
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Buoyancy

The buoyancy term in the TKE equation (4.7) is written as

buoyancy = −KvN
2,

where the Brunt-Väisälä frequency N is computed using either the formula for a moist saturated
or unsaturated environment:

N2 = g

[
A
∂θe

∂z
− ∂qw

∂z

]
if qv ≥ qs or qc ≥ 0.01 g/Kg;

N2 = g

[
1

θ

∂θ

∂z
+ 1.61

∂qv
∂z

− ∂qw
∂z

]
if qv < qs or qc < 0.01 g/Kg.

The coefficient A is defined as

A = θ−1
1 + 1.61εLqv

RdT

1 + εL2qv

CpRvT 2

,

where qw represents the total water (vapor + all liquid species + all ice species), L is the latent
heat of condensation and ε is the molecular weight of water over the molecular weight of dry
air. θe is the equivalent potential temperature and is defined as

θe = θ

(
1 +

εLqvs

CpT

)
,

where qvs is the saturation vapor mixing ratio.

Dissipation

If ∆x is less than the critical length scale lcr, the dissipation term in (4.7) is

dissipation = −Ce
3/2

l
,

where

C = 1.9Ck +
(0.93− 1.9Ck) l

∆s
,

∆s = (∆x∆y∆z)1/3, and

l = min
[
(∆x∆y∆z)1/3, 0.76

√
e/N

]
.

If ∆x is greater than the critical length scale lcr, the dissipation term in (4.7) is

dissipation = −2
√

2

15

e3/2

l
,

where

l =
kz

1 + kz/l0
,

l0 = min

(
αb

∫ zi

0

√
ez dz∫ zi

0

√
e dz

, 80

)
,

αb = 0.2, and k = 0.4 is the von Karman constant.
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4.2 Filters for the Time-split RK3 scheme

Three filters are used in the ARW time-split RK3 scheme apart from those in the model physics:
three-dimensional divergence damping (an acoustic model filter); an external-mode filter that
damps vertically-integrated horizontal divergence; and off-centering of the vertically implicit
integration of the vertical momentum equation and geopoential equation. Each of these is
described in the following sections.

4.2.1 Divergence Damping

The damping of the full mass divergence is a filter for acoustic modes in the ARW solver. This
3D mass divergence damping is described in Skamarock and Klemp (1992). The filtering is
accomplished by forward weighting the pressure update in the acoustic step loop described in
Section 3.1.3, step (6). The linearized equation of state (3.5) is used to diagnose the pressure at
the new time τ after the U ′′, V ′′, µ′′d, and Θ′′ have been advanced. Divergence damping consists
of using a modified pressure in the computation of the pressure gradient terms in the horizontal
momentum equations in the acoustic steps (Equations (3.7) and (3.8)). Denoting the updated
value as pτ , the modified pressure p∗τ used in (3.7) and (3.8) can be written as

p∗τ = pτ + γd

(
pτ − pτ−∆τ

)
, (4.8)

where γd is the damping coefficient. This modification is equivalent to inserting a horizontal
diffusion term into the equation for the 3D mass divergence, hence the name divergence damping.
A divergence damping coefficient γd = 0.1 is typically used in the ARW applications, independent
of time step or grid size.

4.2.2 External Mode Filter

The external modes in the solution are damped by filtering the vertically-integrated horizontal
divergence. This damping is accomplished by adding a term to the horizontal momentum
equations. The additional term added to (3.7) and (3.8) are

δτU
′′ = ... − γeδx(δτ−∆τµ

′′
d) (4.9)

and
δτV

′′ = ... − γeδy(δτ−∆τµ
′′
d). (4.10)

The quantity δτ−∆τµ is the vertically-integrated mass divergence (i.e., (3.20)) from the previous
acoustic step (that is computed using the time τ values of U and V ), and γe is the external
mode damping coefficient. An external mode damping coefficient γe = 0.01 is typically used in
the ARW applications, independent of time step or grid size.

4.2.3 Semi-Implicit Acoustic Step Off-centering

Forward-in-time weighting of the vertically-implicit acoustic-time-step terms damps instabilities
associated vertically-propagating sound waves. The forward weighting also damps instabilities
associated with sloping mode levels and horizontally propagating sound waves (see Durran and
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Klemp, 1983; Dudhia, 1995). The off-centering is accomplished by using a positive (non-zero)
coefficient β (3.19) in the acoustic time-step vertical momentum equation (3.11) and geopotential
equation (3.12). An off-centering coefficient β = 0.1 is typically used in the ARW applications,
independent of time step or grid size.

4.3 Other Damping

4.3.1 Gravity Wave Absorbing Layer

A gravity-wave absorbing layer is available in the ARW solver. The absorbing layer increases the
second-order horizontal and vertical eddy viscosities in the absorbing layer using the following
formulation:

Kdh =
∆x2

∆t
γg cos

(
ztop − z

zd

π

2

)
,

and

Kdv =
∆z2

∆t
γg cos

(
ztop − z

zd

π

2

)
.

Here γg is a user-specified damping coefficient, ztop is the height of the model top for a particular
grid column, zd is the depth of the damping layer (from the model top), and Kdh and Kdv are
the horizontal and vertical eddy viscosities for the wave absorbing layer. If other spatial filters
are being used, then the eddy viscosities that are used for the second-order horizontal and
vertical eddy viscosities are the maximum of (Kh, Kdh) and (Kv, Kdv). The effect of this filter
on gravity waves is discussed in Klemp and Lilly (1978), where guidance on the choice of the
damping coefficeint γg can also be found.

4.3.2 Rayleigh Damping Layer

A Rayleigh damping layer is also available in the ARW solver. This scheme applies a tendency
to u, v, w, and θ to gradually relax the variable back to a predetermined reference state value,

∂u

∂t
= τ(z) (u− u) ,

∂v

∂t
= τ(z) (v − v) ,

∂w

∂t
= τ(z)w,

∂θ

∂t
= τ(z)

(
θ − θ

)
.

Overbars indicate the reference state fields, which are functions of z only and are typically
defined as the initial horizontally homogeneous fields in idealized simulations. The reference
state vertical velocity is assumed to be zero. The variable τ defines the vertical structure of the
damping layer, and has a form similar to the Rayleigh damper in Durran and Klemp (1983),

τ(z) =

{
−γr sin2

[
π
2

(
1− ztop−z

zd

)]
for z ≥ (ztop − zd);

0 otherwise,
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where γr is a user specified damping coeficient, ztop is the height of the model top for a particular
grid column, and zd is the depth of the damping layer (from the model top).

Because the model surfaces change height with time in the ARW solver, the reference state
values at each grid point need to be recalculated at every time step. Thus, a linear interpolation
scheme is used to calculate updated reference state values based on the height of the model
levels at each time step.

The effect of this filter on gravity waves is discussed in Klemp and Lilly (1978), where
guidance on the choice of the damping coefficeint γr can also be found.

4.3.3 Vertical-Velocity Damping

This is also called w-damping. In semi-operational or operational NWP applications, the model
robustness can be improved by detecting locations where the vertical motion approaches the
limiting Courant number for stability, and applying a Rayleigh damping term in the vertical
momentum equation to stabilize the motion. This term is non-physical and should only be used
in the situation where many, or long, model runs are being done, and there is no option for a
re-run with a shorter time-step if a failure occurs due to an excessively strong updraft. This
might be the case, for example, in an operational setting where real-time forecasts have to be
produced on time to be useful. However, if this term activates frequently, consideration should
be given to reducing the model time-step.

The term is calculated from

Cr =

∣∣∣∣Ωdtµdη

∣∣∣∣.
If Cr > Crβ, then

∂tW = ...− µd sign(W )γw(Cr − Crβ),

where γw is the damping coefficient (typically 0.3 ms−2), and Crβ is the activation Courant
number (typically 1.0). The ARW outputs the location of this damping when it is active.
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Chapter 5

Initial Conditions

The ARW may be run with initial conditions that are defined analytically for idealized simu-
lations, or it may be run using interpolated data from either a large-scale analysis or forecast
for real-data cases. Both 2D and 3D tests cases for idealized simulations are provided. Several
sample cases for real-data simulations are provided, which rely on pre-processing from an ex-
ternal package that converts the large-scale GriB data into a format suitable for ingest by the
ARW’s real-data processor.

The programs that generate the specific initial conditions for the selected idealized or real-
data case function similarly. They provide the ARW with:

• input data that is on the correct horizontal and vertical staggering;

• hydrostatically balanced reference state and perturbation fields; and

• metadata specifying such information as the date, grid physical characteristics, and pro-
jection details.

For neither the idealized nor the real-data cases are the initial conditions enhanced with obser-
vations. However, output from the ARW system initial condition programs is suitable as input
to the WRF variational assimilation package (see Chapter 9).

5.1 Initialization for Idealized Conditions

The ARW comes with a number of test cases using idealized environments, including moun-
tain waves (em hill2d x), squall lines (em squall2d x, em squall2d y), supercell thunderstorms
(em quarter ss), gravity currents (em grav2d x), and baroclinic waves (em b wave). A brief de-
scription of these test cases can be found in the README test cases file provided in the ARW
release. The test cases include examples of atmospheric flows at fine scales (e.g., the gravity
current example has a grid-spacing of 100 meters and a time step of 1 second) and examples of
flow at large scales (e.g., the baroclinic wave test case uses a grid-spacing of 100 km and a time
step of 600 s), in addition to the traditional mesoscale and cloudscale model simulations. The
test suite allows an ARW user to easily reproduce these known solutions. The test suite is also
the starting point for constructing idealized flow simulations by modifying initializations that
closely resemble a desired initialization.

All of these tests use as input a 1D sounding specified as a function of geometric height z
(except for the baroclinic wave case that uses a 2D sounding specified in [y, z]), and, with the
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exception of the baroclinic wave test case, the sounding files are in text format that can be
directly edited by the user. The 1D specification of the sounding in these test files requires the
surface values of pressure, potential temperature, and water vapor mixing ratio, followed by the
potential temperature, vapor mixing ratio, and horizontal wind components at some heights
above the surface. The initialization programs for each case assume that this moist sounding
represents an atmosphere in hydrostatic balance.

Two sets of thermodynamic fields are needed for the model— the reference state and the
perturbation state (see Chapter 2 for further discussion of the equations). The reference state
used in the idealized initializations is computed using the input sounding from which the mois-
ture is discarded (because the reference state is dry). The perturbation state is computed using
the full moist input sounding. The procedure for computing the hydrostatically-balanced ARW
reference and perturbation state variables from the input sounding is as follows. First, density
and both a dry and full hydrostatic pressure are computed from the input sounding at the input
sounding levels z. This is accomplished by integrating the hydrostatic equation vertically up the
column using the surface pressure and potential temperature as the lower boundary condition.
The hydrostatic equation is

δzp = −ρzg(1 + (Rd/Rv)qv
z), (5.1)

where ρz is a two point average between input sounding levels, and δzp is the difference of
the pressure between input sounding levels divided by the height difference. Additionally, the
equation of state is needed to close the system:

αd =
1

ρd

=
Rdθ

po

(
1 +

Rd

Rv

qv

)(
p

po

)− cv
cp

, (5.2)

where qv and θ are given in the input sounding. (5.1) and (5.2) are a coupled set of nonlinear
equations for p and ρ in the vertical integration, and they are solved by iteration. The dry
pressure on input sounding levels is computed by integrating the hydrostatic relation down from
the top, excluding the vapor component.

Having computed the full pressure (dry plus vapor) and dry air pressure on the input sound-
ing levels, the pressure at the model top (pdht) is computed by linear interpolation in height
(or possibly extrapolation) given the height of the model top (an input variable). The column
mass µd is computed by interpolating the dry air pressure to the surface and subtracting it from
pdht. Given the column mass, the dry-air pressure at each η level is known from the coordinate
definition (2.1), repeated here

η = (pdh − pdht)/µd where µd = pdhs − pdht,

and the pressures pdhs and pdht refer to the dry atmosphere. The potential temperature from
the input sounding is interpolated to each of the model pressure levels, and the equation of state
(5.2) is used to compute the inverse density αd. Finally, the ARW’s hydrostatic relation (2.9),
in discrete form

δηφ = −αdµd

is used to compute the geopotential. This procedure is used to compute the reference state
(assuming a dry atmosphere) and the full state (using the full moist sounding). The perturbation
variables are computed as the difference between the reference and full state. It should also be
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noted that in the nonhydrostatic model integration, the inverse density αd is diagnosed from
the geopotential using this equation of state, and the pressure is diagnosed from the equation of
state using the inverse density αd and the prognostic potential temperature θ. Thus, the ARW’s
prognostic variables µd, θ, and φ are in exact hydrostatic balance for the model equations (to
machine roundoff).

5.2 Initialization for Real-Data Conditions

The initial conditions for the real-data cases are pre-processed through a separate package called
the Standard Initialization (SI, see Fig. 5.1). The output from the SI is passed to the real-
data pre-processor in the ARW— program real— which generates initial and lateral boundary
conditions. This section is primarily about the steps taken to build the initial and the lateral
boundary conditions for a real-data case. Even though the SI is outside of the ARW system, a
brief description is appropriate to see how the raw meteorological and static terrestrial data are
brought into the model for real-data cases.

5.2.1 Use of the Standard Initialization by the ARW

The SI is a set of programs that takes terrestrial and meteorological data (typically in GriB
format) and transforms them for input to the ARW pre-processor program for real-data cases
(real). Figure 5.1 shows the flow of data into and out of the SI system. The first step for the
SI is to define a physical grid (including the projection type, location on the globe, number of
grid points, nest locations, and grid distances) and to interpolate static fields to the prescribed
domain. Independent of the domain configuration, an external analysis or forecast is processed
by the SI’s GriB decoder, which diagnoses required fields and reformats the GriB data into an
internal binary format. With a specified domain, the SI horizontally interpolates the meteoro-
logical data onto the projected domain(s), and vertically interpolates the data to the ARW’s
η coordinate. The output data from the SI supplies a complete 3-dimensional snapshot of the
atmosphere on the selected model grid’s horizontal and vertical staggering at the selected time
slices, which is sent to the ARW pre-processor program for real-data cases.

The input to the ARW real-data processor from the SI contains 3-dimensional fields of poten-
tial temperature (K), mixing ratio (kg/kg), and the horizontal components of momentum (m/s,
already rotated to the model projection). The 2-dimensional static terrestrial fields include:
albedo, Coriolis parameters, terrain elevation, vegetation/land-use type, land/water mask, map
scale factors, map rotation angle, soil texture category, vegetation greenness fraction, annual
mean temperature, and latitude/longitude. The 2-dimensional time-dependent fields from the
external model, after processing by the SI, include: µd (Pa), layers of soil temperature (K) and
soil moisture (kg/kg, either total moisture, or binned into total and liquid content), snow depth
(m), skin temperature (K), and fractional sea ice. All of the fields in the final output from the
SI are on the correct horizontal and vertical staggering for the ARW. The input data from the
SI is assumed to be hydrostatically balanced.
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GRID_GEN

GRIB_PREP

HINTERP

VINTERP

STATIC
DATA

GRIB
DATA
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HINTERP
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REAL-DATA
ARW

SYSTEM
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Figure 5.1: Schematic showing the data flow and program components in the SI, and how the
SI feeds initial data to the ARW. Letters in the rectangular boxes indicate program names.
GRID GEN: defines the model domain and creates static files of terrestrial data. GRIB PREP:
decodes GriB data. HINTERP: interpolates meteorological data to the model domain. VIN-
TERP: vertically interpolates data to model coordinate.

5.2.2 Reference and Perturbation State

Identical to the idealized initializations, there is a partitioning of some of the meteorological
data into reference and perturbation fields. For real-data cases, the reference state is defined by
terrain elevation and the following three constants:

• p0 (105 Pa) reference sea level pressure;

• T0 (usually 270 to 300 K) reference sea level temperature; and

• A (50 K) temperature difference between the pressure levels of p0 and p0/e.

Using these parameters, the dry reference state surface pressure is

pdhs = p0 exp

(
−T0

A
+

√(
T0

A

)2

− 2φsfc

A Rd

)
. (5.3)

From (5.3), the 3-dimensional reference pressure is computed as a function of the vertical coor-
dinate η levels and the model top pdht (input provided by SI for real-data cases):

pd = η (pdhs − pdht) + pdht. (5.4)

With (5.4), the reference temperature is a straight line on a skew-T plot, defined as

T = T0 + A ln
pd

p0

.
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From the reference temperature and pressure, the reference potential temperature is then defined
as

θd =

(
T0 + A ln

pd

p0

)(
p0

pd

)Rd
Cp

, (5.5)

and the reciprocal of the reference density using (5.4) and (5.5) is given by

αd =
1

ρd

=
Rd θd

p0

(
pd

p0

)−Cv
Cp

. (5.6)

The base state difference of the dry surface pressure from (5.3) and the model top is given as

µd = pdhs − pdht. (5.7)

From (5.6) and (5.7), the reference state geopotential defined from the hydrostatic relation is

δηφ = −αd µd.

One of the total fields provided to the real-data cases by the SI is µd. The perturbation field
given the reference value (5.7) is

µ′d = µd − µd. (5.8)

Starting with the reference state fields (5.4, 5.6, and 5.7) and the dry surface pressure perturba-
tion (5.8), the perturbation fields for pressure and inverse density are diagnosed. The pressure
perturbation includes moisture and is diagnosed from the hydrostatic equation

δηp
′ = µ′d

(
1 + qv

η

)
+ qv

η µd,

which is integrated down from at the model top (where p′ = 0) to recover p′. The total dry
inverse density is given as

αd =
Rd

p0

θ

(
1 +

Rv

Rd

qv

) (
p′d + pd

p0

)−Cv
Cp

,

which defines the perturbation field for inverse density

α′d = αd − αd.

The perturbation geopotential is diagnosed from the hydrostatic relation

δηφ
′ = −

(
µdα

′
d + µ′dαd

)
by upward integration using the terrain elevation as the lower boundary condition. In future
versions of the real-data pre-processor, p′ will be re-diagnosed consistent with the method used
in the model (2.21) as a final step. No modifications to the original µd, u, v, qv, or θ from the
SI are performed. The vertical component of velocity is initialized to zero.
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5.2.3 Generating Lateral Boundary Data

This section deals with generating the separate lateral boundary condition file used exclusively
for the real-data cases. For information on which lateral boundary options are available for both
the idealized and real-data cases, see Chapter (6).

The specified lateral boundary condition for the coarse grid for real-data cases is supplied
by an external file that is generated by program real. This file contains records for the fields u,
v, θ, qv, φ

′, and µ′d that are used by the ARW to constrain the lateral boundaries (other fields
are in the boundary file, but are not used). The lateral boundary file holds one less time period
than was processed by the SI. Each of these variables has both a valid value at the initial time
of the lateral boundary time and a tendency term to get to the next boundary time period. For
example, assuming a 3-hourly availability of data from the SI, the first time period of the lateral
boundary file for u would contain data for both coupled u (map scale factor and µd interpolated
to the variable’s staggering) at the 0 h time

U0h =
µd

xu

mx

∣∣∣∣
0h

,

and a tendency value defined as

Ut =
U3h − U0h

3h
,

which would take a grid point from the initial value to the value at the next large-scale time
during 3 simulation hours. The horizontal momentum fields are coupled both with µd and the
inverse map factor. The other 3-dimensional fields (θ, qv, and φ′) are coupled only with µd. The
µ′d lateral boundary field is not coupled.

Each lateral boundary field is defined along the four sides of the rectangular grid (loosely
referred to as the north, south, east, and west sides). The boundary values and tendencies for
vertical velocity and the non-vapor moisture species are included in the external lateral boundary
file, but act as place-holders for the nested boundary data for the fine grids. The width of the
lateral boundary along each of the four sides is user selectable at run-time.

5.2.4 Masking of Surface Fields

Some of the meteorological and static fields are “masked”. A masked field is one in which the
values are typically defined only over water (e.g., sea surface temperature) or defined only over
land (e.g., soil temperature). The need to match all of the masked fields consistently to each
other requires additional steps for the real-data cases due to the masked data’s presumed use in
various physics packages in the soil, at the surface, and in the boundary layer. If the land/water
mask for a location is flagged as a water point, then the vegetation and soil categories must also
recognize the location as the special water flag for each of their respective categorical indices.

The values for the soil temperature and soil moisture come from the SI on the native levels
originally defined for those variables in the large-scale model. The SI does no vertical inter-
polation for the soil data. While it is typical to try to match the ARW soil scheme with the
incoming data, that is not a requirement. Pre-processor real will vertically interpolate (linear in
depth below the ground) from the incoming levels to the requested soil layers to be used within
the model.
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Chapter 6

Lateral Boundary Conditions

Several lateral boundary condition options exist for the ARW that are suitable for idealized
flows, and a specified lateral boundary condition for real-data simulations is available. These
choices are handled via a run-time option in the Fortran namelist file. The coarsest grid of
any single simulation is eligible for any of the lateral boundary selections. For example, real-
data cases could use combinations of periodic, symmetric, or open lateral boundary conditions
instead of the more traditional time-dependent conditions provided by an external boundary
file. However, use of the specified time-dependent lateral boundary conditions for one of the
idealized simulations is not possible because an external boundary file is not generated. The
ARW supports rectangular horizontal grid refinement with integer ratios of the parent and child
grid distances and time steps.

For nesting, all fine domains use the nest time-dependent lateral boundary condition where
the outer row and column of the fine grid is specified from the parent domain, described in
Section 7.3.

6.1 Periodic Lateral Boundary Conditions

Periodic lateral boundary conditions in the ARW can be specified as periodic in x (west-east),
y (south-north), or doubly periodic in (x, y). The periodic boundary conditions constrain the
solutions to be periodic; that is, a generic model state variable ψ will follow the relation

ψ(x+ nLx, y +mLy) = ψ(x, y)

for all integer (n,m). The periodicity lengths (Lx, Ly) are
[(dimension of the domain in x) - 1]∆x and [(dimension of the domain in y) - 1]∆y.

6.2 Open Lateral Boundary Conditions

Open lateral boundary conditions, also referred to as gravity-wave radiating boundary condi-
tions, can be specified for the west, east, north, or south boundary, or any combination thereof.
The gravity wave radiation conditions follow the approach of Klemp and Lilly (1978) and Klemp
and Wilhelmson (1978).

There are a number of changes in the base numerical algorithm described in Chapter 3 that
accompany the imposition of these conditions. First, for the normal horizontal velocities along
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a boundary on which the condition is specified, the momentum equation for the horizontal
velocity, (3.7) or (3.8), is replaced by

δτU
′′ = −U∗δxu,

where U∗ = min(U − cb, 0) at the x = 0 (western) boundary, U∗ = max(U + cb, 0) at the x = L
(eastern) boundary, and likewise for the south and north boundaries for the V momentum. The
horizontal difference operator δx is evaluated in a one-sided manner using the difference between
the boundary value and the value one grid-point into the grid from the boundary. cb is the phase
speed of the gravity waves that are to be radiated; it is specified as a model constant (for more
details see Klemp and Lilly, 1978; Klemp and Wilhelmson, 1978).

For scalars and non-normal momentum variables, the boundary-perpendicular flux diver-
gence term is replaced with

δx(Uψ) = U∗δxψ + ψ δxU,

where U∗ = min(U, 0) at the x = 0 + ∆x/2 (western) scalar boundary, U∗ = max(U, 0) at the
x = L−∆x/2 (eastern) boundary, and likewise for the south and north boundaries using V . As
was the case for the momentum equations, the horizontal difference operator δx is evaluated in a
one-sided manner using the difference between the boundary value and the value one grid-point
into the grid from the boundary.

6.3 Symmetric Lateral Boundary Conditions

Symmetry lateral boundary conditions can be specified for the west, east, north, or south bound-
ary, or any combination thereof. The symmetry boundaries are located on the normal-velocity
planes at the lateral edges of the grids. The normal velocities are zero at these boundaries, and
on either side of the boundary the normal velocity satisfies the relation

U⊥(xb − x) = −U⊥(xb + x),

where xb is the location of the symmetry boundary. All other variables satisfy the relation

ψ(xb − x) = ψ(xb + x).

6.4 Specified Lateral Boundary Conditions

Primarily for real-data cases, the specified boundary condition is also referred to as a relaxation,
or nudging, boundary condition. There are two uses of the specified boundaries in the ARW: for
the outer-most coarse grid or for the time-dependent boundaries supplied to a nested grid. The
specified lateral boundary conditions for the nest are automatically selected for all of the fine
grids, even if the coarse grid is using combinations of the symmetry, periodic, or open options.
If the specified lateral boundary condition is selected for the coarse grid, then all four grid sides
(west, east, north, and south) use specified lateral conditions.

The coarse grid specified lateral boundary is comprised of both a specified and a relaxation
zone as shown in Fig. 6.1). For the coarse grid, the specified zone is determined entirely by
temporal interpolation from an external forecast or analysis (supplied by the SI). The width
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Figure 6.1: Specified and relaxation zones for a grid with a single specified row and column,
and four rows and columns for the relaxation zone. These are typical values used for a specified
lateral boundary condition for a real-data case.

of the specified zone is run-time configurable, but is typically set to 1 (i.e., the last row and
column along the outer edge of the coarse grid). The second region of the lateral boundary for
the coarse grid is the relaxation zone. The relaxation zone is where the model is nudged or
relaxed towards the large-scale forecast (e.g., rows and columns 2 through 5 in Fig. 6.1). The
size of the relaxation zone is a run-time option.

The specified lateral boundary condition for the coarse grid requires an external file, gener-
ated during the same pre-processing as the initial condition file. Let ψ be any prognostic value
having a lateral boundary entry, after Davies and Turner (1977),

∂tψ
∣∣
n

= F1(ψLS − ψ)− F2∆
2(ψLS − ψ), (6.1)

where n is the number of grid points in from the outer row or column along the boundary
(SpecZone+1 ≤ n ≤ SpecZone+RelaxZone− 1; see Fig. 6.1) and ψLS is the large-scale value
obtained by spatial and temporal interpolation from the analyses. ∆2 is a 5-point horizontal
smoother applied along η-surfaces. The weighting function coefficients F1 and F2 in (6.1) are
given by

F1 =
1

10∆t

SpecZone+RelaxZone− n

RelaxZone− 1
,

F2 =
1

50∆t

SpecZone+RelaxZone− n

RelaxZone− 1
,

where n extends only through the relaxation zone (SpecZone+1 ≤ n ≤ SpecZone+RelaxZone−
1). F1 and F2 are linear ramping functions with a maximum at the first relaxation row or column
nearest the coarse grid boundary (just inside of the specified zone).
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On the coarse grid, the specified boundary condition applies to the horizontal wind com-
ponents, potential temperature, φ′, µ′d, and water vapor. The lateral boundary file contains
enough information to update the boundary zone values through the entire simulation period.
The momentum fields are coupled with µd and the inverse map factor (both at the specific
variable’s horizontal staggering location), and the other 3-dimensional fields are coupled with
µd. The µ′d field is not coupled in the lateral boundary file.

Vertical velocity has a zero gradient boundary condition applied in the specified zone (usually
the outer-most row and column). Microphysical variables, except vapor, and all other scalars
have flow-dependent boundary conditions applied in the specified zone. This boundary condition
specifies zero on inflow and zero-gradient on outflow. Since these boundary conditions require
only information from the interior of the grid, these variables are not in the specified boundary
condition file.
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Chapter 7

Nesting

The ARW supports horizontal nesting that allows resolution to be focused over a region of
interest by introducing an additional grid (or grids) into the simulation. In the current im-
plementation, only horizontal refinement is available: there is no vertical nesting option. The
nested grids are rectangular and are aligned with the parent (coarser) grid within which they are
nested. Additionally, the nested grids allow any integer spatial (∆xcoarse/∆xfine) and temporal
refinements of the parent grid. This nesting implementation is in many ways similar to the
implementations in other mesoscale and cloudscale models (e.g. MM5, ARPS, COAMPS). The
major improvement in the ARW’s nesting infrastruture compared with techniques used in other
models is the ability to compute nested simulations efficiently on parallel distributed-memory
computer systems, which includes support for moving nested grids. The WRF Software Frame-
work, described in Michalakes et al. (2004), makes these advances possible. In this chapter we
describe the various nesting options available in the ARW and the numerical coupling between
the grids.

7.1 Overview

1-Way and 2-Way Grid Nesting

Nested grid simulations can be produced using either 1-way nesting or 2-way nesting as outlined
in Fig. 7.1. The 1-way and 2-way nesting options refer to how a coarse grid and the fine grid
interact. In both the 1-way and 2-way simulation modes, the fine grid boundary conditions
(i.e., the lateral boundaries) are interpolated from the coarse grid forecast. In a 1-way nest, this
is the only information exchange between the grids (from coarse grid to fine grid). Hence, the
name 1-way nesting. In the 2-way nest integration, the fine grid solution replaces the coarse grid
solution for coarse grid points that lie inside the fine grid. This information exchange between
the grids is now in both directions (coarse-to-fine and fine-to-coarse). Hence, the name 2-way
nesting.

The 1-way nest option may be run in one of two different methods. One option is to
produce the nested simulation as two separate ARW simulations as described in the leftmost
box in Fig. 7.1. In this mode, the coarse grid is integrated first. Output from the coarse
grid integration is then processed to provide boundary conditions for the nested run (usually
at a much lower temporal frequency than the coarse grid time step), and this is followed by
the complete time integration of fine (nested) grid. Hence, this 1-way option is equivalent to
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Figure 7.1: 1-way and 2-way nesting options in the ARW.

running two separate simulations with a processing step in between. Also with separate grid
simulations, an intermediate re-analysis (such as via 3D-Var, see Section 9) can be used.

The second 1-way option (lockstep with no feedback), depicted in the middle box in Fig. 7.1,
is run as a traditional simulation with two (or more) grids integrating concurrently, except with
the feedback runtime option shut off. This option provides lateral boundary conditions to the
fine grid at each coarse grid time step, which is an advantage of the concurrent 1-way method
(no feedback).

Fine Grid Initialization Options

The ARW supports several strategies to refine a coarse-grid simulation with the introduction of
a nested grid. When using 1-way and 2-way nesting, several options for initializing the fine grid
are provided.

• All of the fine grid variables can be interpolated from the coarse grid.

• All of the fine grid variables can be input from an external file which has high-resolution
information for both the meteorological and the terrestrial fields.

• The fine grid can have some of the variables initialized with a high-resolution external
data set, while other variables are interpolated from the coarse grid.

• For a moving nest, an external orography file may be used to update the fine grid terrain
elevation. This option is not generally available in this release.

These fine grid initialization settings are user specified at run-time, and the ARW allows nested
grids to instantiate and cease during any time that the fine grid’s parent is still integrating. (The
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Figure 7.2: Various nest configurations for multiple grids. (a) Telescoping nests. (b) Nests at
the same level with respect to a parent grid. (c) Overlapping grids: not allowed (d) Inner-most
grid has more than one parent grid: not allowed

system is currently constrained to starting nests at the beginning of the coarse grid simulations
if runs require input of nest-resolution terrain or other lower boundary data. This limitation
will be addressed in the near future.)

Possible Grid Configurations

A simulation involves one outer grid and may contain multiple inner nested grids. In the ARW,
each nested region is entirely contained within a single coarser grid, referred to as the parent
grid. The finer, nested grids are referred to as child grids. Using this terminology, children
are also parents when multiple levels of nesting are used. The fine grids may be telescoped to
any depth (i.e., a parent grid may contain one or more child grids, each of which in turn may
successively contain one or more child grids; Fig. 7.2a), and several fine grids may share the
same parent at the same level of nesting (Fig. 7.2b). Any valid fine grid may either be a static
domain or it may be a moving nest with prescribed incremental shifts. The ARW does not
permit overlapping grids, where a coarse grid point is contained within more than a single child
grid (i.e., both of which are at the same nest level with respect to the parent; Fig. 7.2c). In
addition, no grid can have more than a single parent (Fig. 7.2d).

For 2-way nested grid simulations, the ratio of the parent horizontal grid distance to the
child horizontal grid distance (the spatial refinement ratio) must be an integer. This is also
true for the time steps (the temporal refinement ratio). The model does allow the time step
refinement ratio to differ from the spatial refinement ratio. Also, nested grids on the same level
(i.e., children who have the same parent) may have different spatial and temporal refinement
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Figure 7.3: Arakawa-C grid staggering for a portion of a parent domain and an imbedded nest
domain with a 3:1 grid size ratio. The solid lines denote coarse grid cell boundaries, and the
dashed lines are the boundaries for each fine grid cell. The horizontal components of velocity
(“U” and “V”) are defined along the normal cell face, and the thermodynamic variables (“θ”)
are defined at the center of the grid cell (each square). The bold typeface variables along the
interface between the coarse and the fine grid define the locations where the specified lateral
boundaries for the nest are in effect.

ratios.

7.2 Nesting and Staggering

The ARW uses an Arakawa-C grid staggering. As shown in Fig. 7.3, the u and v com-
ponents of horizontal velocity are normal to the respective faces of the grid cell, and the
mass/thermodynamic/scalar variables are located in the center of the cell.

The variable staggering has an additional column of u in the x-direction and an addi-
tional row of v in the y-direction because the normal velocity points define the grid bound-
aries. The horizontal momentum components reflect an average across each cell-face, while
each mass/thermodynamic/scalar variable is the representative mean value throughout the cell.
Feedback is handled to preserve these mean values: the mass/thermodynamic/scalar fields are
fed back with an average from within the entire coarse grid point (Fig. 7.3), and the horizontal
momentum variables are averaged along their respective normal coarse grid cell faces.

The horizontal interpolation (to instantiate a grid and to provide time-dependent lateral
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boundaries) does not conserve mass. The feedback mechanism, for most of the unmasked fields,
uses cell averages (for mass/thermodynamic/scalar quantities) and cell-face averages for the
horizontal momentum fields.

The staggering defines the way that the fine grid is situated on top of the coarse grid. For all
odd ratios there is a coincident point for each variable: a location that has the coarse grid and
the fine grid at the same physical point. The location of this point depends on the variable. In
each of the coarse-grid cells with an odd ratio, the middle fine-grid cell is the coincident point
with the coarse grid for all of the mass-staggered fields (Fig. 7.3). For the horizontal momentum
variables the normal velocity has coincident points along the grid boundaries for odd ratios.

For fields that are averaged back to the coarse grid in the feedback, the mean of the nine
mass/thermodynamic/scalar (for example, due to the 3:1 grid-distance ratio in the example
shown in Fig. 7.3) fine grid points is fed back to the coarse grid. These fields include most
3D and 2D arrays. For the horizontal momentum fields averaged back to the coarse grid in
the feedback, the mean of three (for example, due to the 3:1 grid-distance ratio in the example
shown in Fig. 7.3) fine grid points is fed back to the coarse grid from along the coincident cell
face. The fields that are masked due to the land/sea category are fed back directly from the
coincident points for odd ratios. Only masked fields use the feedback method where a single
point from the fine grid is assigned to the coarse grid.

A difference between the odd and even grid-distance ratios is in the feedback from the fine
grid to the coarse grid. No coincident points exist for the single point feedback mechanisms
for even grid distance ratios (such as used for the land/sea masked 2D fields). For a 2:1 even
grid distance ratio, Figure 7.4 shows that each coarse grid point has four fine grid cells that
are equally close, and therefore four equally eligible grid points for use as the single fine-grid
point that feeds back to the coarse grid. The single-point feedback is arbitrarily chosen as the
south-west corner of the four neighboring points. This arbitrary assignment to masked fields
implies that even grid distance ratios are more suited for idealized simulations where masked
fields are less important.

7.3 Nested Lateral Boundary Conditions

For the fine grid with 2-way nesting or 1-way nesting (using a concurrent ARW simulation,
see Fig. 7.1), the boundary conditions are specified by the parent grid at every coarse-grid
time step. The nest lateral boundary condition behaves similarly to the specified boundary
condition for real-data cases (see Section 6.4), but the relaxation zone is not active. Prognostic
variables are entirely specified in the outer row and column of the fine grid through spatial and
temporal interpolation from the coarse grid (the coarse grid is stepped forward in time prior to
advancement of any child grid of that parent).

7.4 Steps to Generate a Nest Grid

Only the concurrent 1-way nest option or the 2-way nest option are considered in this section.
The 1-way nest option (using two consecutive ARW simulations, see Fig. 7.1) is functionally
similar to two separate, single-grid simulations and does not fit the following description. For a
multiple grid simulation within a single model run, there are some additional infrastructure steps
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Figure 7.4: Similar to Fig. 7.3, but with a 2:1 grid-distance ratio.

that are required (briefly described in Fig. 7.5). While the following text details a simulation
with a single coarse-grid and a single fine-grid, this implies no lack of generality when handling
multiple grid levels or multiple grids on the same level.

Nest Instantiation

The fine grid is instantiated as a child of a parent grid at the requested start time. This
initialization is within the integration step for the parent grid, so no child grid can begin if
the parent is not active. To fill in the correct meteorological fields, an initialization routine is
called to horizontally interpolate the coarse-grid data to the fine grid locations using a monotone
interpolation scheme (described in Smolarkiewicz and Grell, 1990) for most fields (i.e., the same
scheme employed for generating the fine grid lateral boundary conditions) and a simple linear
interpolation or averaging scheme for masked or categorical fields. For fields that are masked
with the land/sea background (such as land only fields (e.g., snow), or water only fields (e.g.,
sea ice)), the interpolator needs to know what field defines the template for the masking (such
as the land use category). Part of the automatic code generation handles calling each field with
its associated interpolator.
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Integrate Parent Grid One Time Step

If Nest Grid Start Time

(1) Horizontally Interpolate Parent to Child Grid
(2) Optionally Input High-Resolution Child Data
(3) Compute Child Reference State
(4) Feedback Child Initial Data to Parent Grid
(5) Re-Compute Parent Reference State

End If Nest Grid Start Time

Solve Time Step for Parent Grid (see Fig. 3.1)

While Existing Nest Grids to Integrate

(1) Lateral Forcing from Parent Grid to Child
(2) Integrate Child Grid to Current Time of Parent Grid
(3) Feedback Child Grid Information to Parent Grid

End While Existing Nest Grids to Integrate

End Grid Integrate

Figure 7.5: Nest grid integration sequence.

Fine Grid Input

After the horizontal interpolation is completed, a few orographic-based variables are saved so
that they may be used to blend the lateral boundaries along the coarse-grid/fine-grid interface.
The terrain elevation, µd, and the reference geopotential (φ) are stored for later use. The fields
selected as input from the fine grid input file (for the concurrent 1-way and 2-way forecast
methods shown in Fig. 7.1) are ingested, and they overwrite the arrays that were horizontally
interpolated from the coarse grid. No quality control for data consistency is performed for the
fine grid input. All such masked checks are completed by the ARW real-data pre-processor real.

Interface Blended Orography

When the fine grid data has been input, the previously-saved orographic-based fields are blended
across the four outer rows and columns of the fine grid. The blending is a simple linear weighting
between the interpolated coarse-grid values (the saved data) and the fine grid values from the
input file. The weighting scheme is given as:

• row/column 1: 100% interpolated coarse grid, 0% fine grid,

• row/column 2: 75% interpolated coarse grid, 25% fine grid,

• row/column 3: 50% interpolated coarse grid, 50% fine grid,

• row/column 4: 25% interpolated coarse grid, 75% fine grid, and

• row/column 5: 0% interpolated coarse grid, 100% fine grid,

where the row or column nearest the outer edge takes precedence in ambiguous corner zones.
The blended arrays are required to compute the reference state for the fine grid. The first row
and column (100% interpolated from the coarse grid) ensures that the reference state for the
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coarse grid and fine grid is consistent along the fine grid boundary interface. The blending along
the inner rows and columns ramps the coarse grid reference state to the fine grid reference state
for a smooth transition between the grids.

Feedback

So that the coarse grid and the fine grid are consistent at coincident points, the fine grid values
are fed back to the coarse grid. There are two available options for feedback: either the mean of
all fine grid cells contained within each coarse grid cell is fed back (or cell faces in the case of the
horizontal momentum fields), or a single-point feedback is selected for the masked or categorical
fields.

Subsequent to the feedback step, the coarse grid may be optionally smoothed in the area of
the fine grid. Two smoothers are available: a 5-point 1-2-1 smoother and a smoother-desmoother
with a similar stencil size. Both the feedback and the smoothers are run one row and column
in from the interface row and column of the coarse grid that provides the lateral boundary
conditions to the fine grid.

Reference State

The initial feedback when the nest is instantiated ensures that the coarse grid is consistent
with the fine grid, particularly with regards to elevation and the reference state fields inside the
blended region, and for such terrestrial features as coasts, lakes, and islands. The adjustment of
the elevation in the coarse grid forces a base state recalculation. The fine-grid needs an initial
base state calculation, and after the terrain feedback, the coarse grid is also in need of a base
state recalculation.

Note that with the horizontal interpolation of the coarse grid to the fine grid and the feedback
of the fine grid to the coarse grid, the coarse grid base state is recomputed even without a separate
fine-grid initial data file, since the coarse grid topography is adjusted.

With the completed base state computations, the routines return back to the integration
step for the coarse and fine grids. The fine grid data is now properly initialized for integration
and can be advanced forward a time step.

Integration

The integration by grid is recursive. At the end of each grid’s time step, a check is made to
determine if a child grid exists for that parent and if the current time is bracketed by the child’s
start/end time. This is shown in Fig. 7.5. The integration process for the nest (step 2 under
the while loop) is recursively calling the top step in the overall sequence as a coarse grid itself.
This is a “depth first” traversal of the tree of grids. If a child grid does exist, that child grid is
integrated up through the current time of the parent grid.
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Chapter 8

Physics

This chapter outlines the physics options available in the ARW. The WRF physics options
fall into several categories, each containing several options. The physics categories are (1)
microphysics, (2) cumulus parameterization, (3) planetary boundary layer (PBL), (4) land-
surface model, and (5) radiation. Diffusion, which may also be considered part of the physics,
is described in Chapter 4.

The physics section is insulated from the rest of the dynamics solver by the use of physics
drivers. These are between solver-dependent routines: a pre-physics preparation and post-
physics modifications of the tendencies. The physics preparation involves filling arrays with
physics-required variables that include the temperature, pressure, heights, layer thicknesses,
and other state variables in MKS units at half-level grid points and on full levels. The velocities
are also de-staggered so that the physics part is independent of the dynamical solver’s velocity
staggering. Physics packages compute tendencies for the velocity components (un-staggered),
potential temperature, and moisture fields. The solver-dependent post-physics step will re-
stagger these tendencies as necessary, couple tendencies with coordinate metrics, and convert to
variables or units appropriate to the dynamics solver.

In the first Runge-Kutta step, prior to the acoustic steps (see Fig. 3.1, step(1)), tendencies
are computed for radiation, surface, PBL, and cumulus physics. These tendencies are then held
fixed through the Runge-Kutta steps. Microphysics is computed after the last Runge-Kutta
step (see Fig. 3.1, step (9)) in order to maintain proper saturation conditions at the end of the
time-step.

The initialization of the physics is called prior to the first model step. This initialization
may include reading in data files for physics tables or calculating look-up tables of functions.
Each physics module includes an initialization routine for this purpose. Often physics packages
will have many of their own constants that should also be included in their own module, while
common physical constants are passed in from the physics drivers.

8.1 Microphysics

Microphysics includes explicitly resolved water vapor, cloud, and precipitation processes. The
model is general enough to accommodate any number of mass mixing-ratio variables, and other
moments such as number concentrations. Four-dimensional arrays with three spatial indices and
one species index are use to carry such scalars. Memory, i.e., the size of the fourth dimension
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Table 8.1: Microphysics Options

Scheme Number of Ice-Phase Mixed-Phase
Variables Processes Processes

Kessler 3 N N
Purdue Lin 6 Y Y
WSM3 3 Y N
WSM5 5 Y N
WSM6 6 Y Y
Eta GCP 2 Y Y
Thompson 7 Y Y

in these arrays, is allocated depending on the needs of the scheme chosen, and advection of the
species also applies to all those required by the microphysics option. In the current version of
the ARW, microphysics is carried out at the end of the time-step as an adjustment process, and
so does not provide tendencies. The rationale for this is that condensation adjustment should
be at the end of the time-step to guarantee that the final saturation balance is accurate for the
updated temperature and moisture. However, it is also important to have the latent heating
forcing for potential temperature during the dynamical sub-steps, and this is done by saving the
microphysical heating as an approximation for the next time-step as described in Section 3.1.4.

Currently, the sedimentation process is accounted for in the microphysics, and a smaller
time step is allowed to calculate the vertical flux of precipitation to prevent instability. The
saturation adjustment is also included inside the microphysics. In the future, however, it might
be separated into an individual subroutine to enable the remaining microphysics to be called
less frequently than the model’s advection step for efficiency.

Table 8.1 shows a summary of the options indicating the number of moisture variables, and
whether ice-phase and mixed-phase processes are included. Mixed-phase processes are those
that result from the interaction of ice and water particles, such as riming that produces graupel
or hail. As a general rule, for grid sizes less than 10 km, where updrafts may be resolved,
mixed-phase schemes should be used, particularly in convective or icing situations. For coarser
grids the added expense of these schemes is not worth it because riming is not likely to be well
resolved.

8.1.1 Kessler scheme

This scheme (Kessler, 1969), which was taken from the COMMAS model (Wicker and Wilhelm-
son, 1995), is a simple warm cloud scheme that includes water vapor, cloud water, and rain. The
microphysical processes included are: the production, fall, and evaporation of rain; the accretion
and autoconversion of cloud water; and the production of cloud water from condensation.
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8.1.2 Purdue Lin scheme

Six classes of hydrometeors are included: water vapor, cloud water, rain, cloud ice, snow, and
graupel. All parameterization production terms are based on Lin et al. (1983) and Rutledge
and Hobbs (1984) with some modifications, including saturation adjustment following Tao et al.
(1989) and ice sedimentation. This is a relatively sophisticated microphysics scheme in WRF,
and it is more suitable for use in research studies. The scheme is taken from the Purdue cloud
model, and the details can be found in Chen and Sun (2002).

8.1.3 WRF Single-Moment 3-class (WSM3) scheme

This scheme follows Hong et al. (2004) including ice sedimentation and other new ice-phase
parameterizations revised from the older NCEP3 scheme (Hong et al., 1998) that was in WRF
Version 1. A major difference from other schemes is that a diagnostic relation is used for
ice number concentration that is based on ice mass content rather than temperature. Three
categories of hydrometers are included: vapor, cloud water/ice, and rain/snow. As with Dudhia
(1989), this is a so-called simple-ice scheme wherein the cloud ice and cloud water are counted
as the same category. They are distinguished by temperature: namely, cloud ice can only exist
when the temperature is less than or equal to the freezing point; otherwise, cloud water can
exist. The same condition is applied to rain and snow. Though the ice phase is included, it is
considered efficient enough for using in operational models.

8.1.4 WSM5 scheme

This scheme is similar to the WSM3 simple ice scheme. However, vapor, rain, snow, cloud ice,
and cloud water are held in five different arrays. Thus, it allows supercooled water to exist, and
a gradual melting of snow as it falls below the melting layer. Details can be found in Hong et
al. (2004). It replaces WRF Version 1’s NCEP5 scheme (Hong et al., 1998).

8.1.5 WSM6 scheme

The six-class scheme extends the WSM5 scheme to include graupel and its associated processes.
Many of these processes are parameterized similarly to Lin et al. (1983), but there are differences
for the accretion calculation and in some other parameters. The freezing/melting processes are
computed during the fall-term sub-steps to increase accuracy in the vertical heating profile of
these processes. The order of the processes is also optimized to decrease the sensitivity of the
scheme to the time step of the model. As with WSM3 and WSM5, saturation adjustment follows
Dudhia (1989) and Hong et al. (1998) in separately treating ice and water saturation processes,
rather than a combined saturation such as the Purdue Lin (above) and Goddard (Tao et al.,
1989) schemes.

8.1.6 Eta Grid-scale Cloud and Precipitation (2001) scheme

This is also known as EGCP01 or the Eta Ferrier scheme. The scheme predicts changes in
water vapor and condensate in the forms of cloud water, rain, cloud ice, and precipitation ice
(snow/graupel/sleet). The individual hydrometeor fields are combined into total condensate,
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and it is the water vapor and total condensate that are advected in the model. Local storage ar-
rays retain first-guess information that extract contributions of cloud water, rain, cloud ice, and
precipitation ice of variable density in the form of snow, graupel, or sleet. The density of precip-
itation ice is estimated from a local array that stores information on the total growth of ice by
vapor deposition and accretion of liquid water. Sedimentation is treated by partitioning the time-
averaged flux of precipitation into a grid box between local storage in the box and fall out through
the bottom of the box. This approach, together with modifications in the treatment of rapid
microphysical processes, permits large time steps to be used with stable results. The mean size
of precipitation ice is assumed to be a function of temperature following the observational results
of Ryan (1996). Mixed-phase processes are now considered at temperatures warmer than -30◦C
(previously -10◦C), whereas ice saturation is assumed for cloudy conditions at colder tempera-
tures. Further description of the scheme can be found in Sec. 3.1 of the November 2001 Technical
Procedures Bulletin (TPB) at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/ and on
the COMET page at http://meted.ucar.edu/nwp/pcu2/etapcp1.htm.

8.1.7 Thompson et al. scheme

The Thompson et al. (2004) microphysical parameterization scheme includes improvements to
the earlier bulk scheme of Reisner et al. (1998) and has been extensively tested and compared
with both idealized case studies and documented real case studies of mid-latitude wintertime
observations. The scheme includes six classes of moisture species plus number concentration
for ice as prognostic variables. The scheme was designed to improve the prediction of freezing
drizzle events for aircraft safety warnings. Generally microphysical parameterizations have had
problems of overpredicting the amount of snow and graupel fields and under predicting the ice
in outflow regions and often not accurately predicting freezing drizzle. Key improvements are
the following:

• Primary ice nucleation as in Cooper (1986), replaces the Fletcher (1962) curve.

• Auto-conversion as in Walko et al. (1995), replaces the Kessler (1969) scheme.

• A generalized gamma distribution for graupel replaces the exponential distribution.

• The associated intercept parameter depends on mixing ratio instead of remaining constant.

• Riming growth of snow must exceed depositional growth of snow by a factor of 3 before
rimmed snow transfers into the graupel category.

• The intercept parameter of the snow size distribution depends on temperature.

• The intercept parameter for the rain size distribution depends on rain mixing ratio, thereby
simulating the fall velocity of drizzle drops as well as raindrops.

8.2 Cumulus parameterization

These schemes are responsible for the sub-grid-scale effects of convective and/or shallow clouds.
The schemes are intended to represent vertical fluxes due to unresolved updrafts and downdrafts
and compensating motion outside the clouds. They operate only on individual columns where
the scheme is triggered and provide vertical heating and moistening profiles. Some schemes
additionally provide cloud and precipitation field tendencies in the column, and future schemes
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Table 8.2: Cumulus Parameterization Options

Scheme Cloud Type of scheme Closure
Detrainment

Kain-Fritsch Y Mass flux CAPE removal
Betts-Miller-Janjic N Adjustment Sounding adjustment
Grell-Devenyi Y Mass flux Various

may provide momentum tendencies due to convective transport of momentum. The schemes all
provide the convective component of surface rainfall.

Cumulus parameterizations are theoretically only valid for coarser grid sizes, (e.g., greater
than 10 km), where they are necessary to properly release latent heat on a realistic time scale
in the convective columns. While the assumptions about the convective eddies being entirely
sub-grid-scale break down for finer grid sizes, sometimes these schemes have been found to be
helpful in triggering convection in 5–10 km grid applications. Generally, they should not be
used when the model can resolve the convective eddies itself (e.g., ≤ 5 km grid).

Table 8.2 summarizes the basic characteristics of the available cumulus parameterization
options in the ARW.

8.2.1 Kain-Fritsch

The modified version of the Kain-Fritsch scheme (KF-Eta) is based on Kain and Fritsch (1990)
and Kain and Fritsch (1993), but has been modified based on testing within the Eta model. As
with the original KF scheme, it utilizes a simple cloud model with moist updrafts and downdrafts,
including the effects of detrainment, entrainment, and relatively simple microphysics. It differs
from the original KF scheme in the following ways:

• A minimum entrainment rate is imposed to suppress widespread convection in marginally
unstable, relatively dry environments.

• Shallow (non precipitating) convection is allowed for any updraft that does not reach
minimum cloud depth for precipitating clouds; this minimum depth varies as a function
of cloud-base temperature.

• The entrainment rate is allowed to vary as a function of low-level convergence.

• Downdraft changes:

– Source layer is the entire 150 – 200 mb deep layer just above cloud base.
– Mass flux is specified as a fraction of updraft mass flux at cloud base. Fraction is

a function of source layer RH rather than wind shear or other parameters, i.e., old
precipitation efficiency relationship not used.

– Detrainment is specified to occur in updraft source layer and below.
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8.2.2 Betts-Miller-Janjic

The Betts-Miller-Janjic (BMJ) scheme (Janjic, 1994, 2000) was derived from the Betts-Miller
(BM) convective adjustment scheme (Betts, 1986; Betts and Miller, 1986). However, the BMJ
scheme differs from the Betts-Miller scheme in several important aspects. The deep convec-
tion profiles and the relaxation time are variable and depend on the cloud efficiency, a non-
dimensional parameter that characterizes the convective regime (Janjic, 1994). The cloud effi-
ciency depends on the entropy change, precipitation, and mean temperature of the cloud. The
shallow convection moisture profile is derived from the requirement that the entropy change
be small and nonnegative (Janjic, 1994). The BMJ scheme has been optimized over years of
operational application at NCEP, so that, in addition to the described conceptual differences,
many details and/or parameter values differ from those recommended in Betts (1986) and Betts
and Miller (1986). Recently, attempts have been made to refine the scheme for higher horizontal
resolutions, primarily through modifications of the triggering mechanism. In particular:

• A floor value for the entropy change in the cloud is set up below which the deep convection
is not triggered;

• In searching for the cloud top, the ascending particle mixes with the environment; and
• The work of the buoyancy force on the ascending particle is required to exceed a prescribed

positive threshold.

8.2.3 Grell-Devenyi ensemble

Grell and Devenyi (2002) introduced an ensemble cumulus scheme in which effectively multiple
cumulus schemes and variants are run within each grid box and then the results are averaged
to give the feedback to the model. In principle, the averaging can be weighted to optimize the
scheme, but the default is an equal weight. The schemes are all mass-flux type schemes, but with
differing updraft and downdraft entrainment and detrainment parameters, and precipitation
efficiencies. These differences in static control are combined with differences in dynamic control,
which is the method of determining cloud mass flux. The dynamic control closures are based on
convective available potential energy (CAPE or cloud work function), low-level vertical velocity,
or moisture convergence. Those based on CAPE either balance the rate of change of CAPE or
relax the CAPE to a climatological value, or remove the CAPE in a convective time scale. The
moisture convergence closure balances the cloud rainfall to the integrated vertical advection
of moisture. Another control is the trigger, where the maximum cap strength that permits
convection can be varied. These controls typically provide ensembles of 144 members.

8.3 Surface Layer

The surface layer schemes calculate friction velocities and exchange coefficients that enable
the calculation of surface heat and moisture fluxes by the land-surface models and surface
stress in the planetary boundary layer scheme. Over water surfaces, the surface fluxes and
surface diagnostic fields are computed in the surface layer scheme itself. The schemes provide no
tendencies, only the stability-dependent information about the surface layer for the land-surface
and PBL schemes. Currently, each surface layer option is tied to particular boundary-layer
options, but in the future more interchangeability and options may become available.
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8.3.1 Similarity theory (MM5)

This scheme uses stability functions from Paulson (1970), Dyer and Hicks (1970), and Webb
(1970) to compute surface exchange coefficients for heat, moisture, and momentum. A convective
velocity following Beljaars (1994) is used to enhance surface fluxes of heat and moisture. No
thermal roughness length parameterization is included in the current version of this scheme.
A Charnock relation relates roughness length to friction velocity over water. There are four
stability regimes following Zhang and Anthes (1982). This surface layer scheme must be run in
conjunction with the MRF or YSU PBL schemes.

8.3.2 Similarity theory (Eta)

The Eta surface layer scheme (Janjic, 1996, 2002) is based on similarity theory (Monin and
Obukhov, 1954). The scheme includes parameterizations of a viscous sub-layer. Over water
surfaces, the viscous sub-layer is parameterized explicitly following Janjic (1994). Over land,
the effects of the viscous sub-layer are taken into account through variable roughness height for
temperature and humidity as proposed by Zilitinkevich (1995). The Beljaars (1994) correction
is applied in order to avoid singularities in the case of an unstable surface layer and vanishing
wind speed. The surface fluxes are computed by an iterative method. This surface layer scheme
must be run in conjunction with the Eta (Mellor-Yamada-Janjic) PBL scheme, and is therefore
sometimes referred to as the MYJ surface scheme.

8.4 Land-Surface Model

The land-surface models (LSMs) use atmospheric information from the surface layer scheme,
radiative forcing from the radiation scheme, and precipitation forcing from the microphysics
and convective schemes, together with internal information on the land’s state variables and
land-surface properties, to provide heat and moisture fluxes over land points and sea-ice points.
These fluxes provide a lower boundary condition for the vertical transport done in the PBL
schemes (or the vertical diffusion scheme in the case where a PBL scheme is not run, such as in
large-eddy mode). [Note that large-eddy mode with interactive surface fluxes is not yet available
in the ARW, but is planned for the near future.] The land-surface models have various degrees of
sophistication in dealing with thermal and moisture fluxes in multiple layers of the soil and also
may handle vegetation, root, and canopy effects and surface snow-cover prediction. The land-
surface model provides no tendencies, but does update the land’s state variables which include
the ground (skin) temperature, soil temperature profile, soil moisture profile, snow cover, and
possibly canopy properties. There is no horizontal interaction between neighboring points in the
LSM, so it can be regarded as a one-dimensional column model for each WRF land grid-point,
and many LSMs can be run in a stand-alone mode. Table 8.3 summarizes the basic features of
the land-surface treatments in ARW.

8.4.1 5-layer thermal diffusion

This simple LSM is based on the MM5 5-layer soil temperature model. Layers are 1, 2, 4, 8, and
16 cm thick. Below these layers, the temperature is fixed at a deep-layer average. The energy
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Table 8.3: Land Surface Options

Scheme Vegetation Soil Snow
Processes Variables (Layers) Scheme

5-layer N Temperature (5) none
Noah Y Temperature, Water+Ice, Water (4) 1-layer, fractional
RUC Y Temperature, Ice, Water + Ice (6) multi-layer

budget includes radiation, sensible, and latent heat flux. It also allows for a snow-cover flag, but
the snow cover is fixed in time. Soil moisture is also fixed with a landuse- and season-dependent
constant value, and there are no explicit vegetation effects.

8.4.2 Noah LSM

The Noah LSM is the successor to the OSU LSM described by Chen and Dudhia (2001). The
scheme was developed jointly by NCAR and NCEP, and is a unified code for research and
operational purposes, being almost identical to the code used in the NCEP North American
Mesoscale Model (NAM). This has the benefit of being consistent with the time-dependent soil
fields provided in the analysis datasets. This is a 4-layer soil temperature and moisture model
with canopy moisture and snow cover prediction. It includes root zone, evapotranspiration, soil
drainage, and runoff, taking into account vegetation categories, monthly vegetation fraction,
and soil texture. The scheme provides sensible and latent heat fluxes to the boundary-layer
scheme. The Noah LSM additionally predicts soil ice, and fractional snow cover effects, has an
improved urban treatment, and considers surface emissivity properties, which are all new since
the OSU scheme.

8.4.3 Rapid Update Cycle (RUC) Model LSM

This is a LSM with 6 sub-soil layers and up to two snow layers that is used operationally in the
RUC model (Smirnova et al., 1997, 2000). The model considers frozen soil processes, patchy
snow, with snow temperature and density variation, vegetation effects, and canopy water.

8.5 Planetary Boundary Layer

The planetary boundary layer (PBL) is responsible for vertical sub-grid-scale fluxes due to eddy
transports in the whole atmospheric column, not just the boundary layer. Thus, when a PBL
scheme is activated, explicit vertical diffusion is de-activated with the assumption that the PBL
scheme will handle this process. The most appropriate horizontal diffusion choices (Section
4.1.3) are those based on horizontal deformation or constant Kh values where horizontal and
vertical mixing are treated independently. The surface fluxes are provided by the surface layer
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Table 8.4: Planetary Boundary Layer Options

Scheme Unstable PBL Entrainment PBL Top
Mixing treatment

MRF K profile + countergradient term part of PBL mixing from critical bulk Ri
YSU K profile + countergradient term explicit term from buoyancy profile
MYJ K from prognostic TKE part of PBL mixing from TKE

and land-surface schemes. The PBL schemes determine the flux profiles within the well-mixed
boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature,
moisture (including clouds), and horizontal momentum in the entire atmospheric column. Most
PBL schemes consider dry mixing, but can also include saturation effects in the vertical stability
that determines the mixing. The schemes are one-dimensional, and assume that there is a clear
scale separation between sub-grid eddies and resolved eddies. This assumption will become less
clear at grid sizes below a few hundred meters, where boundary layer eddies may start to be
resolved, and in these situations the scheme should be replaced by a fully three-dimensional
local sub-grid turbulence scheme such as the TKE diffusion scheme (Section 4.1.4.) Table 8.4
summarizes the basic features of the PBL schemes in ARW.

8.5.1 Medium Range Forecast Model (MRF) PBL

The scheme is described by Hong and Pan (1996). This PBL scheme employs a so-called
counter-gradient flux for heat and moisture in unstable conditions. It uses enhanced vertical
flux coefficients in the PBL, and the PBL height is determined from a critical bulk Richardson
number. It handles vertical diffusion with an implicit local scheme, and it is based on local Ri
in the free atmosphere.

8.5.2 Yonsei University (YSU) PBL

The Yonsei University PBL is the next generation of the MRF PBL, also using the counter-
gradient terms to represent fluxes due to non-local gradients. This adds to the MRF PBL
an explicit treatment of the entrainment layer at the PBL top. The entrainment is made
proportional to the surface buoyancy flux in line with results from studies with large-eddy
models. The PBL top is defined using a critical bulk Richardson number of zero (compared to
0.5 in the MRF PBL), so is effectively only dependent on the buoyancy profile which, in general,
lowers the calculated PBL top compared to MRF.

8.5.3 Mellor-Yamada-Janjic (MYJ) PBL

This parameterization of turbulence in the PBL and in the free atmosphere (Janjic, 1990, 1996,
2002) represents a nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence clo-
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Table 8.5: Radiation Options

Scheme Longwave/ Spectral CO2, O3, clouds
Shortwave Bands

RRTM LW 16 CO2, O3, clouds
GFDL LW LW 14 CO2, O3, clouds
GFDL SW SW 12 CO2, O3, clouds
MM5 SW SW 1 clouds
Goddard SW 11 CO2, O3, clouds

sure model (Mellor and Yamada, 1982) through the full range of atmospheric turbulent regimes.
In this implementation, an upper limit is imposed on the master length scale. This upper limit
depends on the TKE as well as the buoyancy and shear of the driving flow. In the unstable
range, the functional form of the upper limit is derived from the requirement that the TKE pro-
duction be nonsingular in the case of growing turbulence. In the stable range, the upper limit
is derived from the requirement that the ratio of the variance of the vertical velocity deviation
and TKE cannot be smaller than that corresponding to the regime of vanishing turbulence. The
TKE production/dissipation differential equation is solved iteratively. The empirical constants
have been revised as well (Janjic, 1996, 2002).

8.6 Atmospheric Radiation

The radiation schemes provide atmospheric heating due to radiative flux divergence and surface
downward longwave and shortwave radiation for the ground heat budget. Longwave radiation
includes infrared or thermal radiation absorbed and emitted by gases and surfaces. Upward
longwave radiative flux from the ground is determined by the surface emissivity that in turn
depends upon land-use type, as well as the ground (skin) temperature. Shortwave radiation
includes visible and surrounding wavelengths that make up the solar spectrum. Hence, the only
source is the Sun, but processes include absorption, reflection, and scattering in the atmosphere
and at surfaces. For shortwave radiation, the upward flux is the reflection due to surface albedo.
Within the atmosphere the radiation responds to model-predicted cloud and water vapor dis-
tributions, as well as specified carbon dioxide, ozone, and (optionally) trace gas concentrations.
All the radiation schemes in WRF currently are column (one-dimensional) schemes, so each col-
umn is treated independently, and the fluxes correspond to those in infinite horizontally uniform
planes, which is a good approximation if the vertical thickness of the model layers is much less
than the horizontal grid length. This assumption would become less accurate at high horizontal
resolution. Table 8.5 summarizes the basic features of the radiation schemes in the ARW.
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8.6.1 Rapid Radiative Transfer Model (RRTM) Longwave

This RRTM, which is taken from MM5, is based on Mlawer et al. (1997) and is a spectral-band
scheme using the correlated-k method. It uses pre-set tables to accurately represent longwave
processes due to water vapor, ozone, CO2, and trace gases (if present), as well as accounting for
cloud optical depth.

8.6.2 Eta Geophysical Fluid Dynamics Laboratory (GFDL) Long-
wave

This longwave radiation scheme is from GFDL. It follows the simplified exchange method of
Fels and Schwarzkopf (1975) and Schwarzkopf and Fels (1991), with calculation over spectral
bands associated with carbon dioxide, water vapor, and ozone. Included are Schwarzkopf and
Fels (1985) transmission coefficients for carbon dioxide, a Roberts et al. (1976) water vapor
continuum, and the effects of water vapor-carbon dioxide overlap and of a Voigt line-shape
correction. The Rodgers (1968) formulation is adopted for ozone absorption. Clouds are ran-
domly overlapped. This scheme is implemented to conduct comparisons with the operational
Eta model.

8.6.3 Eta Geophysical Fluid Dynamics Laboratory (GFDL) Short-
wave

This shortwave radiation is a GFDL version of the Lacis and Hansen (1974) parameterization.
Effects of atmospheric water vapor, ozone (both from Lacis and Hansen, 1974), and carbon
dioxide (Sasamori et al., 1972) are employed. Clouds are randomly overlapped. Shortwave
calculations are made using a daylight-mean cosine solar zenith angle over the time interval
(given by the radiation call frequency).

8.6.4 MM5 (Dudhia) Shortwave

This scheme is base on Dudhia (1989) and is taken from MM5. It has a simple downward
integration of solar flux, accounting for clear-air scattering, water vapor absorption (Lacis and
Hansen, 1974), and cloud albedo and absorption. It uses look-up tables for clouds from Stephens
(1978).

8.6.5 Goddard Shortwave

This scheme is based on Chou and Suarez (1994). It has a total of 11 spectral bands and
considers diffuse and direct solar radiation components in a two-stream approach that accounts
for scattered and reflected components. Ozone is considered with several climatological profiles
available.
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Table 8.6: Physics Interactions. Columns correspond to model physical processes: radiation
(Rad), microphysics (MP), cumulus parameterization (CP), planetary boundary layer/vertical
diffusion (PBL), and surface physics (Sfc). Rows corresponds to model variables where i and o
indicate whether a variable is input or output (updated) by a physical process.

Rad MP CP PBL Sfc

Atmospheric Momentum i io
State or Pot. Temp. io io io io
Tendencies Water Vapor i io io io

Cloud i io o io
Precip i io o

Surface Longwave Up i o
Fluxes Longwave Down o i

Shortwave Up i o
Shortwave Down o i
Sfc Convective Rain o i
Sfc Resolved Rain o i
Heat Flux i o
Moisture Flux i o
Surface Stress i o
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8.7 Physics Interactions

While the model physics parameterizations are categorized in a modular way, it should be
noted that there are many interactions between them via the model state variables (potential
temperature, moisture, wind, etc.) and their tendencies, and via the surface fluxes. Table 8.6
summarizes how the various physics processes interact in the model. In the table, i indicates
that the state variable or flux is required input for the physics scheme, and o indicates that the
tendency or flux is a probable output of the scheme. It can be seen that all the physical schemes
interact in some way with the surface physics (land-surface models, and, potentially, coupled
ocean models). The surface physics, while not explicitly producing tendencies of atmospheric
state variables, is responsible for updating the land-state variables.

Note also that, as mentioned, the microphysics does not output tendencies, but updates the
atmospheric state at the end of the model time-step. However, the rest of the o’s in the upper
half of the table are representative of the physical tendencies of these variables in the model.

The radiation, cumulus parameterization, and boundary-layer schemes all output tendencies,
but the tendencies are not added until later in the solver, so from this perspective the order
of call is not important. Moreover, these physics schemes do not have to be called at the
same frequency as each other or the model time step. When lower frequencies are used, their
tendencies are kept constant between calls. This is typically done for the radiation schemes,
which are too expensive to call every time, and for the cumulus schemes, for which it is also not
necessary. However, the surface/boundary-layer schemes are normally called every step in the
ARW because this is likely to give the best results.

The radiation is called first because of the required radiative fluxes that are input to the
land-surface scheme. The land-surface also requires rainfall from the microphysics and cumulus
schemes, but that is from the previous time-step. The boundary-layer scheme is necessarily after
the land-surface scheme because it requires the heat and moisture fluxes.
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Chapter 9

Variational Data Assimilation

An introduction to the basic ideas of variational data assimilation and the WRF-Var system is
given in this chapter, followed by a brief overview of recent major improvements to WRF-Var.
This overview supplements the original description of the three-dimensional variational (3D-Var)
algorithm found in Barker et al. (2004). One of the most important additions to WRF-Var is a
new utility gen be, used to calculate background error covariances for a user’s own application;
it is discussed in the latter half of this chapter. The WRF-Var system is evolving rapidly, and a
future technical note will accompany the general release of the 4D-Var component of WRF-Var.
That technical note will include an extensive description of the entire WRF-Var system.

9.1 Introduction

The basic goal of any variational data assimilation system is to produce an optimal estimate
of the true atmospheric state at analysis time through iterative solution of a prescribed cost-
function (Ide et al., 1997):

J(x) = Jb(x) + Jo(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(y − yo)T (E + F)−1(y − yo). (9.1)

The variational problem can be summarized as the iterative minimization of (9.1) to find the
analysis state x that minimizes J(x). This solution represents the a posteriori maximum like-
lihood (minimum variance) estimate of the true state of the atmosphere given the two sources
of a priori data: the first guess (or background) xb and observations yo (Lorenc, 1986). The
fit to individual data points is weighted by estimates of their errors: B, E, and F are the back-
ground, observation (instrumental), and representivity error covariance matrices, respectively.
Representivity error is an estimate of inaccuracies introduced in the observation operator H
used to transform the gridded analysis x to observation space y = H(x) for comparison against
observations. This error will be resolution dependent and may also include a contribution from
approximations (e.g., linearizations) in H.

As described in Barker et al. (2004), the particular variational data assimilation algorithm
adopted in WRF-Var is a model-space, incremental formulation of the variational problem. In
this approach, observations, previous forecasts, their errors, and physical laws are combined to
produce analysis increments xa′

, which are added to the first guess xb to provide an updated
analysis.
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Figure 9.1: Sketch showing the relationship between datasets (circles), and algorithms (rectan-
gles) of the ARW system.

Figure 9.1 illustrates the relationship between WRF-Var, the various datasets, and the other
components of a typical NWP system (here ARW). The WRF-Var assimilation proceeds as
described in Barker et al. (2004). A number of recent upgrades to the WRF-Var algorithm will
be described in Section 9.2.

The three inputs to WRF-Var are:

a) First guess xb— In cold-start mode, this is typically a forecast/analysis from another
model interpolated to the ARW grid (and variables) via the WRF SI and real programs. In
cycling mode, the first guess is a short-range (typically 1–6 hour) ARW forecast.

b) Observations yo— In the current version of WRF-Var, observations may be supplied
either in a text (MM5 3D-Var) format or BUFR format (but not a combination of the two).
An observation preprocessor (3DVAR OBSPROC) is supplied with the code release to perform
basic quality control, assign observation errors, and reformat observations from the MM5 little r
text format into 3D-Var’s own text format. Details can be found in Barker et al. (2003, 2004).

c) Background error covariances B— used to define the spatial and multivariate response of
the analysis to an observation. In variational systems, these covariances are typically calculated
off-line, and significant tuning is required to optimize performance for a particular application
(e.g., Ingleby (2001); Wu et al. (2002)). The amount of work required to do this satisfactorily
is significant, and should not be underestimated. In order to assist the user, WRF developers
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supply the following: i) a default set of statistics used for the initial set up of a domain; ii) a
utility gen be (described in Section 9.3) to process ensembles of forecasts into the appropriate
control variable space; and iii) diagnostic routines to assess the accuracy of observation and
background error statistics. These routines include both innovation vector-based approaches
(Hollingsworth and Lonnberg, 1986) and variational tuning approaches (Desroziers and Ivanov,
2001).

Following assimilation of all data, an analysis xa is produced that must be merged with the
existing lateral boundary conditions xlbc (described in Barker et al. (2003)). Note: In cycling
mode, only the wrfbdy lateral boundary condition files (xlbc) output of SI/real are used, and
not the wrfinput initial condition files (xb). In cold-start mode, both are required.

9.2 Improvements to the WRF-Var Algorithm

9.2.1 Improved vertical interpolation

The original WRF 3D-Var system described in Barker et al. (2004) used height interpolation
for all observation operators. If an observation is reported as a function of pressure, then height
is approximated using the hydrostatic relation. This step introduces an unnecessary source
of error. The new WRF-Var system performs vertical interpolation in terms of the original
observed coordinate, i.e., pressure or height.

9.2.2 Improved minimization and “outer loop”

The default WRF-Var cost function minimization uses a modified version of the limited memory
Quasi-Newton Method (QNM). Recently, an alternative Conjugate Gradient Method (CGM) has
been implemented. Unlike the QNM technique, the CGM method restricts 3D-Var’s inner loop
to be completely linear. This limitation is dealt with through the inclusion of an outer loop
in WRF-Var, the purpose of which is to iterate towards nonlinear solutions (e.g., observation
operators, balance constraints, and the forecast itself in 4D-Var) using the WRF-Var analysis
from the previous iteration as new background. The outer loop is also used as a form of
variational quality control as follows: observations are rejected if their O-B values are outside
a prescribed range (typically several times the observation error standard deviation). This
errormax test implicitly assumes the rejected large O-B values are due to a bad observation
(O) rather than poor background (B). However, if it is the background B that is incorrect then
the system will reject the most useful observations available to the assimilation system, i.e.,
those in areas where the first-guess is poor. The outer loop alleviates this effect by allowing
observations rejected in previous iterations to be accepted if their new O-B falls within the
required range in subsequent outer loops. The assimilation of nearby observations in previous
iterations essentially provides a “buddy check” to the observation in question.

9.2.3 Flexible choice of control variables

In practical variational data assimilation schemes, the background error covariance matrix B is
computed not in model space x′ : u, v, T, q, ps, but in a control variable space v related to model
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space via the control variable transform U, i.e.,

x′ = Uv = UpUvUhv. (9.2)

The expansion U = UpUvUh represents the various stages of covariance modeling: horizontal
correlations Uh, vertical covariances Uv, and multivariate covariances Up.

The components of v are chosen so that their error cross-correlations are negligible, thus
permitting the matrix B to be block-diagonalized. The many varying applications (high/low
resolution, polar/tropical, etc.) of WRF-Var require a flexible choice of background error model.
This is achieved via a namelist option “cv options” as defined in Table 9.1.

2 3 4 5
cv options

(original MM5) (NCEP) (Global) (Regional)

Analysis
x′ u′,v′,T ′,q′,ps

′(i, j, k)
Increment

Change of
Up ψ′,χ′,p′u,q

′ ψ′,χ′u,T
′
u,r

′,p′suVariable

Vertical
Uv B = EΛET RF B = EΛET

Covariances

Horizontal
Uh RF Spectral RF

Correlations

Control
v v(i, j,m) v(i, j, k) v(l, n,m) v(i, j,m)

Variables

Table 9.1: The definitions of the various stages of the control variable transform given by (9.2) for
the unified global/regional WRF-Var system. Indices (i, j, k) refer to grid-point space, index m
to vertical mode, and l, n to global spectral mode. The variables are: u, v: velocity components;
T : temperature; q: mixing ratio; ps: surface pressure; ψ: streamfunction; χ: velocity potential;
r: relative humidity. The subscript u indicates an unbalanced field. The acronym RF stands
for recursive filter.

Table 9.1 indicates that the only difference between global (cv options=4) and WRF regional
(cv options=5) versions of the WRF-Var control variable transform is in the horizontal error
correlations Uh. Note also, the only difference between the old MM5 background error model
(cv options=2) and WRF regional (cv options=5) is in the Up transform. The former imposes a
dynamical balance constraint via an unbalanced pressure control variable (Barker et al., 2004),
whereas in the new regional covariance model, balance is imposed via statistical regression (see
Section 9.3 for details). This choice of control variables is considered more appropriate for the
mass-based ARW solver.
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9.2.4 First Guess at Appropriate Time (FGAT)

A First Guess at Appropriate Time (FGAT) procedure has been implemented in WRF-Var (Lee
et al., 2004). The FGAT capability results in a more accurate calculation of innovation vectors
(observation minus first guess difference), and hence a better use of observations when their valid
time differs from that of the analysis. FGAT is most effective for the analysis of observations
from asynoptic, moving platforms (e.g., aircraft and satellite data). Surface observations with
high temporal resolution also benefit from the use of FGAT.

9.2.5 Radar Data Assimilation

Numerous modifications have been made in order to assimilate Doppler radar radial velocity
and reflectivity observations. Firstly, vertical velocity increments are included in WRF-Var via
the “Richarson balance equation” that combines the continuity equation, adiabatic thermody-
namic equation, and hydrostatic relation. Linear and adjoint codes of Richardson’s equation
have been incorporated into WRF-Var. In order to develop a capability for Doppler reflectivity
assimilation, we use the total water as a control variable, requiring a partitioning of the moisture
and water hydrometeor increments. A warm-rain parameterization is also included, which in-
cludes condensation of water vapor into cloud, accretion of cloud by rain, automatic conversion
of cloud to rain, and evaporation of rain to water vapor. Finally, the observation operators for
Doppler radial velocity and reflectivity are included in WRF-Var. Further details and results of
the radial velocity work can be found in Xiao et al. (2005). The radar reflectivity approach will
be described in a future paper.

9.2.6 Unified Regional/Global 3D-Var Assimilation

There are many benefits to having a single data assimilation system for regional and global
applications. The majority of the code is common to both (observation operators, minimization,
background error preconditioning, interpolation, etc.). Technically, the main changes required
to extend the regional application to global are related to the presence of a) the polar singularity,
and b) periodic East-West boundary conditions. Of course, there are also scientific questions
concerning the optimal mix of observations required for global/regional models, and the choice
of control variables and balance constraints. A unified global/regional 3D-Var system should
therefore be flexible to a variety of thinning/quality-control algorithms and also to alternative
formulations of the background error covariance matrix. This flexibility has been a key design
requirement throughout the WRF-Var project.

The major difference between regional and global options in WRF-Var is in the definition
of horizontal background error covariances. In regional mode, recursive filters (Purser et al.,
2003) are used to project observation information away from the observation location. In global
mode, a spectral decomposition is applied. The main benefits of the spectral technique are a)
the isotropic and homogeneous covariances that are implied neatly solve the problems associated
with the pole (the pole is not a special point in spectral space), and b) horizontal correlations
are defined in terms of a single function— the power spectrum (a function of total wavenumber).
However, the isotropy of correlation defined in spectral space is also a weakness— anisotropies
need to be defined in an alternative manner. One solution to this problem is to replace the
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spectral correlations with grid-point correlations (e.g., in the Gridpoint Statistical Interpolation
scheme under development at NCEP). An alternative technique is to supplement the isotropic
spectral correlations with an anisotropic component derived via grid transformations, additional
control variables or 4D-Var. Research using the latter techniques is underway using the WRF-
Var system.

The WRF-Var code has been adapted to perform assimilation on a global, regular latitude-
longitude grid. The major modifications are as follows.

a) Spectral to grid-point transformations (and their adjoints) have been included in 3D-Var
to represent the horizontal component (Uh) of the background error covariance model.

b) A new global WRF-Var registry was created to accommodate the output of global forecast
models (currently only the Korean Meteorological Administration’s (KMA) global model has
been tested). The final analysis increments are written in binary format and added back to the
global first guess to provide the global analysis in the native model format.

c) Changes have been made to allow for periodic boundary conditions in the East–West
direction.

d) A number of minor changes have been made to treat the polar rows as special points (e.g.,
in the grid-point ψ, χ to u, v wind conversion in the Up transform and the observation operators
for polar winds).

9.3 Background Error Covariances

Forecast (“first guess” or “background”) error covariances are a vital input to variational data
assimilation systems. They influence the analysis fit to observations and also completely define
the analysis response away from observations. The latter impact is particularly important
in data-sparse areas of the globe. Unlike ensemble filter data assimilation techniques (e.g.,
the Ensemble Adjustment Kalman Filter, the Ensemble Transform Kalman Filter), 3/4D-Var
systems do not implicitly evolve forecast error covariances in real-time. Instead, climatologic
statistics are usually estimated offline. The “NMC-method”, in which forecast error covariances
are approximated using forecast difference (e.g., T+48 minus T+24) statistics, is a commonly
used approach (Parrish and Derber, 1992). Experiments at ECMWF (Fisher, 2003) indicate
superior statistics may be obtained using a cycling analysis/forecast ensemble prediction system
based on perturbed observations/physics.

Recent advances permit the use of flow-dependent forecast error covariances in 3D/4D-Var
through, for example, grid transformations (Desroziers, 1997), anisotropic recursive filters (Wu
et al., 2002; Purser et al., 2003), or observation-space formulations of the variational problem
(Daley and Barker, 2001). Flow-dependence may be enhanced in 4D-Var through the use of the
forecast model to provide dynamical consistency to the evolving forecast state during 4D-Var’s
time window (Rabier et al., 1998). Still, the practical effort required to specify and implement
flow-dependent error covariances in 3/4D-Var is significant.

The NMC-method code developed for MM5 3D-Var (Barker et al., 2004) is nearing the end
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of its useful life. The development of a unified global/regional WRF-Var system, and its appli-
cation to a variety of models (e.g., ARW, MM5, KMA global model, Taiwan’s Nonhydrostatic
Forecast System [NFS]) has required a new, efficient, portable forecast background error covari-
ance calculation code to be written. There is also a demand for such a capability to be available
and supported for the wider 3/4D-Var research community for application to their own geo-
graphic areas of interest (the default statistics supplied with the WRF-Var release are designed
only as a starting point). In this section, the new gen be code developed by NCAR/MMM to
generate forecast error statistics for use with the WRF-Var system is described.

The background error covariance matrix is defined as

B = εεT ' x′x′T , (9.3)

where the overbar denotes an average over time and/or geographical area. The true background
error ε is not known in reality, but is assumed to be statistically well-represented by a model state
perturbation x′. In the standard NMC-method (Parrish and Derber, 1992), the perturbation
x′ is given by the difference between two forecasts (e.g., 24 hour minus 12 hour) verifying
at the same time. Climatological estimates of background error may then be obtained by
averaging such forecast differences over a period of time (e.g., one month). An alternative
strategy proposed by (Fisher, 2003) makes use of ensemble forecast output, defining the x′

vectors as ensemble perturbations (ensemble minus ensemble mean). In either approach, the
end result is an ensemble of model perturbation vectors from which estimates of background
error may be derived. The new gen be utility has been designed to work with either forecast
difference, or ensemble-based, perturbations.

As described above, the WRF-Var background error covariances are specified not in model
space x′, but in a control variable space v, which is related to the model variables (e.g., wind
components, temperature, humidity, and surface pressure) via the control variable transform
defined in (9.2). Both (9.2) and its adjoint are required in WRF-Var. In contrast, the back-
ground error code performs the inverse control variable transform v = U−1

h U−1
v U−1

p x′ in order
to accumulate statistics for each component of the control vector v.

Using the NMC-method, x′ = xT2 − xT1 where T2 and T1 are the forecast difference times
(e.g., 48h minus 24h for global, 24h minus 12h for regional). Alternatively, for an ensemble-based
approach, xk

′ = xk− x̄, where the overbar is an average over ensemble members k = 1, ne. The
total number of binary files produced by this stage is nf ×ne where nf is the number of forecast
times used (e.g., for 30 days with forecast every 12 hours, nf = 60). Using the NMC-method,
ne = 1 (1 forecast difference per time). For ensemble-based statistics, ne is the number of
ensemble members.

The background error covariance generation code gen be is designed to process data from a
variety of regional/global models (e.g., ARW, MM5, KMA global model, NFS, etc.), and process
it in order to provide error covariance statistics for use in variational data assimilation systems.
The initial, model-dependent “stage 0” is illustrated in Fig. 9.2.

Alternative models use different grids, variables, data formats, etc., and so initial converters
are required to transform model output into a set of standard perturbation fields (and metadata),
and to output them in a standard binary format for further, model-independent processing. The
standard grid-point fields are as follows.

• Perturbations: Streamfunction ψ′(i, j, k), velocity potential χ′(i, j, k), temperature T ′(i, j, k),
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Figure 9.2: Sketch of the role of Stage 0 converters in transforming model-specific data (e.g.,
ARW, KMA global model, etc.) to standard perturbation fields and relevant metadata (e.g.,
latitude, height, land/sea, etc.).

relative humidity r′(i, j, k), surface pressure p′s(i, j).

• Full-fields: height z(i, j, k), latitude φ(i, j). (These are required for the production of
background error statistics stored in terms of physics variables, rather than tied to a
specific grid. This flexibility is included in gen be through a namelist option to define the
bins over which data is averaged in a variety of ways (e.g., latitude height, grid points).
Land-sea and orographic effects may also be represented in this way.

In general, the stage 0 converters are developed and maintained by those supporting indi-
vidual models. Only the WRF-to-standard-fields converter gen be stage0 wrf is maintained and
supported by the ARW effort.

9.3.1 Removal of time-mean

In order to calculate covariances between fields, the average value must first be removed. This
is performed in the first stage utility gen be stage1.

9.3.2 Multivariate Covariances: Regression coefficients and unbal-
anced variables

The WRF-Var system permits a variety of background error covariance models to be employed,
as described in Section 9.2.3 above. The utility gen be is used to provide background error
statistics only for cv options 4 and 5.
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The second stage of gen be (gen be stage2) provides statistics for the unbalanced fields χu,
Tu, and Psu used as control variables in WRF-Var. The unbalanced control variables are defined
as the difference between full and balanced (or correlated) components of the field. In this stage
of the calculation of background errors, the balanced component of particular fields is modeled
via a regression analysis of the field using specified predictor fields (e.g., streamfunction; see
Wu et al. (2002) for further details). The resulting regression coefficients are output for use
in WRF-Var’s Up transform. Currently, three regression analyses are performed resulting in
three sets of regression coefficients (Note: The perturbation notation has been dropped for the
remainder of this chapter for clarity.):

• Velocity potential/streamfunction regression: χb = cψ;

• Temperature/streamfunction regression: Tb,k1 =
∑

k2Gk1,k2ψk2; and

• Surface pressure/streamfunction regression: psb =
∑
kWkψk.

Data is read from all nf × ne files and sorted into bins defined via the namelist option
bin type. Regression coefficients G(k1, k2) and W (k) are computed individually for each bin
(bin type=1 is used here, representing latitudinal dependence) in order to allow representation
of differences between, for example, polar, mid-latitude, and tropical dynamical and physical
processes. In addition, the scalar coefficient c used to estimate velocity potential errors from
those of streamfunction is calculated as a function of height to represent, for example, the
impact of boundary-layer physics. Latitudinal/height smoothing of the resulting coefficients
may be optionally performed to avoid artificial discontinuities at the edges of latitude/height
boxes.

Having computed regression coefficients, the unbalanced components of the fields are calcu-
lated as χu = χ − cψ, Tu,k1 = Tk1 −

∑
k2Gk1,k2ψk2, and psu = ps −

∑
k Wkψk. These fields are

output for the subsequent calculation of the spatial covariances as described below.

9.3.3 Vertical Covariances: Eigenvectors/eigenvalues and control vari-
able projections

The third stage (gen be stage3) of gen be calculates the statistics required for the vertical com-
ponent of the control variable transform. This calculation involves the projection of 3D fields
on model-levels onto empirical orthogonal functions (EOFs) of the vertical component of back-
ground error covariances (Barker et al., 2004). For each 3D control variable (ψ, χu, Tu, and r),
the vertical component of B, is calculated and an eigenvector decomposition performed. The
resulting eigenvectors E and eigenvalues Λ are saved for use in WRF-Var.

The gen be code calculates both domain-averaged and local values of the vertical component
of the background error covariance matrix. The definition of local again depends on the value
of the namelist variable bin type chosen. For example, for bin type=1, a kz × kz (where kz
is the number of vertical levels) vertical component of B is produced at every latitude (data
is averaged over time and longitude) for each control variable. Eigendecomposition of the re-
sulting climatological vertical error covariances B = EΛET results in both domain-averaged
and local eigenvectors E and eigenvalues Λ. Both sets of statistics are included in the dataset
supplied to WRF-Var, allowing the choice between homogeneous (domain-averaged) or local
(inhomogeneous) background error variances and vertical correlations to be chosen at run time
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(Barker et al., 2004). Having calculated and stored eigenvectors and eigenvalues, the final part
of gen be stage3 is to project the entire sequence of 3D control variable fields into EOF space
vv = U−1

v vp = Λ−1/2ETvp.

9.3.4 Horizontal Covariances: Recursive filter lengthscale (regional),
or power spectra (global)

The last aspect of the climatological component of background error covariance data required
for WRF-Var is the horizontal error correlations, the representation of which forms the largest
difference between running WRF-Var in regional and global mode. (It is however, still a fairly
local change.)

In a global application (gen be stage4 global), power spectra are computed for each of the kz
vertical modes of the 3D control variables ψ, χu, Tu, and r, and for the 2D control variable psu

data. In contrast, in regional mode, horizontal correlations are computed between grid-points
of each 2D field, binned as a function of distance. A Gaussian curve is then fitted to the data
as described in Barker et al. (2004) to provide correlation lengthscales for use in the recursive
filter algorithm.
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Appendix A

Physical Constants

The following is a list of physical constants used in the model.

π = 3.1415926 Pi
k = 0.4 Von Karman constant
re = 6.370× 106 m Radius of earth
g = 9.81 m s−2 Acceleration due to gravity
Ωe = 7.2921× 10−5 s−1 Angular rotation rate of the earth
σB = 5.67051× 10−8 W m−2 K−4 Stefan− Boltzmann constant
Rd = 287 J kg−1 K−1 Gas constant for dry air
Rv = 461.6 J kg−1 K−1 Gas constant for water vapor
cp = 7×Rd/2 J kg−1 K−1 Specific heat of dry air at constant pressure
cv = cp −Rd J kg−1 K−1 Specific heat of dry air at constant volume
cpv = 4×Rv J kg−1 K−1 Specific heat of water vapor at constant pressure
cvv = cpv −Rv J kg−1 K−1 Specific heat of water vapor at constant volume
cliq = 4190 J kg−1 K−1 Specific heat capacity of water
cice = 2106 J kg−1 K−1 Specific heat capacity of ice
Lv = 2.5× 106 J kg−1 Latent heat of vaporization
Ls = 2.85× 106 J kg−1 Latent heat of sublimation
Lf = 3.50× 105 J kg−1 Latent heat of fusion
ρw = 1.0× 103 kg m−3 Density of liquid water
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Appendix B

List of Symbols

Symbols used in this document are listed in alphabatical order in this appendix.

Symbols Definition

a generic variable
A coefficient (Chapter 4), base-state lapse rate constant (Chapter 5)
B background error covariance matrix
c scalar coefficient
cs speed of sound
Ck a constant used in TKE closure
Cr Courant number
Crmax maximum Courant number
Crtheory Courant number from Table 3.1
Crβ activation Courant number in vertical velocity damping
Cs a constant used in eddy viscosity calculation
D deformation
Dnm deformation tensor, where n,m = 1, 2 and 3
e cosine component of the Coriolis term (Chapters 2, 3); turbulent kinetic energy

(Chapter 4)
E observation error covariance matrix
f sine component of the Coriolis term
F forcing terms for U , V , W , Θ and Qm

F representivity error covariance matrix
FXcor Coriolis forcing terms for X = U , V , and W
F1,2 coefficients for weighting functions in specified boundary condition
g acceleration due to gravity
Gk regression coefficient
H observation operator
J cost function
Kdh,dv horizontal and vertical eddy viscosity for gravity wave absorbing layer
Kh,v horizontal and vertical eddy viscosities
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Symbols Definition

l0 minimum length scale for dissipation
lh,v horizontal and vertical length scales for turbulence
lcr critical length scale for dissipation
L latent heat of condensation
Lx,y periodicity length in x and y
m map scale factor
ns ratio of the RK3 time step to the acoustic time step
N Brunt-Väisälä frequency
p pressure
p′ perturbation pressure
p0 reference sea-level pressure
ph hydrostatic pressure
pht,hs hydrostatic pressure at the top and surface of the model
pdht,dhs dry hydrostatic pressure at the top and surface of the model
ps surface pressure
Pr Prandtl number
q generic scalar
qc,i,r,s mixing ratios for cloud water, ice, rain water and snow
qm generic mixing ratios for moisture
qv mixing ratio for water vapor
qvs saturation mixing ratio for water vapor
Qm generic coupled moisture variable
r relative humidity
re radius of earth
R remaining terms in equations
Rd gas constant for dry air
Rv gas constant for water vapor
t time
∆t a full model time step
T temperature
T0 reference sea-level temperature
u horizontal component of velocity in x-direction
U coupled horizontal component of velocity in x-direction (Chapters 2, 3, 6, 7);

control variable transform (Chapter 9)
Uh horizontal correlation
Up multivariate covariance
Uv vertical covariance
v horizontal component of velocity in y-direction
v three dimensional vector velocity
V coupled horizontal component of velocity in y-direction
V three dimensional coupled vector velocity
w vertical component of velocity
W coupled vertical component of velocity
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Symbols Definition

Wk regression coefficient
z height
zd depth of damping layer
ztop height of model top
α inverse density of air
α′ perturbation inverse density of air
ᾱ inverse density of air for the reference state
αd inverse density of dry air
αr local rotation angle between y-axis and the meridian
β off-centering coefficient for semi-implicit acoustic step
γ ratio of heat capacities for dry air at constant pressure and volume
γd divergence damping coefficient
γe external mode damping coefficient
γg damping coefficient for upper boundary gravity wave absorbing layer
γr Rayleigh damping coefficient
ε molecular weight of water over the molecular weight of dry air (Chapter 4);

true background error (Chapter 9)
η terrain-following hydrostatic-pressure vertical coordinate
η̇ contravariant ‘vertical’ velocity or coordinate velocity
θ potential temperature
θe equivalent potential temperature
θm moist potential temperature
Θ coupled potential temperature
µ hydrostatic pressure difference between surface and top of the model
µ̄ reference state hydrostatic pressure difference between surface and top of the

model
µd dry hydrostatic pressure difference between surface and top of the model
τ acoustic time (Chapter 3), vertical structure function for Rayleigh damping

(Chapter 4)
τnm stress tensor (Chapter 4) where n.m = 1, 2 and 3
∆τ acoustic time step
φ geopotential (Chapters 2, 3, 5); latitude (Chapter 9)
φ̄ geopotential for reference state
φ′ perturbation geopotential
Φ generic prognostic variable (coupled)
ψ generic variable (Chapter 6)
ψ′ streamfunction increment
χ′ velocity potential increment
ω same as η̇
Ω coupled coordinate velocity
Ωe angular rotation rate of the earth
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Subscripts/Superscripts Definition

()d dry
()h hydrostatic
()0 base state sea-level constant

() reference state
()′ perturbation from reference state
()t∗ full value at a Runge-Kutta step
()′′ perturbation from Runge-Kutta step value in acoustic steps
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Appendix C

Acronyms

AFWA Air Force Weather Agency
API Application Program Interface
ARPS Advanced Regional Prediction System
ARW Advanced Research WRF
BUFR Binary Universal Form for the Representation of Meteorological Data
CAPE Convectively Available Potential Energy
CAPS Center for the Analysis and Prediction of Storms
CGM Conjugate Gradient Method
COAMPS Coupled Ocean / Atmosphere Mesoscale Prediction System
COMET Cooperative Program for Operational Meteorology, Education, and Training
DTC Developmental Testbed Center
ECMWF The European Centre for Medium-Range Weather Forecasts
EOF Empirical Orthogonal Function
ESMF Earth System Modeling Framework
FAA Federal Aviation Administration
FGAT First Guess at Appropriate Time
FSL Forecast System Laboratory
GFDL Geophysical Fluid Dynamics Laboratory
GFS Global Forecast System
GRIB Gridded Binary
KMA Korean Meteorological Administration
LSM Land Surface Model
MKS Meter Kilogram Second
MM5 Pennsylvania State / NCAR Mesoscale Model Version 5
MMM Mesoscale and Microscale Meteorology Division
MRF Medium Range Forecast Model
NAM North American Mesoscale Model
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NFS Non-hydrostatic Forecast System (Central Weather Bureau of Taiwan)
NMM Nonhydrostatic Mesoscale Model
NOAA National Oceanographic and Atmospheric Administration
NRL Navy Research Laboratory
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NWP Numerical Weather Prediction
OSU Oregon State University
PBL Planetary Boundary Layer
PPM Piecewise Parabolic Method
QNM Quasi Newton Method
RHS Right Hand Side
RRTM Rapid Radiative Transfer Model
RUC Rapid Update Cycle
SI (WRF) Standard Initialization
TKE Turbulent Kinetic Energy
UCAR University Corporation for Atmospheric Research
YSU Yonsei University (Korea)
VAR Variational Assimilation
WRF Weather Research and Forecasting Model
WSF WRF Software Framework

82



Bibliography

Barker, D. M., W. Huang, Y.-R. Guo, and A. Bourgeois, 2003: A Three-Dimensional Variational
(3DVAR) Data Assimilation System For Use With MM5. NCAR Tech Note, NCAR/TN-
453+STR, 68 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO,
80307.].

Barker, D. M., W. Huang, Y.-R. Guo, A. Bourgeois, and X. N. Xiao, 2004: A Three-Dimensional
Variational Data Assimilation System for MM5: Implementation and Initial Results Mon.
Wea. Rev., 132, 897–914.

Beljaars, A.C.M., 1994: The parameterization of surface fluxes in large-scale models under free
convection, Quart. J. Roy. Meteor. Soc., 121, 255–270.

Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical
basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column
tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc.,
112, 693–709.

Carpenter, R. L., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of
the Piecewise Parabolic Method (PPM) to meteorological modeling. Mon. Wea. Rev., 118,
586–612.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the
Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation.
Mon. Wea. Rev., 129, 569–585.

Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor.
Soc. Japan, 80, 99–118.

Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization
for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.

Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement — A Scientific
Challenge, Meteor. Monogr., No. 43, Amer. Met. Soc., 29–32.

Daley, R., and E. Barker, 2001: NAVDAS: Formulation and Diagnostics. Mon. Wea. Rev., 129,
869–883.

83



Davies, H. C., and R. E. Turner, 1977: Updating prediction models by dynamical relaxation:
An examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225–245.

Deardorff, J. W., 1972 Numerical investigation of neutral and unstable planetary boundary
layers, J. Atmos. Sci., 29, 91–115.

Desroziers, G., 1997: A coordinate change for data assimilation in spherical geometry of frontal
structures. Mon. Wea. Rev., 125, 3030–3039.

Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error param-
eters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127, 1433–1452.

Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment
using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.

Dudhia, J., 1995: Reply, Mon. Wea. Rev., 123, 2571–2575.

Durran, R. D., and J. B. Klemp, 1983: A compressible model for the simulation of moist
mountain waves, Mon. Wea. Rev., 111, 2341–2361.

Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer, Quart.
J. Roy. Meteor. Soc., 96, 715–721.

Easter, R. C., 1993: Two modified versions of Bott’s positive definite numerical advection
scheme. Mon. Wea. Rev., 121, 297–304.

Fels, S. B. and M. D. Schwarzkopf, 1975: The Simplified Exchange Approximation: A New
Method for Radiative Transfer Calculations, J. Atmos. Sci., 32, 1475–1488.

Fisher, M., 2003: Background error covariance modeling. Seminar on Recent Development in
Data Assimilation for Atmosphere and Ocean, 45–63, ECMWF.

Fletcher, N. H., 1962: The Physics Of Rain Clouds. Cambridge University Press, 386 pp.

Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection com-
bining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1693.

Haltiner, G. J., and R. T. Williams, 1980: Numerical prediction and dynamic meteorology. John
Wiley & Sons, Inc., 477pp.

Hollingsworth, A., and P. Lonnberg, 1986: The Statistical Structure Of Short-Range Forecast
Errors As Determined From Radiosonde Data. Part I: The Wind Field. Tellus, 38A, 111–136.

Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range
forecast model, Mon. Wea. Rev., 124, 2322–2339.

Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme
for a regional spectral model, Mon. Wea. Rev., 126, 2621–2639.

84



Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Pro-
cesses for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 132,
103–120.

Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation:
Operational, sequential and variational. J. Met. Soc. Japan, 75, 181–189.

Ingleby, N. B., 2001: The statistical structure of forecast errors and its representation in the
Met. Office global 3-D variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 127,
209–232.

Janjic, Z. I., 1990: The step-mountain coordinate: physical package, Mon. Wea. Rev., 118,
1429–1443.

Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the con-
vection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 122, 927–945.

Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical
Weather Prediction, Norfolk, VA, 19–23 August; Amer. Meteor. Soc., Boston, MA, 354–355.

Janjic, Z. I., 2000: Comments on ”Development and Evaluation of a Convection Scheme for Use
in Climate Models”, J. Atmos. Sci., 57, p. 3686.

Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the
NCEP Meso model, NCEP Office Note, No. 437, 61 pp.

Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model
and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802.

Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The
Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A.
Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.

Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circu-
lation, Meteor. Monogr., 32, Amer. Meteor. Soc., 84 pp.

Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves, J.
Atmos. Sci., 35, 78–107.

Klemp, J. B., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm
dynamics, J. Atmos. Sci., 35, 1070–1096.

Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation
in the earth’s atmosphere. J. Atmos. Sci., 31, 118–133.

Laprise R., 1992: The Euler Equations of motion with hydrostatic pressure as as independent
variable, Mon. Wea. Rev., 120, 197–207.

Lee, M.-S., D. Barker, W. Huang and Y.-H. Kuo, 2004: First Guess at Appropriate Time
(FGAT) with WRF 3DVAR. WRF/MM5 Users Workshop, 22–25 June 2004, Boulder, Col-
orado.

85



Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a
cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport
schemes. Mon. Wea. Rev., 124, 2046–2070.

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor.
Soc., 112, 1177–1194.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical
fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

Michalakes, J., J. Dudhia, D. Gill, J. Klemp, and W. Skamarock, 1999: Design of a next-
generation regional weather research and forecast model, Towards Teracomputing, World Sci-
entific, River Edge, New Jersey, 117–124.

Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang,
2004: The Weather Research and Forecast Model: Software Architecture and Performance.
To appear in proceeding of the Eleventh ECMWF Workshop on the Use of High Performance
Computing in Meteorology. 25–29 October 2004, Reading, U.K., Ed. George Mozdzynski.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative
transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-
wave. J. Geophys. Res., 102 (D14), 16663–16682.

Monin, A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of
the atmosphere. Contrib. Geophys. Inst. Acad. Sci., USSR, (151), 163–187 (in Russian).

Ooyama K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere, J.
Atmos. Sci., 47, 2580–2593.

Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical
Interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763.

Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles
in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.

Purser, R. J., W. -S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the
application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous
and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 1524–1535.

Rabier, F., H., J. N. Thepaut, and P. Courtier, 1998: Extended assimilation and forecast
experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor.
Soc., 124, 1861–1887.

Reisner, J. R., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled
liquid water in in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor.
Soc., 124, 1071–1107.

86



Roberts, R. E., J. E. A. Selby, and L. M. Biberman, 1976: Infrared continuum absorption by
atmospheric water-vapor in 8–12 um window. Applied Optics, 15 (9), 2085–2090.

Rodgers, C. D., 1968: Some extensions and applications of the new random model for molecular
band transmission. Quart. J. Roy. Meteor. Soc., 94, 99–102.

Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization
of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of
precipitation development in narrow cloud-frontal rainbands. J. Atmos. Sci., 20, 2949–2972.

Ryan, B. F., 1996: On the global variation of precipitating layer clouds. Bull. Amer. Meteor.
Soc., 77, 53–70.

Sasamori, T., J. London, and D. V. Hoyt, 1972: Radiation budget of the Southern Hemisphere.
Meteor. Monogr., 13, No. 35, 9–23.

Schwarzkopf, M. D., and S. B. Fels, 1985: Improvements to the algorithm for computing CO2
transmissivities and cooling rates. J. Geophys. Res., 90 (ND6), 541–550.

Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited — An
accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys.
Res., 96 (D5), 9075–9096.

Skamarock W. C. and J. B. Klemp, 1992: The Stability of Time-Split Numerical Methods for
the Hydrostatic and the Nonhydrostatic Elastic Equations, Mon. Wea. Rev.: 120, 2109–2127.

Skamarock W. C., 2005: Timesplitting techniques for multidimensional transport, available at
http://www.mmm.ucar.edu/individual/skamarock/advect3d 2005.pdf, 26 pp.

Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model
configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev.,
125, 1870–1884.

Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold-
season processes in the MAPS land-surface scheme. J. Geophys. Res., 105 (D3), 4077–4086.

Smolarkiewicz, P. K., and G. A. Grell, 1990: A class of monotone interpolation schemes, J.
Comp. Phys., 101, 431–440.

Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization
schemes, J. Atmos. Sci., 35, 2123–2132.

Tao, W.-K., J. Simpson, and M. McCumber 1989: An ice-water saturation adjustment, Mon.
Wea. Rev., 117, 231–235.

Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipita-
tion using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis.
Mon. Wea. Rev., 132, 519–542.

87



Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: Newe RAMS cloud
microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 29–62.

Wang, W., D. Barker, C. Bruyère, J. Dudhia, D. Gill, and J. Michalakes, 2004: WRF Version
2 modeling system user’s guide. http://www.mmm.ucar.edu/wrf/users/docs/user guide/.

Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability,
Quart. J. Roy. Meteor. Soc., 96, 67–90.

Wicker, L. J. and W. C. Skamarock, 2002: Time splitting methods for elastic models using
forward time schemes, Mon. Wea. Rev., 130, 2088–2097.

Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development
and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703.

Wu, W. -S., R. J. Purser, and D. F. Parrish, 2002: Three-Dimensional Variational Analysis with
Spatially Inhomogeneous Covariances. Mon. Wea. Rev., 130, 2905–2916.

Xiao, Q. N., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005:
Assimilation of Doppler Radar Observations with a Regional 3D–Var System: Impact of
Doppler Velocities on Forecasts of a Heavy Rainfall Case. J. Appl. Met., 44(6), 768–788.

Zhang, D.-L., and R.A. Anthes, 1982: A high-resolution model of the planetary boundary layer–
sensitivity tests and comparisons with SESAME–79 data. J. Appl. Meteor., 21, 1594–1609.

Zilitinkevich, S. S., 1995: Non-local turbulent transport: pollution dispersion aspects of coher-
ent structure of convective flows, Air Pollution III — Volume I. Air Pollution Theory and
Simulation, Eds. H. Power, N. Moussiopoulos and C.A. Brebbia. Computational Mechanics
Publications, Southampton Boston, 53–60.

88


	Acknowledgments
	Introduction
	Advanced Research WRF
	Major Features of the ARW System

	Governing Equations
	Vertical Coordinate and Variables
	Flux-Form Euler Equations
	Inclusion of Moisture
	Map Projections, Coriolis and Curvature Terms
	Perturbation Form of the Governing Equations

	Model Discretization
	Temporal Discretization
	Runge-Kutta Time Integration Scheme
	Acoustic Integration
	Full Time-Split Integration Sequence
	Diabatic Forcing
	Hydrostatic Option

	Spatial Discretization
	Acoustic Step Equations
	Coriolis and Curvature Terms
	Advection

	Stability Constraints
	RK3 Time Step Constraint
	Acoustic Time Step Constraint


	Turbulent Mixing and Model Filters
	Explicit Spatial Diffusion
	Horizontal and Vertical Diffusion on Coordinate Surfaces
	Horizontal and Vertical Diffusion in Physical Space
	Computation of the Eddy Viscosities
	TKE equation for the 1.5 Order Turbulence Closure

	Filters for the Time-split RK3 scheme
	Divergence Damping
	External Mode Filter
	Semi-Implicit Acoustic Step Off-centering

	Other Damping
	Gravity Wave Absorbing Layer
	Rayleigh Damping Layer
	Vertical-Velocity Damping


	Initial Conditions
	Initialization for Idealized Conditions
	Initialization for Real-Data Conditions
	Use of the Standard Initialization by the ARW
	Reference and Perturbation State
	Generating Lateral Boundary Data
	Masking of Surface Fields


	Lateral Boundary Conditions
	Periodic Lateral Boundary Conditions
	Open Lateral Boundary Conditions
	Symmetric Lateral Boundary Conditions
	Specified Lateral Boundary Conditions

	Nesting
	Overview
	Nesting and Staggering
	Nested Lateral Boundary Conditions
	Steps to Generate a Nest Grid

	Physics
	Microphysics
	Kessler scheme
	Purdue Lin scheme
	WRF Single-Moment 3-class (WSM3) scheme
	WSM5 scheme
	WSM6 scheme
	Eta Grid-scale Cloud and Precipitation (2001) scheme
	Thompson et al. scheme

	Cumulus parameterization
	Kain-Fritsch
	Betts-Miller-Janjic
	Grell-Devenyi ensemble

	Surface Layer
	Similarity theory (MM5)
	Similarity theory (Eta)

	Land-Surface Model
	5-layer thermal diffusion
	Noah LSM
	Rapid Update Cycle (RUC) Model LSM

	Planetary Boundary Layer
	Medium Range Forecast Model (MRF) PBL
	Yonsei University (YSU) PBL
	Mellor-Yamada-Janjic (MYJ) PBL

	Atmospheric Radiation
	Rapid Radiative Transfer Model (RRTM) Longwave
	Eta Geophysical Fluid Dynamics Laboratory (GFDL) Longwave
	Eta Geophysical Fluid Dynamics Laboratory (GFDL) Shortwave
	MM5 (Dudhia) Shortwave
	Goddard Shortwave

	Physics Interactions

	Variational Data Assimilation
	Introduction
	Improvements to the WRF-Var Algorithm
	Improved vertical interpolation
	Improved minimization and ``outer loop"
	Flexible choice of control variables
	First Guess at Appropriate Time (FGAT)
	Radar Data Assimilation
	Unified Regional/Global 3D-Var Assimilation

	Background Error Covariances
	Removal of time-mean
	Multivariate Covariances: Regression coefficients and unbalanced variables
	Vertical Covariances: Eigenvectors/eigenvalues and control variable projections
	Horizontal Covariances: Recursive filter lengthscale (regional), or power spectra (global)


	Physical Constants
	List of Symbols
	Acronyms
	References

