Variable Names	Input Option	Description
&time_control		options for time control
run_days	1	run time in days
run_hours	0	run time in hours *note: if it is
		more than 1 day, you may use both
		run_days and run_hours or just
		run_hours. e.g. if the total run
		length is 36 hrs, you may set
		run_days = 1, and run_hours = 12,
		or run_days = 0, and run_hours =
		36
run_minutes	0	run time in minutes
run_seconds	0	run time in seconds
start_year (max_dom)	2012	4 digit year of starting time
start_month (max_dom)	06	2 digit month of starting time
start_day (max_dom)	11	2 digit day of starting time
start_hour (max_dom)	12	2 digit hour of starting time
<pre>start_minute (max_dom)</pre>	00	2 digit minute of starting time
<pre>start_second (max_dom)</pre>	00	2 digit second of starting time
		*note: the start time is used to
		name the first wrfout file. It also
		controls the start time for nest
		domains, and the time to restart
end_year (max_dom)	2012	4 digit year of ending time
end_month (max_dom)	06	2 digit month of ending time
end_day (max_dom)	12	2 digit day of ending time
end_hour (max_dom)	12	2 digit hour of ending time
end_minute (max_dom)	00	2 digit minute of ending time
end_second (max_dom_	00	2 digit second of ending time
		*note: all end times also control
		when the nest domain integrations
		end. All start and end times are
		used by <i>real.exe</i> . You may use
		either run_days/run_hours/etc. or
		end_year/month/day/hour/etc. to
		control the length of model
		integration; but
		run_days/run_hours takes
		precedence over the end times.
		The program <i>real.exe</i> uses start
		and end times only
interval_seconds	10800	time interval between the incoming
		real data, which will be the interval
		between the lateral boundary
		condition file (for <i>real</i> only)

input_from_file (max_dom)	.true.	(logical); whether the nested run will have input files for domains other than domain 1
fine_input_stream (max_dom)		selected fields from nest input
	0	(default) all fields from nest input are used
	2	only nest input specified from input stream 2 (defined in the Registry) are used. In V3.2, this requires io_form_auxinput2 to be set
history_interval (max_dom)	60	history output file interval in minutes (integer only)
history_interval_d (max_dom)	1	history output file interval in days (integer only); used as an alternative to history interval
history_interval_h (max_dom)	1	history output file interval in hours (integer only); used as an alternative to history_interval
history_interval_m (max_dom)	1	history output file interval in minutes (integer only); used as an alternative to history_interval and is equivalent to history interval
history_interval_s (max_dom)	1	history output file interval in seconds (integer only); used as an alternative to history_interval
frames_per_outfile (max_dom)	1	number of output times bulked into each history file; used to split output files into smaller pieces
restart	.false.	(logical); whether this run is a restart
restart_interval	1440	restart output file interval in minutes
override_restart_timers	.false.	(default) uses restart output intervals given by the wrfrst files
	.true.	uses restart output intervals given by the namelist
write_hist_at_0h_rst	.false.	(default) does not give a history file at the initial time of restart (prevents overwriting original

		history file at this time)
	.true.	gives a history file at the initial
	.true.	time of restart
regat simulation start	.false.	whether to overwrite the
reset_simulation_start	.Taise.	
		simulation start date with the
·		forecast start time
auxinput1_inname	"met_em.d <domain></domain>	(default); name of input file from
	<date>"</date>	WPS
auxinput4_inname	"wrflowinp_d <domai< td=""><td>name of input file for lower</td></domai<>	name of input file for lower
	n>"	boundary file; works with
		sst_update = 1
auxinput4_interval	360	file interval in minutes for lower
(max_dom)		boundary file; works with
		sst_update = 1
io_form_auxinput4	2	IO format for wrflowinp files;
		required for V3.2; works with
		sst_update = 1
io_form_history		the format in which the history
		output file will be
	2	netCDF
	102	split netCDF files, one per
		processor *note: no supported
		post-processing software for split
		files
	1	binary format *note: no supported
		post-processing software available
	4	PHDF5 format *note: no
		supported post-processing software
		available
	5	GRIB1
	10	GRIB2
	11	parallel netCDF
io form restart		the format in which the restart
		output files will be
	2	nedCDF
	102	split netCDF files, one per
		processor (must restart with the
		same number of processors)
io form input		the format of the input files
	2	netCDF
	102	allows the program <i>real.exe</i> to read
		in split met em* files, and write
		split wrfinput files. No split
		file for the wrfbdy file.
is form houndary		-
io_form_boundary		the format for the wrfbdy file

	2	netCDF format
	4	PHD5 format
	5	GRIB1 format
	10	GRIB2 format
	11	pnetCDF format
io form auxinput2	11	IO format for input stream 2 data
	2	netCDF format
	4	PHD5 format
	5	GRIB1 format
	10	GRIB2 format
	10	pnetCDF format
diag print	0	
diag_print	0	(default) When set to 1 or 2, it
		allows some simple diagnostic
	1	fields to be output
	1	domain-averaged 3-hourly
		hydrostatic surface pressure
		tendency (Dpsfc/Dt), and dry-
		hydrostatic column pressure
		tendency (Dmu/Dt) will appear in stdout file.
	2	
	2	in addition to those listed above,
		domain-averaged rainfall, surface
		evaporation, and sensible and
		latent heat fluxes will be output in stdout file.
dahua laval	0	
debug_level	0	giving this a larger value (50, 100,
		200, etc.) increases the debugging
anniat? antrama	""""""""""""""""""""""""""""""""""""""	print-outs when running WRF
auxhist2_outname	"rainfall_d <domain>"</domain>	file name to write additional output
		to a different unit or output
		stream. If not specified,
		<i>auxhist2_d<domain>_<date></date></domain></i> will be used. Also note that to write
		variables in output other than the
		history file requires either a change in the Registry.EM_COMMON
		file, or the use of the option
		iofields_filename option.
annihist? internal	10	the interval in minutes for the
auxhist2_interval	10	
(max_dom) io form auxhist2		output
	2	output format for using auxhist2 netCDF format
	4 5	PHD5 format
		GRIB1 format
	10	GRIB2 format
	11	pnetCDF format

frames_per_auxhist2	1000	how many output times will be in
(max_dom)		each output file
auxinput11_interval	10	interval in minutes for obs nudging
		input. It should be set as the same
		(or more) frequency as
		obs_ionf (with the unit of the
		coarse domain time step)
auxinput11_end_h	6	end of the observation time (in
		hours), when using the
		diag_print option
nocolons	.false.	when set to .true. this replaces the
		colons with underscores in the
		output file names
write_input	.true.	write input-formatted data as
		output for 3DVAR application
inputout_interval	180	interval in minutes when using the
		write_input option
input_outname	"wrf_3dvar_input_d<	Output file name from 3DVAR
	domain> <date>"</date>	
inputout_begin_y	0	beginning year to write 3DVAR
		data
inputout_begin_d	0	beginning day to write 3DVAR
		data
inputout_begin_h	3	beginning hour to write 3DVAR
		data
inputout_begin_m	0	beginning minute to write 3DVAR
		data
inputout_begin_s	0	beginning second to write 3DVAR
		data
inputout_end_y	0	ending year to write 3DVAR data
inputout_end_d	0	ending day to write 3DVAR data
inputout_end_h	12	ending hour to write 3DVAR data
inputout_end_m	0	ending minute to write 3DVAR
		data
inputout_end_s	0	ending second to write 3DVAR
		data
		*NOTE: The above example
		shows that the input-formatted
		data are output starting from
		hour 3 to hour 12 in a 180-min
11	0.1	interval.
all_ic_times	.false.	when set to .true., allows you to
		output a wrfinput file for all time
		periods
output_diagnostics	0	turned off

	1	36 surface diagnostic arrays (max/min/mean/std) in the time interval are specified. The output goes to auxiliary history output stream 3 with default file name 'wrfxtrm_d <domain>_<date>.' You must also set io_form_auxhist3 =2, auxhist3_interval = 1440, 1440, and frames_per_auxhist3 = 1000, 1000.</date></domain>
nwp_diagnostics	0	turned off
	1	output 7 history-interval maximum or mean diagnostic fields in wrfout: 10 m surface wind max, max positive and negative w, max helicity in the 2-5 km layer, mean w, max column-integrated graupel
iofileds_filename	"my_iofields_list.txt"	an option to request particular variables to appear in output, if they are not already, or to not appear if they do and you do not want them to. You must also create a text file (<i>my_iofields_list</i> .txt) in which you will declare the variables to be output. It will be a single line of text, e.g.: +:h:7:RAINC, RAINNC or - :h:0:RAINC, RAINNC
ignore_iofields_warning	.true.	tells the model to continue if an error is encountered in the user- specified files
	.false.	tells the model to abort if an error is encountered in the user-specified files
&domains		dimensions, nesting, parameters
time_step	60	time step for integration seconds (recommended 6*dx in km for a typical case)
time_step_fract_num	0	numerator for fractional time step
time_step_fract_den	1	denominator for fractional time step. E.g., if you want to use 60.3 sec as your time step, set

		time step = 60,
		<pre>time_step_fract_num = 3,</pre>
		and time_step_fract_den
		= 10.
time step dfi	60	time step when setting dfi opt
time_step_un	00	= 1, may be different from the
		regular time step
max dom	1	the number of domains over which
max_dom	1	you are running
s we (max dom)	1	start index in x (west-east)
	1	direction (leave as is)
e we (max dom)	91	end index in x (west east)
	71	direction (staggered dimension)
s sn (max dom)	1	start index in y (south-north)
	1	direction (leave as is)
e sn (max dom)	82	end index in y (south-north)
		direction (staggered dimension)
s vert (max dom)	1	start index in z (vertical) direction
		(leave as is)
e vert (max dom)	30	end index in z (vertical) direction
		(staggered dimension this refers
		to full levels). Most variables are
		on unstaggered levels. *Note:
		Vertical dimensions need to be the
		same for all nests
dx (max_dom)	30000	grid length in x-direction (in
		meters)
dy (max_dom)	30000	grid length in y-direction (in
		meters)
ztop (max_dom)	19000	height in meters; used to define
		model top for idealized cases
grid_id (max_dom)	1	domain identifier
parent_id (max_dom)	0	ID of the parent domain
i_parent_start (max_dom)	1	the starting lower-left corner i-
· · · · · · · · · · · · · · · · · · ·	1	indice from the parent domain
j_parent_start (max_dom)	1	the starting lower-left corner
· · · · · · · · · · · · · · · · · · ·	1	j_indice from the parent domain
parent_grid_ratio	1	parent-to-nest domain grid size ratio. *Note: for real data cases
(max_dom)		
		the ratio must be odd; for ideal data cases, the ratio can be even if
		feedback is set to 0.
norant time stan ratio	1	
parent_time_step_ratio (max_dom)	1	parent-to-nest time step ratio; this can be different from the
		parent grid ratio
		Parene_gria_racio

feedback	0	no feedback
	1	feedback from nest to its parent
		domain
smooth_option	0	no smoothing
	1	1-2-1 smoothing option for parent
		domain; used only with
		feedback=1
	2	(default) smoothing-desmoothing
		option for parent domain; used
		only with feedback=1
hypsometric opt	2	(default) computes height in
		program <i>real.exe</i> and pressure in
		the model (ARW only) by using an
		alternative method (less biased
		when compared against input data)
	1	original method
Options for Program		
real.exe		
num metgrid levels	40	number of vertical levels in WPS
_ 0 _		output (type ncdump -h on one
		of the met em* files to find out
		this number)
num metgrid soil levels	4	number of soil levels or layers in
		WPS output (type ncdump -h on
		one of the met em* files to find
		out this number)
eta levels	1.0, 0.99,0.0	model <i>eta</i> levels from 1 to 0. If
	1.0, 0.99,0.0	not given, <i>real</i> will provide a set of
		levels
force_sfc_in_vinterp	1	(default) use the surface level as
	Ĩ	the lower boundary when
		interpolating through this many eta
		levels
	0	perform traditional trapping
	v	interpolation
interp theta	.false.	(default) vertically interpolates
P		temperature (which may reduce
		bias when compared with input
		data)
	.true.	vertically interpolates potential
		temperature
p_top_requested	5000	pressure top (in Pa) to use in the
1 _ F _ 1	_ ~ ~ ~	model; must be available in WPS
		data
		uala

		is linear in log(pressure)
	1	vertical interpolation that is linear
		in pressure
extrap_type	2	(default) vertical extrapolation of
•••••••••••••••••••••••••••••••••••••••	_	non-temperature variables, using
		the lowest level as constant below
		ground
	1	vertical extrapolation of non-
	-	temperature variables, using the 2
		lowest levels
t_extrap_type		vertical extrapolation for potential
_ 1_01		temp:
	2	(default) -6.5 K/km lapse rate for
		temperature
	1	isothermal
	3	constant theta
use levels below ground		in vertical interpolation, whether to
0		use levels below input surface
		level
	.true.	(default) use input isobaric levels
		below input surface
	.false.	extrapolate when WRF location is
		below input surface level
use_surface	.true.	(default) uses input surface level
		data in vertical interpolation
	.false.	do not use input surface data
lagrange_order	2	(default) quadratic vertical
		interpolation order
	1	linear vertical interpolation order
lowest_lev_from_sfc	.false.	(default) use traditional
		interpolation
	.true.	use surface values for the lowest
		<i>eta</i> (u,v,t,q)
sfcp_to_sfcp	.true	optional method to compute
		model's surface pressure when
		incoming data only has surface
		pressure and terrain, but not sea-
		level pressure (default is .false.)
use_tavg_for_tsk	.true.	uses diurnally-averaged surface
		temp as skin temp. The diurnally-
		averaged surface temp can be
		computed using WPS utility
		avg_tsfc.exe. May use this
		option when SKINTEMP is not
		present (default is .false.)
rh2qv_wrt_liquid	.true.	(default) computes qv with respect

		to liquid water
	.false.	computes qv with respect to ice
smooth_cg_topo	.true.	smooths the outer rows and columns of the domain 1 topography with respect to the input data (default is .false.)
vert_refine_fact	1	vertical refinement factor for ndown (1 = same number of vertical levels as the coarse domain, 2 = double the vertical resolution, and so on)
Options for Preset Moving Nest		
num moves	2	total # of moves for all domains
move_id (max_moves)	2, 2,	a list of nest domain ID's, one per move
move_interval (max_moves)	60, 120,	time in minutes since the start of this domain
move_cd_x (max_moves)	1, -1,	the # of parent domain grid cells to move in the i-direction
move_cd_y (max_moves)	-1, 1,	the # of parent domain grid cells to move in the j-direction (positive in increasing i/j directions, and negative in decreasing i/j directions. Only 1, 0, and -1 is permitted.
Options for Automatic Moving Nest		
vortex_interval (max_dom)	15	how often the new vortex position is computed (in mins)
max_vortex_speed (max_dom)	40	used to compute the search radius for the new vortex position (in m/s)
corral_dist (max_dom)	8	how close the moving nest is allowed to get to the coarse grid boundary. This # sets the minimum limit of grid cells allowed between them.
track_level	50000	pressure level value (Pa) at which the tropical storm vortex is tracked
time_to_move (max_dom)	0.,	time (in mins) to start moving nest
Options for Adaptive Time Step		
use_adaptive_time_step	.true.	use adaptive time step (default is .false.)
step_to_output_time	.true.	modifies the time step so that the

		exact history time is reached
target cfl (max dom)	1.2., 1.2., 1.2.,	if vertical CFL \leq this value, then
	,,,	time step is increased
target hcfl (max dom)	0.84, 0.84, 0.84,	if horizontal CFL \leq this value, the
unget_nen (mux_dom)	0.01, 0.01, 0.01,	time step is increased
max step increase pct	5, 51, 51,	percentage of previous time step to
(max_dom)	0, 01, 01,	increase if the max CFL is \leq
(inun_uoini)		target cfl
starting time step	-1, -1, -1,	flag -1 implies 6*dx is used to start
(max dom)	1, 1, 1,	the model. Any positive integer
(specifies the time step the model
		will use to start (in seconds).
		*Note: when
		use adapative time step
		= .true., the value specified
		for time step is ignored.
max time step (max dom)	-1, -1, -1,	flag -1 implies the maximum time
	7 7 7	step is
		3*starting time step.
		Any positive integer specifies the
		maximum time step (in seconds).
min time step (max dom)	-1, -1, -1,	flag -1 implies the minimum time
		step is 0.5*starting_time_step.
		Any positive integer specifies the
		minimum time step (in seconds).
adaptation_domain	1	(default) specifies which domain to
		use to drive adaptive time stepping
Options to Control		
Parallel Computing		
tile_sz_x	0	number of points in tile x direction
		(open MP only)
tile_sz_y	0	number of points in tile y
		direction; can be determined
		automatically (open MP only)
numtiles	1	number of tiles per patch
		(alternative to above 2 items; open
	1	MP only)
nproc_x	-1	(default) turned off; code will do
		automatic decomposition (MPI
	<u>\1</u>	only)
	>1	number of processors in x for
nnroa V	-1	decomposition (MPI only)
nproc_y	-1	(default) turned off; code will do
		automatic decomposition (MPI
		only)

	>1	number of processors in y for decomposition (MPI only)
Options for 3D Ocean Model		
ocean_levels	30	(default) number of ocean levels when using sf_ocean_physics = 2
ocean_z	(values for # of ocean_levels)	vertical profile of layer depth (m) for number of ocean_levels. See /run/README.namelist for more details.
ocean_t	(values for # of ocean_levels)	<pre>vertical profile of ocean temps (K) for number of ocean_levels.</pre>
ocean_s	(values for # of ocean_levels	vertical profile of salinity.
&physics		
mp_physics (max_dom)	0	(default) no microphysics
	1	Kessler scheme
	2	Lin et al. scheme
	3	WSM 3-class simple ice scheme
	4	WSM 5-class scheme
	5	Ferrier (new Eta) microphysics, operational High-Resolution Window
	6	WSM 6-class graupel scheme
	7	Goddard GCE scheme (also uses gsfcgce_hail and gsfcgce_2ice)
	8	Thompson graupel scheme (2- moment scheme in V3.1)
	9	Milbrandt-Yau 2-moment scheme
	10	Morrison 2-moment scheme
	11	CAM 5.1 5-class scheme
	13	SBU-YLin, 5-class scheme
	14	WRF double moment, 5-class scheme
	16	WRF double moment, 6-class scheme
	17	NSSL 2-moment 4-ice scheme (steady background CCN)
	18	NSSL 2-moment 4-ice scheme with predicted CCN (better for idealized than real cases)

	19	NSSL 1-moment, 6-class scheme
	21	NSSL-LFO 1-moment, 6-class
	95	Ferrier (old Eta), operational NAM
		(WRF NMM)
	98	Thompson scheme in V3.0
do radar ref	0	allows radar reflectivity to be
		computed using mp-scheme-
		specific parameters. Currently
		works for mp_physics =
		2,4,6,7,8,10,14,16
		0: off
		1: on
mp_zero_out		for non-zero mp_physics options,
		this keeps moisture variables
		above a threshold value ≥0. An
		alternative (and better) way to
		keep moisture variables positive is
		to use the moist_adv_opt.
	0	(default) no action taken; no
		adjustment to any moisture field
	1	except for Qv, all other moisture
		arrays are set to zero if they fall
		below a critical value
	2	$Qv \ge 0$ and all other moisture
		arrays are set to zero if they fall
		below a critical value
mp_zero_out_thresh	1.e-8	critical value for moisture variable
		threshold, below which moisture
		arrays (except for Qv) are set to
		zero (unit: kg/kg)
mp_tend_lim	10.	limit on temp tendency from
		microphysics latent heating when
		radar data assimilation is used
gsfcgce_hail	0	(default) running gsfcgce scheme
		with graupel
<u> </u>	1	running gsfcgce scheme with hail
gsfcgce_2ice	0	(default) running gsfcgce scheme
	1	with snow, ice, and graupel/hail
	1	running gsfcgce scheme with only
		ice and snow (gsfcgce_hail is
	-	ignored)
	2	running gsfcgce scheme with only
		ice and graupel (used only in very
		extreme situation;
		gsfcgce_hail is ignored)

The following 9 namelists are f	for NSSL 1-momen	nt schemes
nssl_alpha	0	shape parameter for graupel
nssl_alphal	2	shape parameter for hail
nssl_cnoh	4.e5	graupel intercept
nssl cnohl	4.e4	hail intercept
nssl cnor	8.e5	rain intercept
nssl cnos	3.e6	snow intercept
nssl rho qh	500.	graupel density
nssl rho ghl	900.	hail density
nssl rho qs	100.	snow density
no mp heating	1	turn off latent heating from a
_ 1_ 0		microphysics scheme (0 is off and
		is default)
ra lw physics (max dom)	0	(default) no longwave radiation
	1	rrtm scheme
		(Default values for GHG in V3.5:
		co2vmr=379.e-6, n2ovmr=319.e-9,
		ch4vmr=1774.e-9; Values used in
		previous versions: co2vmr=330.e-
		6, n2ovmr=0., ch4vmr=0.)
	3	CAM scheme
		*Note: restart must be at 6-hourly
		interval; also requires levsiz,
		paerlev,
		cam abs dim1(2); see below
	4	rrtmg scheme
		(Default values for GHG in V3.5:
		co2vmr=379.e-6, n2ovmr=319.e-9,
		ch4vmr=1774.e-9)
	5	Goddard scheme
	7	FLG (UCLA) scheme
	31	Earth Held-Suarez forcing
	99	GFDL (Eta) longwave (semi-
		supported); also must use co2tf
		= 1 for ARW
ra sw physics (max dom)	0	(default) no shortwave radiation
	1	Dudhia scheme (ptop $> 50 \text{ mb}$)
	2	(old) Goddard shortwave scheme
	3	CAM scheme (restart must be at 6-
	5	hourly interval); must set
		levsiz, paerlev,
		cam abs dim1/2
	4	rrtmg scheme
	5	Goddard scheme
	`	L Goddard scheme

[99	GFDL (Eta) longwave (semi-
		supported); must use $co2tf = 1$
		for ARW
radt (max_dam)	30	
radt (max_dom)	30	minutes between radiation physics
		calls. Recommended 1 minute per
		km of dx (e.g. 10 for 10 km grid);
2.2		use the same value for all nests
co2tf	1	CO2 transmission function flag for
		GFDL radiation only. Set it to 1
		for ARW, which allows generation
		of CO2 function internally
* Note: The following 5 v	ariables for CAM are aut	omatically set since V3.2
cam_abs_freq_s	21600	default CAM clear sky longwave
		absorption calculation frequency
		(recommended minimum value to
		speed scheme up)
levsiz	59	(default) number of ozone data
		levels for CAM radiation
paerlev	29	(default) number of aerosol data
puerre		levels for CAM radiation
cam_abs_dim1	4	(default) dimension for absnxt
cam_aos_amm	T	(absorption save array) in CAM
		radiation
cam abs dim2	same as e vert	(default) dimension for abstot (2nd
cam_aos_um2	same as c_vent	absorption save array) in CAM
		radiation
alimnut		
o3input	0	ozone input option (RRTMG only)
	0	using profile inside the scheme
	2	using CAM ozone data
		(ozone.formatted)
aer_opt		aerosol input option (RRTMG
		only)
	0	off
	1	using Tegen climatology
alevsiz	12	no of vertical levels in aerosol
		data. Value set automatically.
no_src_types	6	no of aerosol types: organic and
		black carbon, sea salt, sulfate, dust
		and stratospheric aerosol (volcanic
		ash – currently 0). Value set
		automatically.
sf sfclay physics		surface layer option
(max dom)		5 - F
/	0	(default) no surface-layer
	1	MM5 Monin-Obukhov scheme
	2	Monin-Obukhov (Janjic Eta)
	<u> </u>	Monin-Obukilov (Jalijić Ela)

		scheme
	3	NCEP GFS scheme (NMM only)
	4	QNSE
	5	MYNN
	7	Pleim-Xiu (ARW only), only
	,	tested with Pleim-Xiu surface and
		ACM2 PBL
	10	TEMF (ARW only)
	11	Revised MM5 surface layer
	11	scheme
iz0tlnd		switch to control land thermal
izotilia		
	0	roughness length
	0	(default) old, or non-vegetation
		dependent thermal roughness
	1	length over land
	1	veg dependent Chen-Zhang Czil
sf_surface_physics		land-surface option (set this before
(max_dom)		running <i>real.exe</i> ; also make sure
		num_soil_layers is set
		correctly)
	0	(default) no surface temp
		prediction
	1	thermal diffusion scheme
	2	unified Noah land-surface model
	3	RUC land-surface model
	4	Noah-MP land-surface model
		(additional options under the
		&noah mp section)
	5	CLM4 (Community Land Model
		Version 4)
	7	Pleim-Xiu scheme (ARW only)
	8	SSiB land-surface model (ARW
		only). Works with
		ra lw physics = 1, 3,
		or 4, and ra sw physics =
		1, 3, or 4
ua phys	.false.	Option to activate UA Noah LSM
uu_piiyo	.14150.	changes to use a different snow-
		cover physics. Aimed toward
		improving treatment of snow as it
		relates to the vegetation canopy.
num soil layers		number of soil layers in land
num_son_iayors		surface model (set before running
		real.exe)
	5	· · · · · · · · · · · · · · · · · · ·
	3	(default) thermal diffusion scheme

		for temp only
	4	Noah land-surface model
	6	RUC land-surface model
	10	CLM4 land-surface model
	2	Pleim-Xu land-surface model
	3	SSiB land-surface model
bl pbl physics (max dom)	5	boundary layer option
	0	(default) no boundary-layer
	1	YSU scheme; use
	1	sf_sfclay_physics =1
	2	Mellor-Yamada-Janjic (Eta) TKE
	2	scheme; use
		sf sfclay physics=2
	3	NCEP GFS scheme (NMM only);
	5	use sf sfclay physics=3
	4	QNSE-EDMF; use
	т	sf sfclay physics=4
	5	MYNN 2.5 level TKE; use
	5	sf sfclay physics=1, 2,
		or 5
	6	MYNN 3rd level TKE; use
	0	sf sfclay physics=5
	7	ACM2 (Pleim) scheme (ARW
	,	only); use
		sf sfclay physics=1 or 7
	8	Bougeault and Lacarrere (BouLac)
	0	TKE; use
		sf sfclay physics=1 or 2
	9	Bretherton-Park/UW TKE scheme;
		use sf sfclay physics=1
		or 2
	10	TEMF scheme (ARW only); use
	10	sf sfclay physics=10
	12	GBM TKE-type scheme (ARW
	12	only); use
		sf_sfclay_physics=1
	94	Quasi-Normal Scale Elimination
	77	PBL scheme (to be removed in the
		future)
	99	MRF scheme (to be removed in the
		future)
mfshconv	1	turns on day-time EDMF for
	±	QNSE (0=off)
bldt (max_dom)	0	minutes between boundary-layer
···· (··· _·····)	-	physics calls (0=call every time

		step)
topo wind (max dom)		turns on topographic surface wind
		correction, and requires extra
		input from geogrid. YSU PBL only
	0	off
	1	Jimenez method
	2	UW method
bl mynn tkebudget	1	adds MYNN tke budget terms to
		output
	0	(default) turned off
grav settling (max dom)	1	activate gravitational settling of
		fog/cloud droplet, MYNN PBL
		only (0=off, default)
cu physics (max dom)		cumulus parameterization option
	0	(default) no cumulus
		parameterization
	1	Kain-Fritsch (new Eta) scheme
	2	Betts-Miller-Janjic scheme
	3	Grell-Freitas ensemble scheme
	4	Old GFS Simplified Arakawa-
		Schubert (SAS)
	5	New Grell scheme (G3)
	6	Tiedtke scheme (ARW only)
	7	Zhang-McFarlane from CESM
		(works with MYJ and UW PBL)
	14	New GFS SAS from YSU (ARW
		only)
	84	New SAS (HWRF)
	93	Grell-Devenyi ensemble scheme
	99	previous Kain-Fritsch scheme
cudt	0	minutes between cumulus physics
		calls; should be set to 0 when
		using all cu_physics except
		Kain-Fritsch $(0 = call every time$
		step)
kfeta_trigger	1	The way to determines whether a
	_	grid point is convective; used only
		with cu physics=1.
		= 1, default, original.
	2	moisture-advection based trigger
	-	(Ma and Tan 2009; ARW only)
	3	relative humidity-dependent
ishallow	1	shallow convection used with
	1	cu physics=3 or 5 (default
		is 0 = off
		150 - 011

shcu physics (max dom)		independent shallow cumulus
sheu_physics (max_dom)		option (not tied to deep
		convection)
	0	no independent shallow cumulus
	2	Park and Bretherton shallow
	2	cumulus from CAM5
	3	GRIMS scheme
*Note: The following 5 onti	-	ed #'s. If you would like to use any
other number, consult the co		
maxiens	1	Grell-Devenyi and G3 only
maxens	3	Grell-Devenyi only
maxens2	3	Grell-Devenyi only
maxens3	16	Grell-Devenyi only
ensdim	144	Grell-Devenyi only
cugd_avedx	1	(default) number of grid boxes
eugu_aveux	1	over which subsidence is spread,
		for large grid distances
	3	for small grid distances $(DX < 5)$
	5	km)
cu diag (max dom)	0	Additional time-averaged
cu_ulag (max_uom)	U	diagnostics from cu physics (use
		only with
		cu physics=3,5,and 93)
convtrans avalan m	30	averaging time for convective
convtrans_avglen_m	50	transport output variables (in
		minutes; only use with
		cu physics=3,5 and 93)
isfflx		heat and moisture fluxes from the
ISIIIX		
		surface for real-data cases and
		when a PBL is used (only works
		with sf_sfclay_physics=1,
		5, 7, or 11)
		1 = fluxes are on
		0 = fluxes are off
		It also controls surface fluxes
		when diff_opt = 2 and km_opt =
		3, and a PBL isn't used $0 = $ constant fluxes defined by
		0 = constant fluxes defined by
		tke_drag_coefficient and
		tke_heat_flux
		1 = use model-computed u* and heat and moisture fluxes
		2 = use model-computed u* and
		specified heat flux by the heat flux
		LKE_HEAL_LLUX

ifsnow		<pre>snow-cover effects (only works for sf surface physics=1)</pre>
	1	(default) with snow-cover effect
	0	without snow-cover effect
icloud	Ű	(default) cloud effect to the optical
		depth in radiation (only works with
		ra sw physics=1,4 and
		ra lw physics=1,4)
	1	with cloud effect
	0	without cloud effect
swrad scat	1	scattering tuning parameter;
swidd_sout	1	default 1 is 1.e-5 $\text{m}^{-2} \text{kg}^{-1}$ (only for
		ra sw physics=1). Increase
		for more scattering.
surface_input_source		where landuse and soil category
surface_input_source		data come from
	1	(default) WPS/geogrid, but with
	1	dominant categories recomputed in
		real
	2	GRIB data from another model
	_	(only if arrays
		VEGCAT/SOILCAT exist)
	3	use dominant land and soil
		categories from WPS/geogrid
pxlsm_smois_init		Pleim-Xu land-surface model soil
(max dom)		moisture initialization option
	0	from analysis
	1	(default) from LANDUSE.TBL
		(SLMO, or moisture availability)
num land cat		number of land categories in input
		data
	24	(default) for USGS
	20	for MODIS
	28	for USGS if including lake
		category
	21	for MODIS if including lake
		category
	40	NLCD2006 (North America only)
num_soil_cat	16	number of soil categories in input
		data
usemonalb	.true.	use monthly albedo map instead of
		table values (recommended for
		<pre>sst_update=1)</pre>
	.false.	(default) use table values
rdmaxalb	.true.	(default) use snow albedo from

		geogrid
	.false.	use snow albedo from table
rdlai2d	.true.	use LAI (Leaf Area Index) from
		input data
	.false.	(default) use LAI from table
seaice_threshold	271.	If skin temp (TSK) is less than this
		value, water points are changed to
		sea ice. Works for
		<pre>sf_surface_physics =</pre>
		1,2,4,8
sst_update		option to use time-varying SST,
		seaice, vegetation fraction, and
		albedo during a model simulation
		(set before running <i>real.exe</i>)
	0	(default) no SST update
	1	real.exe will create wrflowinp
		file(s) at the same time interval as
		the available input data. These
		files contain SST, XICE,
		ALBEDO, and VEGFRA. Also
		<pre>set auxinput4_inname =</pre>
		"wrflowinp_d <domain>",</domain>
		auxinput4_interval and (in
		V3.2) io_form_auxinput4 in
		namelist section & time_control
tmn_update	1	update deep layer soil temperature,
		useful for long simulations (multi-
		year runs; default is $0 = off$)
lagday	150	days over which tnm (deep layer
		soil temp) is computed using skin
		temperature
sst_skin	1	calculate skin SST, useful for long
		simulations (multi-year runs;
		default is $0 = off$)
bucket_mm		bucket reset values for water
		accumulation (unit in mm), useful
		for long simulations (multi-year
		runs)
	-1	(default) inactive
bucket_j		bucket reset value for energy
		accumulations (unit in Joules);
		useful for long simulations (multi-
		year runs)
	-1	(default) inactive
slope_rad (max_dom)	1	use slope-dependent radiation; for
		ra_sw_physics

	0	(default) off
topo_shading (max_dom)	1	applies neighboring-point shadow
		effects for ra sw physics
	0	(default) off
shadlen	25000	maximum length of orographic
		shadow (in meters); use with
		topo shading=1
sf ocean physics		activate ocean model
(replacing omlcall)		
	0	off
	1	activate a simple ocean mixed
		layer (oml) model
	2	activate a 3D PWP ocean model
omdt	1.	2D DWD time stop (minutes) It
omat	1.	3D PWP time step (minutes). It
		can be set t the same as the WRF
		time step in corresponding nested
		grids, but omdt should be no less
1.1.10	> 0	than 1.0 minute.
oml_hml0	≥ 0	initial ocean mixed layer depth
(for sf_ocean_physics=1)		value (m); constant everywhere
	< 0	(50 is default)
1	< 0	
oml_gamma	0.14	$(K m^{-1})$ lapse rate in deep water
(for sf_ocean_physics=1)	20	(below the mixed layer) for oml
ocean_levels	30	number of vertical levels in 3D
(for sf_ocean_physics=2)		ocean model
isftcflx		alternative Ck (exchange
		coefficient for temp and moisture),
		Cd (drag coefficient for
		momentum) formulation for
		tropical storm application
	0	(default) off for Ck
	1	Donelan Cd + constant Z_{0q} for Ck
	2	Donelan Cd + Garratt Ck
fractional_seaice	1	treats seaice as a fractional field;
		works with
		<pre>sf_sfclay_physics = 1,</pre>
	0	2, 5, or 7
· 11 1	0	(default) either ice or no ice flag
seaice_albedo_opt	0	option to set albedo over sea ice
	0	seaice albedo is a constant value

		from namelist option seaice albedo default
	1	seaice albedo is a function of air
		temp, skin temp, and snow
	2	seaice albedo read in from input
		variable ALBSI
seaice_albedo_default	0.65	default value of seaice albedo for
	(changed from 0.8)	<pre>seaice_albedo_opt=0</pre>