
 1

A Users' Guide to RIP Version 4:

A Program for Visualizing

Mesoscale Model Output

Mark T. Stoelinga
University of Washington

May 2008

Table of Contents

1. Introduction
2. Setting up RIP on your system
3. Preparing data with RIPDP
4. The RIP user input file
5. Running RIP
6. Calculating and plotting trajectories
7. Creating a data set for Vis5D
8. Other special situations

Appendix A. Keywords
Appendix B. Available fields for plotting
Appendix C. Format of RIP data files

1. Introduction

RIP (which stands for Read/Interpolate/Plot) is a Fortran program that invokes NCAR
Graphics routines for the purpose of visualizing output from gridded meteorological data
sets, primarily from mesoscale numerical models. It was originally designed for sigma-
coordinate-level output from the PSU/NCAR Mesoscale Model (MM4/MM5), but was
generalized in April 2003 to handle data sets with any vertical coordinate, and in
particular, output from the Weather Research and Forecast (WRF) modeling system. It
can also be used to visualize model input or analyses on model grids. It has been under
continuous development since 1991, primarily by Mark Stoelinga at both NCAR and the
University of Washington. RIP is an officially supported component of the WRF
modeling system, but could potentially be used with output from any mesoscale model.

 2

The program is designed to be portable to any UNIX system that has a Fortran 77 or
Fortran 90 compiler and the NCAR Graphics library. The UNIX operating system is not
necessarily a requirement, but this document is written with the assumption that you are
working on a UNIX system. The author has not given a considerable amount of thought
to problems that may arise on another operating system.

RIP can be described as "quasi-interactive". You specify the desired plots by editing a
formatted text file. The program is executed, and an NCAR Graphics output file is
created. The plots can be modified, or new plots created, by changing the user input file
and re-executing RIP. Some of the basic features of the program are outlined below:

�. uses a preprocessing program (called RIPDP) which reads model output, and
converts this data into standard RIP format data files that can be ingested by RIP.
Three versions of RIPDP are provided: one for output from the MM5 Modeling
System, one for output from the Advanced Research WRF (ARW) version of the
WRF model, and one for output from the Nonhydrostatic Mesoscale Model
(NMM) version of the WRF model. Other versions of RIPDP could potentially be
constructed to ingest output from other mesoscale models.

�. makes Lambert Conformal, Polar Stereographic, Mercator, or stretched-rotated-
cylindrical-equidistant (SRCE) map backgrounds, with any standard parallels.

�. makes horizontal plots of contours, color-filled contours, vectors, streamlines, or
characters.

�. makes horizontal plots on model vertical levels, as well as on pressure, height,
potential temperature, equivalent potential temperature, or potential vorticity
surfaces.

�. makes vertical cross sections of contours, color-filled contours, full vectors, or
horizontal wind vectors.

�. makes vertical cross sections using vertical level index, pressure, log pressure,
Exner function, height, potential temperature, equivalent potential temperature, or
potential vorticity as the vertical coordinate.

�. makes skew-T/log p soundings at points specified as grid coordinates, lat/lon
coordinates, or station locations, with options to plot a hodograph or print
sounding-derived quantities.

�. calculates backward or forward trajectories, including hydrometeor trajectories,
and calculates diagnostic quantities along trajectories.

�. plots trajectories in plan view or vertical cross sections.
�. makes a data set for use in the Vis5D visualization software package
�. allows for complete user control over the appearance (color, line style, labeling,

etc.) of all aspects of the plots

2. Setting up RIP on your system

a. Obtaining and unpacking the code and related files

 3

The most recent version of the code can be downloaded from NCAR's WRF ARW
download web page (registration required), or from NCAR's PSU/NCAR Mesoscale
Model ftp site. Download the compressed tar file, RIP4.TAR.gz, to your local machine,
and uncompress the file (i.e., gunzip RIP4.TAR.gz). The tar file contains a top-level
directory called RIP, in which all the RIP-related files reside. Unpacking the tar file (i.e.,
running tar xf RIP4.TAR) will create a RIP directory, as a subdirectory of your
current working directory, and will place all the RIP-related files in that new RIP
directory. Thus, before unpacking the RIP tar file, you should first change to a directory
that you want to be the parent directory of your RIP directory. This would commonly be
your home directory. The tar file contains the following directories and files:

�. CHANGES, a text file that logs changes to the RIP tar file.
�. Doc/, a directory that contains documentation of RIP, most notably the HTML

version of the Users' Guide that you are now reading (ripug.htm).
�. Makefile, the top-level make file used to compile and link RIP.
�. README, a text file containing basic information on running RIP.
�. color.tbl, a file that contains a table defining the colors you want to have available

for RIP plots.
�. eta_micro_lookup.dat, a file that contains "look-up" table data for the Ferrier

microphysics scheme.
�. psadilookup.dat, a file that contains "look-up" table data for obtaining

temperature on a pseudoadiabat.
�. sample_infiles/, a directory that contains sample user input files for RIP and

related programs. As of this version of the User' Guide, these files include
bwave.in, grav2d_x.in, hill2d.in, qss.in, rip_sample.in, ripdp_wrfarw_sample.in,
ripdp_wrfnmm_sample.in, sqx.in, sqy.in, tabdiag_sample.in, and tserstn.dat.

�. src/, a directory that contains all of the source code files for RIP, RIPDP, and
several other utility programs. Most of these are Fortran 77 source code files with
extension .f. In addition, there are:

o a few .h and .c files, which are C source code files.
o comconst, commptf, comvctran, and CMASSI.comm, which are include

files that contain common blocks that are used in several routines in RIP.
o pointers, an include file that contains pointer declarations used in some of

the routines in RIP.
o Makefile, a secondary make file used to compile and link RIP.

�. stationlist, a file containing observing station location information.

b. The RIP_ROOT environment variable

An important environment variable for the RIP system is RIP_ROOT. RIP_ROOT should
be assigned the path name of the directory where all your RIP program and utility files
(color.tbl, stationlist, lookup tables, etc.) reside. If you unpacked the RIP tar file in your
home directory, then the natural choice for your RIP_ROOT directory is the RIP
subdirectory that was created when you unpacked the RIP tar file.

 4

For simplicity, you should define RIP_ROOT in one of your UNIX start-up files. For
example, if you use c-shell, and you have unpacked your RIP files into a directory called
/users/johndoe/RIP, and that is where you intend to have the code and utility files reside,
you should include in your .login or .cshrc file the line

setenv RIP_ROOT /users/johndoe/RIP

RIP uses the system call getenv to retrieve the value of RIP_ROOT from within the
program. If your system's Fortran does not support the system call getenv, you can use
instead the variable rip_root in the &userin namelist in the RIP user input file (UIF) to
tell RIP where to find the utility files. This is described in more detail in Chapter 4 of the
Users' Guide.

In general, the utility files mentioned above require no editing or user input. The
exceptions to this are the color table file, color.tbl, which allows you to define colors that
will be used by RIP, and the observing station listing file, stationlist, which provides
location information for observing stations that may be referenced in various aspects of
the plot request. These are described below.

c. Changing the color table file

As you become more familiar with how RIP uses colors, you may want to customize
color.tbl to suit your own preferences. In the color table, colors are defined according to
fractions of red, green, and blue, with each fraction being a number from 0.0 to 1.0. Each
color is given a name. You can define up to 256 different colors, but RIP will warn you if
you define more than 200, because RIP also needs to make use of the 256 available color
slots to define color shades for color-filled contour plots. The basic structure of the table
is as follows. The first four lines are ignored – they are simply a banner that says that this
is the color table. The first two colors should always be given the names def.background
and def.foreground, in that order. However, their color fractions can be changed if
desired. def.background is the color used by NCAR Graphics for any regions where no
plotting instructions have been given (i.e. the default background color). def.foreground
is the color used by NCAR Graphics for any plotting instructions in which you did not
explicitly ask for a particular color (i.e. the default foreground color). Usually these are
either black and white, or white and black, but the fractions can be changed to make them
different colors, as already mentioned above. It is recommended that, regardless of the
colors you use for def.foreground and def.background, you also have those colors defined
with their appropriate names somewhere else in the table. For example, even if color
indices 0 and 1 are given the fractions 0.0,0.0,0.0 and 1.0,1.0,1.0, there should also be
colors named black and white with the same fractions somewhere else in the table. The
explicitly named black or white should be used when you want things to be black or
white. That way, if you change def.foreground or def.background to something else, the
things that should remain black and white won't change color. The table should end with
a line that contains several consecutive minus signs.

 5

To give the user added flexibility, and for compatibility with previous versions of RIP,
the user can place a color table (like the one that appears in color.tbl) directly into a RIP
user input file (UIF). This allows the user to define different color tables that are unique
to a particular UIF. The color table should be placed between the namelist section and the
plot specification table in the UIF. If you run RIP with a UIF that contains a color table,
RIP will recognize that color table and read it instead of (NOT in addition to) the color
table in your RIP_ROOT directory.

Finally, there are a few important things that you should be aware of if you will be
translating your CGM plots to postscript:

�. Postscript has no concept of "background color". Hence, regardless of what your
index 0 color is, translation to postscript (either mono or color) will result in a
blank or white background. If this is a problem, it can be circumvented by using
the -simulatebg option on the ctrans command line.

�. If you translate to mono postscript, all plotting instructions, regardless of the color
used (black, white, red, blue, etc.), will come out black. This means any filled
areas, regardless of color or color index used, will waste large amounts of toner
when printed out.

�. If you translate to color postscript, some monochromatic printers have the nice
feature that they convert all colors to halftone gray shades.

d. Changing or adding station listings in the stationlist file

Any number of additional stations can be added to the station listing. The important thing
is to keep the station information properly lined up in the appropriate columns. The
important pieces of information to enter are the verbal description of the location (under
column "Location"), the ICAO four-letter code identifying the station (under column
"ICAO"), the latitude and longitude (under columns "Lat" and "Lon"), and the WMO
number of the station (under column "WMO#"). The other information is not read by
RIP. Elevation should be entered if you have it, because it may be used in the future. The
author is unsure of the meaning of the information in the third column. If the WMO
number is unknown or the station has no WMO number, enter "00000" in that column.

e. Compiling RIP and associated programs

RIP should be compiled with the UNIX make utility. There is a top-level make file,
called Makefile, in the RIP/ directory, as well as a secondary Makefile in the RIP/src/
directory, that are used for "making" RIP. The make command should be executed from
within the RIP/ directory. First, you should run the command make without any options,
which will show a brief help listing on how to run make to compile RIP on your
particular platform. You should choose the option that will most likely work on your
platform, and then run the make command with that option. For example, if you are on a
LINUX system, type

make linux >&! make.out &

 6

The redirecting of make print output to the file make.out is optional. A successful
compilation will probably take several minutes. If you have a multiprocessor machine,
you may want to find out how to run make so that the machine compiles on all processors
at the same time, as this may significantly speed up the compilation wall clock time.

If the compiling of RIP fails, it is likely that the top-level make file needs to be
customized for your particular platform. This involves editing Makefile so that the
compile and link commands and options are correctly configured for the particular
system you are running on. There are several sections of code in the makefile that pertain
do different machines. One of these sections needs to changed, or a new one created.
The important features that need to be adjusted are the compiler flags (FFLAGS), link
flags (LDFLAGS), and libraries (LIBS). The libraries should include NCAR Graphics
libraries--make sure you have the correct location for the NCAR Graphics libraries on
your system. In some cases, you may be able to use ncargf77 as the compiler (i.e., set the
CF variable to ncargf77) and not worry about specifying all the specific libraries that are
required for NCAR Graphics. Regardless of how you accomplish the linking with NCAR
Graphics, it should be pointed out that the author has found some minor problems with
RIP that occur if you use a version of NCAR Graphics that is older than 4.0. Therefore,
you should try to link with NCAR Graphics 4.0 (or later) if you have it. It should also be
noted that the RANGS/GSHHS high-resolution map background capability is only
functional if you have NCAR Graphics 4.3 (or later). RANGS/GSHHS is not the most
commonly used map background outline set, so this does not represent a significant loss
of functionality if you cannot use it.

The two versions of RIPDP for the WRF modeling system, ripdp_wrfarw and
ripdp_wrfnmm, need to link to the NetCDF library. This library of routines is used for I/O
with files in the “Network Common Data Fromat” or NetCDF, which WRF uses. The
only thing the user needs to be concerned about is that the variables NETCDFLIB and
NETCDFINC in the secondary Makefile in the RIP/src/ directory are set properly for the
path names of the directories where the NetCDF library file and include files reside,
respectively.

A successful compilation will result in the creation of several object and executable files
in the RIP/src/ directory. The make file is also set up to create symbolic links in the RIP/
directory to the actual executables in the RIP/src/ directory. In UNIX, the best way to
make the RIP program and other associated executables accessible to you, regardless of
your current working directory, is to add the path name of your RIP directory to your
executable path list (e.g., the path shell variable in c-shell). For example, if the above-
mentioned symbolic links to the RIP executables reside in the directory ~johndoe/RIP,
and you use the c-shell in UNIX, then you should add the following line in your .cshrc
file:

set path = ($path ~johndoe/RIP)

 7

With the RIP directory in your executable path, the RIP program (and other associated
utilities like ripdp) can be accessed easily without having to put the executables in your
working directory or having to specify full path names for the executables.

f. Notes on nonstandard Fortran 77

In general, the author has attempted to adhere to Fortran 77 standards as much as possible
in writing the code. However, a few nonstandard features have been included, which are
still available in most f77 and f90 compiling systems.

�. Namelists: For some I/O, RIP and RIPDP use a nonstandard feature known as a
namelist. A namelist is a Fortran input file structure that is not officially standard
to Fortran 77, but which is available in most Fortran 77 compilers. Namelists are
placed in text files that are opened and read by the Fortran program. The basic
structure of a namelist is, on the first line, the name of the namelist (preceded by
an ampersand), and then on subsequent lines a series of "variable = value"
constructs, each separated by commas, blank spaces, or a new line. (On some
machines, commas are required, so it's safest to always use them.) The final line
ends the namelist should contain the single word end preceded by an ampersand.
Each variable is an actual variable that is declared in a special namelist statement
inside the Fortran program. The variables can be of any type. The value of a
character variable should be enclosed in single quotes, although it doesn't have to
be if all the characters in the string are alpha-numeric. The value of a logical
variable should be ".true." or ".false.". Arrays can be assigned multiple values
separated by commas (although it has come to the author's attention that with
some compilers such as Sun's Fortran 90, each array element must be separately
referenced with its index in parentheses). Here is a general example of a namelist:

&samplenlist
beatles='John','Paul','George','Ringo',
(or with Sun f90, beatles(1)='John',beatles(2)='Paul',etc.)
primenumbers=1,2,3,5,7,11,13, flag=.true.,
&end

Not all the variables that are defined as part of the namelist in the Fortran program
need to be given values in the namelist file that is read. Typically, all the namelist
variables are assigned default values in the program prior to the reading of the
namelist file, so that they will retain those default values if they are omitted from
the namelist file.

�. System calls: RIP uses the following system calls: getenv (for retrieving the value
of a UNIX environment variable from within a program), iargc (for retrieving the
number of command line arguments), and getarg (for retrieving command line
arguments). These system calls are quite common, and should be available in the
f77 and f90 compilers from Cray, Sun, SGI, DEC, and IBM. There are also calls
(commented out in the standard release) to the system routine flush (for flushing

 8

the standard output buffer, so that the progress of the program can be easily
monitored when standard output is being sent to a file). These were commented
out because they caused problems on some compilers, but you are free to reinstate
them.

�. RIP has been set up in a manner that requires adjustable dimensioning of local
(non-argument) arrays in subroutine driver and a few other routines in RIP, and in
subroutine process in RIPDP. In other words, in subroutine driver, for example,
several arrays that are not in the subroutine argument list are dimensioned with
integer variables that are in the argument list. This is technically illegal in Fortran
77, but many compilers support it because it makes dynamic memory allocation
possible. It is standard in Fortran 90.

�. RIP uses Cray pointers. This is nonstandard Fortran 77, but is supported by most
Fortran 77 and Fortran 90 compilers.

3. Preparing data with RIPDP

RIP does not ingest model output files directly. First, a preprocessing step must be
executed that converts the model output data files to RIP-format data files. The primary
difference between these two types of files is that model output data files typically
contain all times and all variables in a single file (or a few files), whereas RIP data has
each variable at each time in a separate file. The preprocessing step involves use of the
program RIPDP (which stands for RIP Data Preparation). RIPDP reads in a model output
file (or files), and separates out each variable at each time. There are several basic
variables that RIPDP expects to find, and these are written out to files with names that are
chosen by RIPDP (such as uuu, vvv, prs, etc.). These are the variable names that RIP
users are familiar with. However, RIPDP can also process unexpected variables that it
encounters in model output data files, creating RIP data file names for these variables
from the variable name that is stored in the model output file metadata.

When you run make, it should produce executable programs called ripdp_mm5,
ripdp_wrfarw, and ripdp_wrfnmm. Although these are three separate programs (one for
use with MM5 model system, one for WRF-ARW, and one for WRF-NMM), they serve
the same purpose, and will be referred to collectively as ripdp. Also, the two WRF
versions of ripdp may be referred to collectively as ripdp_wrf, without the arw or nmm
specification.

a. Running RIPDP

The program has the following usage:

ripdp_XXX [-n namelist_file] model-data-set-name [basic|all]
data_file_1 data_file_2 data_file_3 ...

In the above, the "XXX" refers to either "mm5", "wrfarw", or "wrfnmm". The argument
model-data-set-name can be any string you choose, that uniquely defines this model

 9

output data set. It will be used in the file names of all the new RIP data files that are
created. data-file-1, data-file-2, ... are the path names (either full or relative to the current
working directory) of the model data set files, in chronological order. When the program
is finished, a large number of files will have been created that will reside in the current
working directory. This is the RIP data that will be accessed by RIP to produce plots. See
Appendix C for a description of how these files are named and the the format of their
contents.

RIPDP is flexible in that it processes any variables it encounters in the model output file,
even those it is not expecting, and produces files for those variables, using the variable
name provided in the model output to create the file name. Any such variables can be
plotted with RIP--see the description of the feld keyword in Appendix A.

The "basic|all" option is available only for ripdp_wrf. basic causes ripdp_wrf to process
only the basic variables that RIP requires, whereas all causes ripdp_wrf to process all
variables encountered (as in ripdp_mm5). If all is specified, the discard variable can be
used in the ripdp namelist to prevent processing of unwanted variables, as with
ripdp_mm5. However, if basic is specified, the user can request particular other fields
(besides the basic fields) to be processed by setting a retain variable in the ripdp namelist
instead of the discard variable. retain is set in the same manner as discard, i.e., you
assign it one or more variable names in single quotes separated by commas.

To provide more user control over the processing of data, a namelist can be specified by
means of the "-n" option, with namelist-file specifying the path name of the file
containing the namelist, on the ripdp_wrf command line. Namelists are a special type of
Fortran input structure that is described in Chapter 2.

The namelist file for ripdp_wrf should contain the namelist &userin. Examples of a
namelist input files for ripdp_wrfarw and ripdp_wrfnmm, called ripdp_wrfarw_sample.in
and ripdp_wrfnmm_sample.in, respectively, are provided in the RIP tar file in the
sample_infiles directory. The &userin namelist in that file is shown below, followed by a
description of the variables it sets. Each variable has a default value (shown in
parentheses), which is the value this variable will take if its specification is omitted from
the namelist.

&userin
ptimes=0,-72,1, ptimeunits='h', tacc=90.,
discard='LANDMASK','H2SO4', iexpandedout=1
&end

�. ptimes (real array, def.=9.0E+09), ptimeunits (character variable, def.='h'): ptimes
specifies the desired times for ripdp to process. A value of 9.0E+09 indicates to
RIPDP that you are using iptimes (see below) instead of ptimes to specify desired
times. You can specify particular times to be processed, separated by commas.
The units are determined by the value of ptimeunits, which can be either 'h' (for
hours), 'm' (for minutes), or 's' (for seconds). You can also specify a series of

 10

times in the form A,-B,C, which is interpreted as "times from hour A to hour B,
every C hours" (assuming ptimeunits='h'). Thus, in the example above, you want
RIPDP to process times from hour 0 through hour 72, every hour (assuming they
are encountered in the data). Individual times can be intermixed with series
specifications. Thus, ptimes=0,1,3,-18,3,24 would cause RIPDP to
process data at hours 0,1,3,6,9,12,15,18, and 24 (assuming those times are
encountered).

�. iptimes (not shown in the above example, integer array, def.=99999999): This is
an integer array that also specifies desired times for RIPDP to process, but in the
form of 8-digit "mdate" times (i.e. YYMMDDHH). A value of 99999999
indicates to RIPDP that you are using ptimes (see above) instead of iptimes to
specify desired times. Either one or the other of ptimes or iptimes can be used, but
not both. ptimeunits has no effect on the meaning of the values given for iptimes.
iptimes can also include series specifications. For example,
iptimes=99063012,99063018,-99070103,3,99070112 would cause
RIPDP to process data at times 99063012, 99063018, 99063021, 99070100,
99070103, and 99070112.

Note: If you want RIPDP to simply process all times encountered, you can
indicate this in one of several ways. If both ptimes and iptimes are omitted
from the namelist (and thus retain their default values) or are both
assigned their default values, RIPDP will process all encountered times.
Or, if the first (or only) value of either ptimes or iptimes is negative,
RIPDP will process all encountered times.

�. tacc (real variable, def.=1.0): This specifies a time tolerance, in seconds, for the
values assigned to ptimes or iptimes. In other words, any times encountered in the
model output that are within tacc seconds of one of the times specified in ptimes
or iptimes will be processed.

�. discard (character array, def.=' '): This specifies the names of variables that, if
encountered in the model data file, will not be processed. The default value
(blank) implies that all encountered fields should be processed. Do not discard
any of the basic variables, such as temperature, winds, water vapor, pressure
perturbation, etc. If you do, you will run into trouble when you attempt to run RIP
with your data set. It is also important to note that the names assigned to the
discard variable are compared against the variable names in the model output
metadata. Therefore, you should be careful to assign names to discard as they
appear in the model output metadata, NOT as they appear at the ends of the the
names of the RIP data files. One thing to be particularly careful about is the use of
blanks versus underscores. Variable names in the model output metadata may
contain blanks. When RIP uses these names to build RIP data file names for
unexpected variables, it converts blanks to underscores. For example, the MM5
output variable "SOIL T 6" at hour 12 will result in the creation of a RIP data file
called something like mycase_012.00000_SOIL_T_6. If you want to discard
"SOIL T 6", you should use discard='SOIL T 6', not discard='SOIL_T_6'.

 11

�. retain (character array, def.=' '): Note: works only with ripdp_wrf. Similar to
discard, but instead, this specifies the names of variables that, if encountered in
the model data file, should be processed, even though the user specified basic on
the ripdp_wrf command line. The default value (blank) implies that no fields
other than the basic fields should be retained.

�. iexpandedout (integer variable, def.=0): This integer flag is relevant only to
TERRAIN or REGRID output in the MM5V3 system. If the output from one of
these two programs is on an expanded domain, iexpandedout determines whether
the expanded domain will be processed (1) or the standard (unexpanded) domain
will be processed (0).

Note: With some compilers such as Sun's Fortran 90, when assigning values to an array
in a namelist, each array element must be separately referenced with its index in
parentheses. This would apply to the ptimes, iptimes, and discard arrays described
above. Thus, in this situation, the above namelist would appear as

&userin
ptimes(1)=0,ptimes(2)=-72,ptimes(3)=1, ptimeunits='h',
tacc=90., discard(1)='LANDMASK',discard(2)='H2SO4',
iexpandedout=1
&end

b. Special considerations for running RIPDP for WRF-NMM

The WRF-NMM model has a unique map background and grid structure, both of which
introduce special challenges for processing and plotting WRF-NMM data. The map
background is what can be referred to as a "stretched rotated cylindrical equidistant", or
SRCE, projection. RIPDP and RIP have been made fully capable of handling this
projection. The grid staggering in WRF-NMM, however, presents more complications.
The staggering pattern is known as the "E-grid", which is essentially a B-grid (as used in
MM5) rotated by 45 degrees.

Because of its developmental history with the MM5 model, RIP is inextricably linked
with an assumed B-grid staggering system. Therefore, the easiest way to deal with E-grid
data is to make it look like B-grid data. This can be done in two ways, either of which the
user can choose. In the first method, we define a B-grid in which its mass ("cross or C")
points collocate with all the H and V points in the E-grid, and the B-grid's velocity ("dot
or D") points are staggered in the usual B-grid way. The RIPDP-created data files retain
only the E-grid data, but then when they are ingested into RIP, the E-grid H-point data
are transferred directly to overlapping B-grid cross points, and non-overlapping B-grid
cross points and all dot points are interpolated from the E-grid's H and V points. This is
the best way to retain as much of the exact original data as possible, but effectively
doubles the number of horizontal grid points in RIP, which can be undesirable. The
second method is to define a completely new B-grid that has no relation to the E-grid
points, possibly (or even preferably) including a different map background, but
presumably with substantial overlap between the two grids, and a horizontal resolution

 12

similar to the effective resolution of the E-grid. The E-grid data is then bilinearly
interpolated to the new B-grid in RIPDP and the new B-grid data is then written out to
the RIPDP output data files. With this method, the fact that the original data was on the
E-grid is completely transparent to the RIP plotting program.

To specify which choice to make, and to define the new map background and grid if
choice 2 is made, several additional parameters need to be defined in the &userin
namelist. An example of a full &userin namelist for use with ripdp_wrfnmm is shown
below:

&userin
ptimes=0,-72,1,ptimeunits='h',tacc=90.,discard='LANDMASK',
iinterp=1,dskmcib=50.,miycorsib=100,mjxcorsib=100,nprojib=1
, xlatcib=30.,xloncib=-95.,truelat1ib=30.,truelat2ib=48.,
miyib=500,mjxib=500,yicornib=46.5509,xjcornib=40.0999,dskmi
b=5.

The additional parameters are described below:

�. iinterp (integer, def.=0): a switch that specifies whether you want to follow
"method 1--use collocated high-density B-grid" (iinterp=0) or "method 2--
interpolate to a new B-grid" (iinterp=1), as described above.

�. dskmcib (real, def.=50.0): If iinterp=1, this specifies the grid spacing, in km, of
the coarse domain on which the new B-grid will be based.

�. miycorsib, mjxcorsib (integer, def.=100): If iinterp=1, these specify the number
of grid points in the y and x directions, respectively, of the coarse domain on
which the new B-grid will be based.

�. nprojib (integer, def.=1): If iinterp=1, this specifies the map projection number
(0: none/ideal, 1: LC, 2: PS, 3: ME, 4: SRCE) of the coarse domain on which the
new B-grid will be based.

�. xlatcib, xloncib (real, def.=45.0, -90.0): If iinterp=1, these specify the central
latitude and longitude, respectively, for the coarse domain on which the new B-
grid will be based.

�. truelat1ib, truelat2ib (real, def.=30.0, 60.0): If iinterp=1, these specify the two
true latitudes for the coarse domain on which the new B-grid will be based.

�. miyib, mjxib (integer, def.=75): If iinterp=1, these specify the number of grid
points in the y and x directions, respectively, of the fine domain on which the new
B-grid will be based.

�. yicornib, xjcornib (integer, def.=25): If iinterp=1, these specify the coarse domain
y and x locations, respectively, of the lower left corner point of the fine domain on
which the new B-grid will be based.

�. dskmib (real, def.=25.0): If iinterp=1, this specifies the grid spacing, in km, of the
fine domain on which the new B-grid will be based.

It should be noted that, if iinterp=1, grid points in the new domain that are outside the
original E-grid domain will be assigned a "missing value" by RIPDP. RIP (the plotting

 13

program) handles "missing value" data inconsistently--some parts of the code are
designed to deal with it gracefully, and other parts are not. Therefore, it is best to make
sure that the new domain is entirely contained within the original E-grid domain.
Unfortunately, there is no easy way to do this. RIPDP does not warn you when your new
domain contains points outside the original E-grid. The best way to go about it is by trial
and error: define an interpolation domain, run RIPDP, then plot a 2-D dot-point field such
as map factor on dot points (feld=dmap) in color contours and see if any points do not get
plotted. If any are missing, adjust the parameters for the interpolation domain and try
again.

4. The RIP user input file

Once the RIP data has been created with RIPDP, the next step is to prepare the user input
file (UIF) for RIP. This file is a text file, which tells RIP what plots you want and how
they should be plotted. A sample UIF, called rip_sample.in, is provided in the RIP tar
file. This sample can serve as a template for the many UIFs that you will eventually
create.

A UIF is divided into two main sections. The first section specifies various general
parameters about the set up of RIP, in a namelist format. The second section is the plot
specification section, which is used to specify what plots will be generated.

a. The namelist section

Namelists are a special type of Fortran input structure that is described in Chapter 2. The
first namelist in the UIF is called &userin. An example of a &userin namelist for RIP,
which is also found in the sample UIF rip_sample.in, is shown below, followed by a
description of the variables contains. Each variable has a default value (shown in
parentheses), which is the value this variable will take if its specification is omitted from
the namelist.

&userin
idotitle=1,titlecolor='def.foreground',
ptimes=0,6,12,
ptimeunits='h',tacc=120,timezone=-7,iusdaylightrule=1,
iinittime=1,ifcsttime=1,ivalidtime=1,inearesth=0,
flmin=.09, frmax=.92, fbmin=.10, ftmax=.85,
ntextq=0,ntextcd=0,fcoffset=0.0,idotser=0,
idescriptive=1,icgmsplit=0,maxfld=10,itrajcalc=0,imakev5d=0
&end

Some background on the RIP frame title lines: The standard title at the top of the RIP
frame has up to two lines, depending on what information is requested, as described
below. . The first shows and an initial time. The second line shows the forecast hour, and
the valid time in both UTC and local time.

 14

�. idotitle (integer variable, def.=1) and title (not shown above, character variable,
def.= 'auto'): These control the first part of the first title line. If idotitle=1 and
title='auto', you'll get automatically generated information on the data set name
(i.e., the root part of the RIP data file names for the data set being plotted) and the
UIF file name (excluding the .in extension). If you set title to something else, that
string will get used for the first part of the first title line instead of the
automatically generated information. If idotitle=0, no title will be printed.

�. titlecolor (character variable, def.='def.foreground'): This specifies the color to
use for the text in the title line(s). It should be chosen from the available colors
listed in the utility file color.tbl, described in Chapter 2.

�. iinittime (integer variable, def.=1): If this flag is set to 1, the initial date and time
(in UTC) will be printed in one of the two title lines.

�. ifcsttime (integer variable, def.=1): If this flag is set to 1, the forecast lead time (in
hours) will be printed in one of the two title lines.

�. ivalidtime (integer variable, def.=1): If this flag is set to 1, the valid date and time
(in both UTC and local time) will be printed in one of the two title lines.

�. inearesth (integer, def.=0): This flag allows you to have the hour portion of the
initial and valid time be specified with two digits, rounded to the nearest hour,
rather than the standard 4-digit HHMM specification.

�. timezone (real variable, def: -7.0): This specifies the offset from Greenwich time
(UTC) for the local time zone, and is required for the correct display of local time
specification of the valid time. RIP will recognize familiar time zones of N.
America (-8,-7,-6,-5) and show, for example, "MST" or "EDT". For unfamiliar
time zones, it will show "LST" or "LDT".

�. iusdaylightrule (integer variable, def.=1): This flag determines whether the U.S.
daylight saving rule (i.e., daylight saving in effect between 1st Sunday in April
and last Sunday in October, up to 2006. And between the 2nd Sunday in March
and the first Sunday in November, since 2007) should be applied (1) or not (0) in
displaying the local time specification of valid time.

�. ptimes (real array, def.=9.0E+09), ptimeunits (character variable, def.='h'): ptimes
specifies the desired times for RIP to plot. A value of 9.0E+09 indicates to RIP
that you are using iptimes (see below) instead of ptimes to specify desired times.
You can specify particular times to be plotted, separated by commas. The units
are determined by the value of ptimeunits, which can be either 'h' (for hours), 'm'
(for minutes), or 's' (for seconds). You can also specify a series of times in the
form A,-B,C, which is interpreted as "times from hour A to hour B, every C hours"
(assuming ptimeunits='h'). Individual times can be intermixed with series
specifications. Thus, ptimes=0,1,3,-18,3,24 would cause RIP to plot data
at hours 0,1,3,6,9,12,15,18, and 24 (assuming those times are available).

�. iptimes (not shown in the above example, integer array, def.=99999999): This is
an integer array that also specifies desired times for RIP to plot, but in the form of
8-digit "mdate" times (i.e. YYMMDDHH). A value of 99999999 indicates to RIP
that you are using ptimes (see above) instead of iptimes to specify desired times.
Either one or the other of ptimes or iptimes can be used, but not both. ptimeunits
has no effect on the meaning of the values given for iptimes. iptimes can also
include series specifications. For example,

 15

iptimes=99063012,99063018,-99070103,3,99070112 would cause
RIP to plot data at times 99063012, 99063018, 99063021, 99070100, 99070103,
and 99070112.

Note: If you want RIP to simply plot all times available, you can indicate
this in one of several ways. If both ptimes and iptimes are omitted from the
namelist (and thus retain their default values) or are both assigned their
default values, RIP will plot all available times. Or, if the first (or only)
value of either ptimes or iptimes is negative, RIP will plot all available
times.

�. tacc (real variable, def.=1.0): This specifies a time tolerance, in seconds, for the
values assigned to ptimes or iptimes. In other words, any available times in the
data that are within tacc seconds of one of the times specified in ptimes or iptimes
will be plotted. This value should be increased if, for example, your "hourly"
output is not exactly on the hour. It should be decreased if you have saved
consecutive time steps and need to pin point one of those time steps.

�. flmin, frmax, fbmin, and ftmax (real variables, def.=.05,.95,.10,.90, respectively):
These specify the left frame limit, the right frame limit, the bottom frame limit,
and the top frame limit, respectively. The size of all plots will be adjusted to be
the maximum that can fit in this box. The box is defined in terms of the fractional
coordinate system, i.e. all four values should be between 0.0 and 1.0

�. ntextq (integer variable, def.=0): This is the text quality specifier (0=high;
1=medium; 2=low).

�. ntextcd (integer variable, def.=0): This is the text font specifier [0=complex
(Times); 1=duplex (Helvetica)].

Notes on ntextq and ntextcd:

1. ntextcd only applies to high quality characters.
2. Low and medium quality characters look identical except that the

medium quality zero is unslashed.
3. Medium quality characters are drawn with polylines so their size is

independent of the local translator being used. The same is not true
of low quality characters, which use the GKS primitive character
set, whose size can vary from one system to another.

4. Any messages that involve units will always use high quality, in
order to make use of superscripting for exponents.

�. fcoffset (real variable, def.=0.0): This is an optional parameter you can use to
"tell" RIP that you consider the start of the forecast to be different from what is
indicated by the forecast time recorded in the model output. It serves the same
purpose as the now defunct mdatebf, but is specified as a relative time (in hours, +
or -) rather than an absolute YYMMDDHH format, so it is more useful for
automated real-time applications. A non-zero fcoffset causes RIP to adjust the
displayed initial and forecast times to match what you consider to be the
beginning of the forecast. Examples: fcoffset=12 means you consider hour 12 in

 16

the model output to be the beginning of the true forecast (you might use this for a
run with a 12-h dynamic initialization period); fcoffset=-12 means you consider
model output time 0 to be the true forecast hour 12 (you might use this if a high-
resolution domain is initialized from the hour-12 output from a low-resolution
domain).

�. idotser (integer variable, def.=0): This flag means "do time series". By setting this
flag to "1", you can print out time series of any RIP variable at any station
location in the model domain. In order to do this, you must also do two other
things. First, you must create a simple text file with a list of locations, one per
line. Locations are specified in the same manner as cross section endpoints. See
the description of keyword crsa in Appendix A for more information on how to
specify locations. The file must be called tserstn.dat and should reside in your
current working directory. A sample version of this file is provided in the RIP tar
file. Then, you must request plots of the desired fields using the plot specification
table. Any field for which ptyp=hc is specified will be included in the time series
that is created. You can plot all the fields in one frame or in separate frames. You
can request any of the RIP vertical coordinates, and multiple levels, just as you
would if you were generating plots. In fact, when you run RIP, it will generate the
plots asked for, but in addition, it will create an ASCII file with time series data at
the requested stations for any fields that were plotted with ptyp=hc. The name of
the ASCII file that is created will be rip-execution-name.tser.

�. idescriptive (integer variable, def.=1): This flag can be set to 1 to turn on the
printing of more descriptive plot titles instead of the traditional, more cryptic and
technical titles.

�. icgmsplit (integer variable, def.=0): Setting this to 1 causes each time level of
plots to be in a separate metacode file. A value of 0 causes all times to be in a
single metacode file. This is true for any ncarg_type setting excluding “x11”

�. maxfld (integer variable, def.=10): This is a parameter that is used to reserve
memory for RIP. It is typically set between 10 and 15, depending on how much
scratch space is needed to calculate some diagnostic fields, and how many fields
are plotted in a single frame. If it is set too low, RIP will simply tell you to
increase it and re-run the program.

�. itrajcalc (integer variable, def.=0): This is a switch which turns on (1) or off (0)
trajectory calculation mode. Whenever you are making plots (even trajectory
plots), it should be zero. It should only be set to 1 when you are calculating
trajectories. See Chapter 6 for more details.

�. imakev5d (integer variable, def.=0): This is a switch which turns on (1) or off (0)
the Vis5D data set creation mode. Whenever you are making plots, it should be
zero. It should only be set to 1 when you are producing Vis5D data. See Chapter 7
for more details.

�. ncarg_type (not shown in above example, character variable, def.='cgm'): Output
type required. Options are ‘cgm’, ‘ps’, ‘pdf’, ‘pdfL’, ‘x11’. Where ‘pdf’ is portrait
and ‘pdfL’ is landscape.

�. istopmiss (not shown in above example, integer variable, def.=1): This switch
determines the behavior for RIP when a user-requested field is not available. The

 17

default is to stop. Setting the switch to 0 tells RIP to ignore the missing field and
to continue plotting.

�. rip_root (not shown in above example, character variable, def.='/dev/null'): If for
some reason RIP cannot access the path name that is stored in your UNIX
environment variable RIP_ROOT (specifying where your RIP utility files are
located), or you want to over-ride the path name specified in RIP_ROOT for a
particular execution of RIP, you can specify a path name in the variable rip_root
in the &userin namelist in your UIF. The default value of '/dev/null' causes RIP to
try to access the path name from the environment variable RIP_ROOT, instead of
trying to over-ride it.

Note: With some compilers such as Sun's Fortran 90, when assigning values to an array
in a namelist, each array element must be separately referenced with its index in
parentheses. This would apply to the ptimes and iptimes arrays described above. Thus,
in this situation, the specification of ptimes in the above sample &userin namelist would
appear as

ptimes(1)=0,ptimes(2)=6,ptimes(3)=12,

The second namelist in the UIF is called &trajcalc. This section is ignored by RIP if
itrajcalc=0. Trajectory calculation mode and use of the &trajcalc namelist are described
in Chapter 6.

b. The plot specification table

The plot specification table (PST) provides all of the user control over particular aspects
of individual frames and overlays. The basic structure of the PST is as follows. The first
line of the PST is a line of consecutive equal signs. This line, as well as the next two
lines, is ignored–they are simply a banner that says that this is the PST. After that are
several groups of one or more lines separated by a full line of equal signs. Each group of
lines is a frame specification group (FSG), because it describes what will appear in a
frame. A frame is defined as one frame of metacode. Each FSG must be ended with a full
line of equal signs–that is how RIP knows that it has reached the end of the FSG.
(Actually, RIP only looks for four consecutive equal signs, but the equal signs are
continued to the end of the line for cosmetic purposes.) Each line within the FSG is a plot
specification line (PSL), because it describes what will appear in a plot. A plot is defined
as one call to a major plotting routine (e.g. a contour plot, a vector plot, a map
background, etc.). Hence, a FSG that has three PSLs in it will result in a frame that has
three overlaid plots.

Each PSL contains several plot specification settings (PSSs), of the form

keyword = value [,value,value,...]

where keyword is a 4-character code word that refers to a specific aspect of the plot.
Some keywords need one value, some need two, and some need an arbitrary number of

 18

values. Keywords that require more than one value should have those values separated by
commas. Semicolons must separate all the PSSs within a PSL, but the final PSS in a PSL
must have no semicolon after it–this is how RIP identifies the end of the PSL. Any
amount of white space (i.e., blanks or tabs) is allowed anywhere in a PSS or PSL,
because all white space will be removed after the line is read into RIP. The use of white
space can help make your PST more readable. The order of the PSSs in a PSL does not
matter, though the common convention is to first specify the feld keyword, then the ptyp
keyword, and then other keywords in no particular order. A PSL may be as long as 240
characters, including spaces. However, if you want to keep all your text within the width
of your computer screen, then a "greater than" symbol (>) at the end of the line can be
used to indicate that the PSL will continue onto the next line. You may continue to the
next line as many times as you want for a PSL, but the total length of the PSL, including
spaces, cannot exceed 240 characters.

Any line in the PST can be commented out, simply by putting a pound sign (#) anywhere
in the line (at the beginning makes the most sense). Note that the pound sign only
comments out the line, which is not necessarily the same as the PSL. If the PSL is
continued onto another line, both lines must be commented out in order to comment out
the entire PSL. A partial PSL will likely cause a painful error in RIP. If all the PSLs in a
FSG are commented out, then the line of equal signs at the end of the FSG should also be
commented out.

There is a special keyword, incl, which allows the user to tell RIP to insert (at run time)
additional information from another file into the plot specification table. This capability
makes it easier to repeat large sections of plot specification information in a single input
file, or to maintain a library of "canned" plot specifications that can be easily included in
different input files. The incl keyword is described in more detail in Appendix A.

Each keyword has associated with it a variable in the program, and this variable may be
integer, real, character, or logical. It also may be an array. The keywords that are
associated with a real variable expect values that are of Fortran floating-point format. All
of the following are examples of valid values:

1, 2, 1., 2., 1.23, 34565, -1e-13, -1.01e+16, 6.52349, -5

The keywords that are associated with an integer variable also expect values that are of
Fortran floating point format. That is because they are initially read in as a floating-point
number, and then rounded (not truncated) to the nearest integer. Hence, all of the above
examples of numbers would also be valid for keywords that are associated with an integer
variable (except the 8th number, which would be out of range for a 32-bit integer). The
fifth and ninth values would be rounded to 1 and 7, respectively.

The keywords that are associated with a character variable expect values that are
character strings. They should NOT be in single quotes, and should also not have any
blank characters, commas, or semicolons in them.

 19

The keywords that are associated with a logical variable should not have any value. They
are set to .FALSE. by default, and simply the fact that the keyword appears will cause the
associated variable to be set to .TRUE..

The keywords that are associated with an array (of any type) may expect more than one
value. In this case, the values should be separated by commas, as mentioned above.

As an example, here is a typical PSL:

feld= uuu,vvv; ptyp=hv; vcor =p; levs=1000.,850,700, 500.;
vmax=15; colr=>
sky.blue; nmsg; smth= 4

In this example, feld is a keyword that has two character values, ptyp has one character
value, vcor has one character value, levs has four real values, vmax has one real value,
colr has one character value, nmsg is a logical flag that will cause the associated logical
variable to be set to .true., and smth has one integer value. Note the continuation
character (>) at the end of the first line, indicating that the PSL continues onto the next
line. There should be no semicolon at the end of the last PSS. Also in this example, a
somewhat sloppy placement of blank spaces was purposefully done to demonstrate that
blanks or tabs can be harmlessly placed anywhere in the PSL.

All the keywords are set to a default value prior to the reading of the plot specification
table. With regard to the default setting of keywords, there are two basic types of
keywords: those that "remember" their values, and those that "forget" their values. The
type that remembers its value (which will subsequently be referred to as type R) is set to
its default value only at the outset, and then it simply retains its value from one PSL to
the next (and even from one FSG to the next) unless it is explicitly changed by a PSS.
The type that forgets its value (which will subsequently be referred to as type F) is reset
to its default value after every PSL. Type R keywords are primarily those that deal with
location (e.g. the subdomain for horizontal plots, the vertical coordinate and levels for
horizontal plots, cross section end points, etc.).

This chapter has described the basic rules to follow in creating the PST. Appendix A
provides a description of all of the available keywords, in alphabetical order.

5. Running RIP

Each execution of RIP requires three basic things: a RIP executable, a model data set and
a user input file (UIF). Assuming you have followed the procedures outlined in the
previous chapters, you should have all of these. The UIF should have a name of the form
rip-execution-name.in, where rip-execution-name is a name that uniquely defines the UIF
and the set of plots it will generate. The syntax for the executable, rip, is as follows:

rip [-f] model-data-set-name rip-execution-name

 20

In the above, model-data-set-name is the same model-data-set-name that was used in
creating the RIP data set with the program ripdp. model-data-set-name may also include a
path name relative to the directory you are working in, if the data files are not in your
present working directory. rip-execution-name is the unique name for this RIP execution,
and it also defines the name of the UIF that RIP will look for. The intended syntax is to
exclude the ".in" extension in rip-execution-name. However, if you include it by mistake,
RIP will recognize it and proceed without trouble. The –f option causes the standard
output (i.e., the textual print out) from RIP to be written to a file called rip-execution-
name.out. Without the –f option, the standard output is sent to the screen. The standard
output from RIP is a somewhat cryptic sequence of messages that shows what is
happening in the program execution.

As RIP executes, it creates either a single metacode file or a series of metacode files,
depending on whether or not icgmsplit was set to 0 or 1 in the &userin namelist. If only
one file was requested, the name of that metacode file is rip-execution-name.TYPE
(where TYPE could be cgm, ps, pdf). If separate files were requested for each plot time,
they are named rip-execution-nameA.TYPE, rip-execution-nameB.TYPE, etc.

A common arrangement is to work in a directory that you've set up for a particular data
set, with your UIFs and plot files in that directory, and a subdirectory called data that
contains the large number of RIP data files. So, for example, if your data set was called
"superstorm" and you had an input file called sfcfields.in, you would invoke RIP in the
following manner:

rip data/superstorm sfcfields

RIP prints information to the screen as it runs, and then after it has completed execution,
there will be a new file in your present working directory, sfcfields.TYPE. This is a
metacode file containing the plots you requested. If ncarg_type was set to ‘x11’, plots
will be displayed on the screen as they are being created.

You could also have the standard print information sent to the file sfcfields.out and run
RIP in the background:

rip -f data/superstorm sfcfields &

In this case, after RIP has completed execution, you will see two new files in your present
working directory. The file sfcfields.out contains print out from the RIP execution. The
file sfcfields.TYPE is a metacode file containing the plots you requested.

Although the TYPE=cgm metacode file has a .cgm suffix, it is not a standard computer
graphics metacode (CGM) file. It is an NCAR CGM file that is created by the NCAR
Graphics plotting package. It can be viewed with any of the standard NCAR CGM
translators, such as ctrans, ictrans, or idt.

6. Calculating and plotting trajectories

 21

Because trajectories are a unique feature of RIP and require special instructions to create,
this chapter is devoted to a general explanation of the trajectory calculating and plotting
utility. RIP deals with trajectories in two separate steps, each of which requires a separate
execution of the program.

a. Trajectory calculation

The first step is trajectory calculation, which is controlled exclusively through the
namelist. No plots are generated in a trajectory calculation run. In order to run RIP in
trajectory calculation mode, the variable itrajcalc must be set to 1 in the &userin
namelist. All other variables in the &userin part of the namelist are ignored. The
&trajcalc part of the namelist contains all the information necessary to set up the
trajectory calculation run. The following is a description of the variables that need to be
set in the &trajcalc section:

�. rtim: the release time (in forecast hours) for the trajectories.
�. ctim: the completion time (in forecast hours) for the trajectories.

Note: the direction of the trajectory calculation (forward or
backward) is determined by rtim and ctim. If rtim<ctim,
trajectories are forward. If rtim>ctim, trajectories are backward.

�. dtfile: the time increment (in seconds) between data files.
�. dttraj: the time step (in seconds) for trajectory calculation. If this is set to a

smaller value than dtfile, then velocity data are linearly interpolated in time to the
trajectory time steps. Believe it or not, this actually does improve the accuracy of
the trajectories. For hourly data, a ten minute (600 s) trajectory time step is often
used.

�. vctraj: the vertical coordinate of values specified for zktraj. vctraj is specified as a
single character in single quotes:

‘s’: zktraj values are model vertical level indices
‘p’: zktraj values are pressure values, in mb
‘z’: zktraj values are height values, in km
‘m’: zktraj values are temperature values, in C
‘t’: zktraj values are potential temperature values, in K
‘e’: zktraj values are equivalent potential temperature values, in K

�. ihydrometeor: a flag which, if set to 1, causes the trajectory calculation algorithm
to use the hydrometeor fall speed (an average fall speed weighted by the mixing
ratios of the different precipitation types) instead of the vertical air velocity. The
purpose of this flag is to produce hydrometeor trajectories instead of air parcel
trajectories.

�. xjtraj,yitraj: real arrays containing x and y values (in grid points) of the initial
positions of the trajectories. The grid values can be non-integer values, and should

 22

be relative to the grid position at the trajectory release time (this is important for
trajectories in moving nests).

�. zktraj: real array containing values of the vertical location of the initial points of
the trajectories. The type of value used (e.g. pressure, height, etc.) must be
consistent with vctraj. If vctraj is ‘s’, then the values can be specified either as σ
values (numbers between 0 and 1) or as k indices (integers greater than or equal to
1).

It is also possible to define a 3D array of trajectory initial points, without having to
specify the [x,y,z] locations of every point. The grid can be of arbitrary horizontal
orientation. To define the grid, you must specify the first seven values of xjtraj as
follows: The first two values should be the x and y values of the lower left corner of the
trajectory horizontal grid. The next two values should be the x and y values of another
point defining the positive x-axis of the traj. grid (i.e., the positive x-axis will point from
the corner point to this point). The fifth value should be the trajectory grid spacing, in
model grid lengths. The final two values should be the number of points in the x and y
directions of the trajectory horizontal grid. The first value of xjtraj should be negative,
indicating that a grid is to be defined (rather than just individual points), but the absolute
value of that value will be used. Any yitraj values given are ignored. The zktraj values
specify the vertical levels of the 3D grid to be defined. Note that any vertical coordinate
may still be used if defining a 3D grid of trajectories.

If no diagnostic quantities along the trajectories are desired, the plot specification table is
left blank (except that the first three lines comprising the "Plot Specification Table"
banner are retained). If diagnostic quantities are desired, they can be requested in the plot
specification table (although no plots will be produced by these specifications, since you
are running RIP in trajectory calculation mode). Since no plots are produced, only a
minimum of information is necessary in the plot specification table. In most cases, only
the feld keyword needs to be set. For some fields, other keywords that affect the
calculation of the field should be set (such as strm, rfst, crag, crbg, shrd, grad, gdir,
qgsm, smcp, and addf). Keywords that only affect how and where the field is plotted can
be omitted. Any of the diagnostic quantities listed in Appendix B can be calculated along
trajectories, with the exception of the Sawyer-Eliassen diagnostics. Each desired
diagnostic quantity should be specified in its own frame specification group (FSG) (i.e.
only one feld= setting between each line of repeated equal signs). The only exception to
this is if you are using the addf keyword. In that case, all of the plot specification lines
(PSLs) corresponding to the fields being added (or subtracted) should be in one FSG. As
a simple example, if you want to calculate cloud water mixing ratio, pressure, omega, and
relative humidity along your trajectories, your plot specification table would look like
this:

===
=
---------------- Plot Specification Table -----------------
-
===

 23

=
feld=qcl
===
=
feld=prs
===
=
feld=omg
===
=
feld=rhu
===
=

Once the input file is set up, RIP is run as outlined in Chapter 5. Since no plots are
generated when RIP is run in trajectory calculation mode, no rip-execution-name.TYPE
file is created. (rip-execution-name is the unique name you've chosen for a particular
execution of RIP. See Chapter 5). However, two new files are created that are not in a
regular (non-trajectory-calculation) execution of RIP. The first is a file that contains the
positions of all the requested trajectories at all the trajectory time steps, called rip-
execution-name.traj. The second is a file that contains requested diagnostic quantities
along the trajectories at all data times during the trajectory period, called rip-execution-
name.diag. The .diag file is only created if diagnostic fields were requested in the plot
specification table.

b. Trajectory plotting

Once the trajectories have been calculated, they can be plotted in subsequent RIP
executions. Because the plotting of trajectories is performed with a different execution of
RIP than the trajectory calculation, the plotting run should have a different rip-execution-
name than any previous trajectory calculation runs.

Trajectories are plotted by including an appropriate PSL in the PST. There are three
keywords that are necessary to plot trajectories, and several optional keywords. The
necessary keywords are feld, ptyp, and tjfl. feld should be set to one of five possibilities:
arrow, ribbon, swarm, gridswarm, or circle (these fields are described in detail below).
ptyp should be set to either ht (for "horizontal trajectory plot") or vt (for "vertical (cross
section) trajectory plot"). tjfl tells RIP which trajectory position file you want to access
for the trajectory plot.

As mentioned above, there are four different representations of trajectories, as specified
by the feld keyword:

�. feld=arrow: This representation shows trajectories as curved arrows, with
arrowheads drawn along each trajectory at a specified time interval. If the plot is a
horizontal trajectory plot (ptyp=ht), the width of each arrowhead is proportional
to the height of the trajectory at that time. If the plot is a vertical (cross section)

 24

trajectory plot (ptyp=vt), the width of each arrowhead is constant. The arrowhead
that corresponds to the time of the plot is boldened.

�. feld=ribbon: This representation shows trajectories as curved ribbons, with
arrowheads drawn along each trajectory at a specified time interval. If the plot is a
horizontal trajectory plot (ptyp=ht), the width of each arrowhead, and the width of
the ribbon, is proportional to the height of the trajectory at that time. If the plot is
a vertical (cross section) trajectory plot (ptyp=vt), the width of each arrowhead
(and the ribbon) is constant. The arrowhead that corresponds to the time of the
plot is boldened.

�. feld=swarm: This representation shows a group of trajectories attached to each
other by straight lines at specified times. The trajectories are connected to each
other in the same order at each time they are plotted, so that the time evolution of
a material curve can be depicted. Swarms can be plotted either as horizontal or
vertical trajectory plots (ptyp=ht or ptyp=vt).

�. feld=gridswarm: This is the same as swarm, except it works on the assumption
that part or all of the trajectories in the position file were initially arranged in a
row-oriented 2-D array, or "gridswarm". The evolution of this gridswarm array is
depicted as a rectangular grid at the initial time, and as a deformed grid at other
specified times. The gridswarm being plotted can have any orientation in 3D
space, although the means to create arbitrarily oriented gridswarms when RIP is
used in trajectory calculation mode are limited. Creative use of the "3D grid of
trajectories" capability described above under the description of zktraj can be used
to initialize horizontal gridswarms of arbitrary horizontal orientation (but on
constant vertical levels).

�. feld=circle: This representation shows the trajectories as circles located at the
positions of the trajectories at the current plotting time, in which the diameter of
the circles is proportional to the net ascent of the trajectories (in terms of the
chosen vertical coordinate) during the specified time interval. It is only available
as a horizontal trajectory plot (ptyp=ht).

The optional keywords that affect trajectory plots are listed below. The functionality of
some of these keywords may depend on what type of trajectory representation (as
specified by the feld keyword) you are using. See Appendix A, "Keywords", for more
details.

colr: Color of trajectories, swarms, or circles representing positive ascent.

cong: Color of circles representing negative ascent.

dash: Dash pattern of trajectories, swarms, or circles representing positive ascent.

dang: Dash pattern of circles representing negative ascent.

lchl: Label color for storm position (for storm-relative trajectories).

lcll: Label color for trajectory labels.

 25

linw: Line width of trajectories, swarms, or circles representing positive ascent.

lwng: Line width of circles representing negative ascent.

nmsg: No trajectory height legend.

nohl: No storm position marker (for storm-relative trajectories).

nolb: No trajectory labels.

strm: Storm velocity (for storm-relative trajectories).

tjar: Arrow widths for trajectories or circles.

tjen: End time (in forecast hour) of plotted trajectories or swarms, or end time for net
ascent calculation (for circles).

tjfl: File name of trajectory position info.

tjid: ID numbers of trajectories to be plotted or swarm points to be connected, or
gridswarm definition.

tjsp: Storm position for storm-relative trajectories.

tjst: Start time (in forecast hour) of plotted trajectories or swarms, or start time for net
ascent calculation (for circles).

tjti: Time interval for trajectory arrow heads, or for swarms, in hours.

tshl: Text size for storm position marker (for storm-relative trajectories).

tslb: Text size for trajectory labels

vcor: Vertical coordinate for trajectory height legend or for net ascent calculation (for
circles). (for ptyp=ht).

vwin: Vertical window for trajectory height legend, or reference vertical displacement for
circles.

A simple example of an FSG that includes a trajectory plot follows:

===
=
---------------- Plot Specification Table -----------------
-
===

 26

=
feld=the; ptyp=hc; vcor=p; levs=850; cint=2
feld=arrow; ptyp=ht; tjfl=tjcalc3.traj; tjid=3,-12,3;
vcor=z;>
 colr=green; tjst=12; tjen=18
feld=map; ptyp=hb
feld=tic; ptyp=hb
===
=

In the above, the first line specifies that potential temperature contours at 850 mb will be
plotted. The second line specifies that "arrow-type" trajectories will be plotted. The
trajectories will come from the trajectory position file called tjcalc3.traj, created by a
previous execution of RIP in trajectory calculation mode. The trajectories will be plotted
in green, and only the parts from forecast hours 12 through 18 will be plotted (i.e. you
can plot a subset of the time period for which the trajectories were calculated). Only
trajectory numbers 3, 6, 9, and 12 will be plotted, as specified by the tjid keyword.
Finally, a map and tick mark background will be plotted.

c. Printing out trajectory positions

Sometimes, you may want to examine the contents of a trajectory position file. Since it is
a binary file, the trajectory position file cannot simply be printed out. However, a short
program is provided in the src/ directory in the RIP tar file called showtraj.f, which reads
the trajectory position file and prints out its contents in a readable form. The program
should have been compiled when you originally ran make, and when you run showtraj, it
prompts you for the name of the trajectory position file to be printed out.

d. Printing out diagnostics along trajectories

As mentioned above, if fields are specified in the plot specification table for a trajectory
calculation run, then RIP produces a .diag file that contains values of those fields along
the trajectories. This file is an unformatted Fortran file, so another program is required to
view the diagnostics. Among the Fortran files included in the src/ directory in the RIP tar
file is tabdiag.f, which serves this purpose. It is also compiled when make is run.

In order to use the program, you must first set up a special input file that contains two
lines. The first line should be the column headings you want to see in the table that will
be produced by tabdiag, with the entire line enclosed in single quotes. The second line is
a Fortran I/O format string, also enclosed in single quotes, which determines how the
diagnostic values are printed out. An example of an input file for tabdiag is included in
the RIP tar file, called tabdiag.in, and is shown below.

‘ Time (h) qcl (g/kg) Press. (mb) Omega (ubar/s) RH (%) ’
‘(5(3x,f9.3,3x))’

 27

If a trajectory calculation run requested that qcl, prs, omg, and rhu be calculated along the
trajectories, this input file for tabdiag might be used to tabulate that data. Note that the
tabdiag input file should include a column heading and Fortran formatting for the time, in
hours, in the first column. The program tabdiag always prints out the time in the first
column, regardless of which diagnostic fields were requested. Once the input file is set
up, tabdiag is run as follows:

tabdiag diagnostic-output-file tabdiag-input-file

The result will be a text file with a table for each trajectory, showing the time evolution
of the diagnostic quantities. Some adjustment of the column headings and format
statement will probably be necessary to make it look just right.

7. Creating a data set for Vis5D

Vis5D is a powerful visualization software package developed at the University of
Wisconsin, and is widely used by mesoscale modelers to perform interactive 3D
visualization of model output. Although it does not have the flexibility of RIP for
producing a wide range of 2D plot types with extensive user control over plot details, its
3D visualization capability and fast interactive response make it an attractive complement
to RIP.

A key difference between RIP and Vis5D is that RIP was originally developed
specifically for scientific diagnosis and operational display of mesoscale modeling
system output. This has two important implications: (1) The RIP system can ingest model
output files, and (2) RIP can produce a wide array of diagnostic quantities that mesoscale
modelers want to see. Thus, it makes sense to make use of these qualities to have RIP act
as a bridge between a mesoscale model and the Vis5D package. For this reason, a Vis5D-
format data-generating capability was added to RIP. With this capability, you can create a
Vis5D data set from your model data set, including any diagnostic quantities that RIP
currently calculates.

The Vis5D mode in RIP is switched on by setting imakev5d=1 in the &userin namelist in
the UIF. All other variables in the &userin part of the namelist are ignored. No plots are
generated in Vis5D mode. The desired diagnostic quantities are specified in the plot
specification table (PST). Since no plots are produced, only a minimum of information is
necessary in the plot specification table. In most cases, only the feld keyword needs to be
set, and vertical levels should be specified with levs (in km) for the first field requested.
The vertical coordinate will automatically be set to 'z', so there is no need to set vcor=z.
The levels specified with levs for the first requested field will apply to all 3D fields
requested, so the levs specification need not be repeated for every field. You are free to
choose whatever levels you wish, bearing in mind that the data will be interpolated from
the data set's vertical levels to the chosen height levels.

For some fields, other keywords that affect the calculation of the field should be set (such
as strm, rfst, crag, crbg, shrd, grad, gdir, qgsm, smcp, and addf). Keywords that only

 28

affect how and where the field is plotted can be omitted. Any of the diagnostic quantities
listed in Appendix B can be added to the Vis5D data set, with the exception of the
Sawyer-Eliassen diagnostics. Each desired diagnostic quantity should be specified in its
own frame specification group (FSG) (i.e. only one feld= setting between each line of
repeated equal signs). The only exception to this is if you are using the addf keyword. In
that case, all of the plot specification lines (PSLs) corresponding to the fields being added
(or subtracted) should be in one FSG.

As a simple example, if you want to create a Vis5D data set with velocities, pressure, sea-
level pressure, potential temperature, cloud mixing ratio, precipitation mixing ratio,
potential vorticity, and water vapor mixing ratio, your plot specification table would look
something like this:

===
=
---------------- Plot Specification Table -----------------
-
===
=
feld=uuu; levs=0,-12,.5
===
=
feld=vvv
===
=
feld=www
===
=
feld=prs
===
=
feld=slp
===
=
feld=the
===
=
feld=qcl
===
=
feld=qpr
===
=
feld=pvo
===
=
feld=qvp

 29

===
=

Once the user input file is set up, RIP is run as outlined in Chapter 5. Since no plots are
generated when RIP is run in Vis5D mode, no rip-execution-name.TYPE file is created.
(rip-execution-name is the unique name you've chosen for a particular execution of RIP.
See Chapter 5). However, a file is created with the name rip-execution-name.v5d. This
file is the Vis5D data set, which can be used by the Vis5D program to interactively
display your model data set.

The map projection information will automatically be generated by RIP and included in
the Vis5D data set. Therefore, you don't have to explicitly request feld=map in the plot
specification table. However, there are some complications with converting the map
background, as specified in RIP, to the map background parameters required by Vis5D.
Currently, RIP can only make the conversion for Lambert conformal maps, and even that
conversion does not produce an exact duplication of the correct map background.

Vis5D also has its own terrain data base for producing a colored terrain-relief map
background--you don't need to specifically request feld=ter to get this. However, if you
want to look at the actual model terrain as a contour or color-filled field, you should add
feld=ter to your plot specification table.

8. Other special situations

a. 2-D model output

Some models (such as WRF) can be run in a 2-D mode. In such a case, the domain
dimension in the y-direction will be 3 “dot” (u/v) grid points and 2 “cross” (T/p) grid
points. The only type of plots that make sense in this situation are vertical cross sections
(ptyp=vc, vv, vw, vt, or vb). The y-value of the cross section endpoints (as specified by
the second value given for crsa and crsb) should always be “2”.

Appendix A. Keywords

This appendix is a list of all the available keywords. Each entry contains the keyword, a
brief statement of what the keyword is, the type and number of values expected, the
default values, whether they are type R ("remembered") or F ("forgotten"), the purpose of
the keyword, and, in some cases, a more extended explanation of how to use the
keyword.

The most important keywords, which must be specified for every plot (and are typically
specified first), are feld and ptyp. These are described first. Following these two is an
alphabetic list of all other keywords.

 30

feld: Field to be plotted

Expects 1, 2, or 3 character values, each up to 10 characters in length; defaults are
dm1, dm2, and dm3 (these are nonsense values); type is F.

Purpose: This specifies the field or fields for the plot. For contour plots, character
plots, skew-T temperature trace plots, trajectory plots, vertical profiles, and
background plots, only one value is expected. For vector plots that require two
components (if ptyp is set to hv, hs, vw, or sv), two fields are expected. For vector
plots that require three components (if ptyp is set to vv), three fields are expected.
The available fields are described in Appendix B.

In addition to the available fields for plotting described in Appendix B, feld can
also be set to the ending part of any ripdp data file name to plot the contents of
that data file. This capability is useful for plotting variables that RIPDP
encountered (but did not expect) in the model output. It also allows for the
plotting of diagnostic quantities that have been saved to a file with a user-
specified variable name, using the save keyword. For example, if there is a RIPDP
data file called mycase_012.00000_CATSANDDOGS, it can be plotted by using
feld=CATSANDDOGS.

ptyp: Plot type

Expects 1 character value of length 2; default is 'hc'; type is F.

Purpose: This keyword determines what type of plot will be drawn for this PSL.
There are currently 11 possibilities:

hc: horizontal contour plot
hv: horizontal vector plot
hs: horizontal streamline plot
hh: horizontal character plot (for things like land use, snow cover)
ht: horizontal trajectory plot
hb: horizontal background plot (maps, perimeter tick marks)
vc: vertical (cross section) contour plot
vv: vertical vector plot (circulation vectors in the plain of the cross sec.)
vw: vertical wind vector plot (hor. wind vectors in a vert. cross sec.)
vt: vertical trajectory plot (trajectories projected onto the plane of the cross
section)
vb: vertical background plot (perimeter tick marks and ground curve for cross
section)
sc: sounding contour plot (a temperature trace on a skew-T)
sv: sounding vector plot (a wind barb column on a skew-T)
sb: sounding background plot (the background skew-T grid)
pc: vertical profile contour plot (a trace of the specified variable as a function of
height)

A few notes on vertical (cross section) plots: The endpoints of the cross section
are specified with keywords crsa and crsb (see description of these keywords
below). The data are interpolated in the horizontal direction from the grid to an
arbitrary number of equally spaced points along the cross section. That number is

 31

automatically chosen by RIP for contour plots, but you can specify it for vector
plots. In the vertical direction, the data are not interpolated. Rather, the plotting
grid itself is transformed so that the model vertical levels are correctly placed with
respect to whatever vertical coordinate has been chosen for the cross section. The
tick mark background plot will also draw a curve indicating the position of the
ground.

addf: Add (or subtract) this field to (or from) the next field

Expects 1 real value; default is 0.0, which means do not add this field to the next
field; type is F.

Purpose: This option allows you to add fields together prior to plotting. Added
fields should appear as separate PSLs. In PSLs that have the addf keyword,
usually only the feld keyword needs to be set. For some fields, other keywords
that affect the calculation of the field should be set (such as strm, rfst, crsa, crsb,
shrd, grad, gdir, qgsm, redo, sepa, lapl, hadv, diff, and smcp). PSLs that only
affect how and where the field is plotted can be omitted. In the final field to be
added, addf should be omitted, and all the other desired keywords should be set.

As an example, suppose you want to plot the sum of cloud water, cloud ice, rain,
and snow. This would be accomplished as follows:

feld=qcw; ptyp=hc; addf=1
feld=qci; ptyp=hc; addf=1
feld=qra; ptyp=hc; addf=1
feld=qsn; ptyp=hc; vcor=p; levs=850; cint=1

Each field is multiplied by its value of addf prior to adding. Hence, one can add or
subtract a field or a multiple of a field. For example, you could plot ageostrophic
wind vectors as follows (although this field exists, called uageo and vageo):

feld=ugeo,vgeo; ptyp=hv; addf=-1
feld=uuu,vvv; ptyp=hv; vcor=p; levs=500; intv=3

arng: Automatic range

Expects no values (logical); default is .false.; type is F.

Purpose: This flag turns on the automatic range feature. The automatic range
feature changes the way in which the cosq keyword works for color filling. If
automatic range is on, then the values in the color sequence should be made to
range from 0 to 100, regardless of the units or the actual range of the data in the
plotted field. RIP then determines the minimum and maximum values in the
plotted field, and linearly maps the minimum-to-maximum range on the 0-to-100
range. Hence, the full color range that is defined will automatically cover the
exact range of data in the plotted field. Note that if you use arng, specification of
contour interval (cint), beginning contour (cbeg), and ending contour (cend)
should still be specified in terms of the actual values of the field if you need to use
these keywords.

 32

Example:
feld=tmc; ptyp=hc; cmth=fill; arng;
cosq=0,blue,50,white,100,red

axld: Large labeled tick increment along distance axis

Expects 1 real value; default is 100.; type is F.

Purpose: This specifies how often (in units of km) there should be large labeled
tick marks along the distance axis of a cross section if feld=tic is specified. A
value of 0 indicates no large labeled tick marks should be drawn.

axlg: Large labeled tick increment for horizontal plots

Expects 1 integer value; default is 10; type is F.

Purpose: This specifies how often (in grid points) there should be large labeled
tick marks in a horizontal plot if feld=tic is specified. A value of 0 indicates no
large labeled tick marks should be drawn.

axlv: Large labeled tick increment along vertical axis

Expects 1 real value; default depends on vertical coordinate; type is F.

Purpose: This specifies how often (in units of the vertical coordinate) there should
be large labeled tick marks along the vertical axis of a cross section if feld=tic is
specified. A value of 0 indicates no large labeled tick marks should be drawn. The
default values are 10 for vcor=s (model vertical level index), 100 mb for vcor=p,
l, or x (pressure, log pressure, or Exner function), 1.0 km for vcor=z (height) , 10
K for vcor=t or e (potential temperature or equivalent potential temperature), 10
C for vcor=m (temperature), and 1.0 PVU for vcor=q (potential vorticity).

axtd: Small tick increment along distance axis

Expects 1 real value; default is 10.; type is F.

Purpose: This specifies how often (in units of km) there should be small tick
marks along the distance axis of a cross section if feld=tic is specified. A value of
0 indicates no small tick marks should be drawn.

axtg: Small tick increment for horizontal plots

Expects 1 integer value; default is 1; type is F.

Purpose: This specifies how often (in grid points) there should be small tick
marks in a horizontal plot if feld=tic is specified. A value of 0 indicates no small
tick marks should be drawn.

axtv: Small tick increment along vertical axis

 33

Expects 1 real value; default depends on vertical coordinate; type is F.

Purpose: This specifies how often (in units of the vertical coordinate) there should
be small labeled tick marks along the vertical axis of a cross section if feld=tic is
specified. A value of 0 indicates no small labeled tick marks should be drawn.
The default values are 1 for vcor=s (model vertical level index), 10 mb for
vcor=p, l, or x (pressure, log pressure, or Exner function), 0.1 km for vcor=z
(height), 1 K for vcor=t or e (potential temperature or equivalent potential
temperature), 1 C for vcor=m (temperature), and 0.1 PVU for vcor=q (potential
vorticity).

bogs: Flag to output a bogus sounding

Expects no values (logical); default is .false.; type is F.

Purpose: If this is true, RIP will output a bogus sounding print out in "little-r"
format to the file fort.66.

cbeg: Beginning contour value

Expects 1 real value; default is -9.0e9 (nine times ten to the ninth); type is F.

Purpose: This specifies the beginning contour value. A value of -9.0e9 causes RIP
to choose a nice value that is near the minimum value in the plotted field. A value
of 9.0e9 causes RIP to choose a nice value that is near the maximum value in the
plotted field. RIP generates contours by starting at cbeg and stepping toward cend
by the amount cint, until the value of cend is reached. This stepping process may
go in either direction, i.e. cint may be greater or less than cbeg. cbeg is also used
to specify the lower limit of the horizontal axis for vertical profiles (ptyp=pr).

cend: Ending contour value

Expects 1 real value; default is 9.0e9 (nine times ten to the ninth); type is F.

Purpose: This specifies the ending contour value. A value of -9.0e9 causes RIP to
choose a nice value that is near the minimum value in the plotted field. A value of
9.0e9 causes RIP to choose a nice value that is near the maximum value in the
plotted field. cend is also used to specify the upper limit of the horizontal axis for
vertical profiles (ptyp=pr).

chfl: Character fill flag

Expects no values (logical); default is .false.; type is F.

Purpose: If this is true, then the character plotting routine will not plot characters,
but instead will fill each grid box with the appropriate color from the color
sequence, using cell filling.

 34

cint: Contour interval (contour plots) or lat/lon line interval (for maps)

Expects 1 real value; default for contour plots is a nice value that generates near
the desired number of contours; default for maps is 10_; type is F

Purpose: For contour plots, this specifies the contour interval. If it is not specified,
RIP will choose a nice value that generates near the desired number of contours
(as specified by the ncon keyword). For maps, cint specifies the contour interval
for latitude and longitude lines on a map background.

cmth: Contouring method

Expects 1 character value; default is 'cont'; type is F.

Purpose: Determines whether this plot will generate contour lines (cont), contour
filling with “area fill” (fill), both contours and contour filling with “area fill”
(both), contour filling with “cell fill” (cell), or both contours and contour filling
with “cell fill” (ceco).

Note: There are two ways of making color-filled contour plots. One is with “area
fill”, in which the regions between contours are defined as polygonal areas which
are filled with appropriate colors. The other is with “cell fill”, in which each grid
point is assigned a square “cell” defined as as the surrounding grid box, and the
cell is assigned a color based on the field value at the grid point. Cell-filling is a
new addition to RIP. Its advantage is that plots are generated considerably faster
than with area filling, especially for large domains. It’s disadvantages are that it
can look a bit “pixely” for coarser domains; it is not compatible with the
“transparent color” feature (see keyword cosq); and it produces strange behavior
in the viewing program idt, namely, very slow refreshing of the plot when the
zoom feature is used.

coll: Labeled contour color

Expects 1 character value; default is the value of colr; type is F.

Purpose: This sets the color of the labeled contours, if it is to be different from
colr. Any color name that is defined in the color table is valid.

colr: Plot color

Expects 1 character value; default is 'def.foreground'; type is F.

Purpose: This is the main color that will be used for the plot. Any color name that
is defined in the color table is valid. Depending on what type of plot is being
drawn, colr determines the color of contours, vectors, wind barbs, streamlines,
characters (in character plots), trajectories, swarms, trajectory net ascent circles,
lat/lon lines (in map plots), the perimeter square and tick marks, lines (for
feld=line or feld=box), bullets, or station IDs. It also sets the color of the

 35

corresponding plot title at the top of the plot, as well as the corresponding
messages at the bottom of the plot.

cong: Negative contour color

Expects 1 character value; default is the value of colr; type is F.

Purpose: This sets the color of the negative contours, if it is to be different from
colr. Also, for horizontal trajectory plots, if feld=circle is set, this color is used
for circles representing negative net height changes. Any color name that is
defined in the color table is valid.

conl: Negative labeled contour color

Expects 1 character value; default is the value of cong; type is F.

Purpose: This sets the color of the negative labeled contours, if it is to be different
from cong. Any color name that is defined in the color table is valid.

cord: Contour ordenal specification for color sequence

Expects no values (logical); default is .false.; type is F.

Purpose: This flag turns on the contour ordenal specification for the color
sequence. This feature changes the way in which the cosq keyword works for
color filling. If cord is on, then the values in the color sequence should be made to
range from 1 to the number of contour color bands expected (which is always one
larger than the number of contours). RIP then chooses colors for the contour color
bands by interpolating in terms of contour band ordenal, rather than contour band
value. Note that if you use cord, specification of contour interval (cint), beginning
contour (cbeg), and ending contour (cend) should still be specified in terms of the
actual values of the field if you need to use these keywords.

cosq: Color sequence

Expects an arbitrary number of pairs of real and character values; Default is such
that all real values correspond to the color def.foreground; type is F.

Purpose: For contour plots, the color sequence determines how colors are chosen
for color filled contours. For horizontal character plots, the color sequence is used
for coloring the characters in character plots. The color sequence is comprised of
an arbitrary number of pairs, each of which contains a real value and a color
name. The values correspond to values of the plotted field The color names can be
any of the names that are available in the color table.

Examples:

For color-filled contour plots:

 36

cosq=-5,white,3.5,red,7,orange,12,yellow,15,green,20,blue,24.5,violet

The way in which colors for particular areas or cells are assigned is as follows.
Each of the areas that are bounded by two different contours, or each cell whose
grid value is bounded by two contour values, is assigned a discrete value that is
equal to the average of the values of the bounding contours. For the areas or cells
that are above the highest contour level (or below the lowest contour level), the
discrete value is chosen to be half a contour interval above (or below) the
bounding contour.

The discrete value is then compared to the color sequence in order to find the two
color sequence pairs whose values bracket the discrete value. Interpolated values
of red, green, and blue fractions are calculated based on the discrete value, the
bracketing color sequence values, and the bracketing color sequence colors. This
interpolated color is then used to fill the area or cells.

If you want some contour-bounded areas of the plot to appear transparent, so that
other fields can be seen underneath, the color transparent can be specified in the
color sequence. For a given contour-bounded area, if either of the bracketing
values in the color sequence is assigned the color transparent, that contour-
bounded area will be transparent. Note that transparent only works for area
filling, not for cell filling.

For character plots:

The color name refers to the color that you want a particular value to be plotted
in, and it can be any of the names that are available in the color table. An example
of a cosq setting for a character plot might be

feld=xlus; ptyp=hh; cosq=1,red,2,blue,4,pink,5,yellow,>

7,sky.blue,8,violet,6,white,10,dark.blue

This would result in a plot in which, at every cross point, the land use category
number would be plotted in the color as specified above. Any numbers that do not
have a color specified would be plotted in the default foreground color (such as 3,
9, 11, etc., in the above example). Also, if keyword chfl is set, grid boxes are
filled with the chosen color (using cell filling), rather than values printed in each
box.

cozr: Zero contour color

Expects 1 character value; default is the value of colr; type is F.

Purpose: This sets the color of the zero contour, if it is to be different from colr.
Any color name that is defined in the color table is valid.

crsa: Left cross section end point location

Expects a variety of values; defaults are 3,3; type is R.

Purpose: For vertical cross section plots, this sets the location (in the dot point
domain) of the first (left) end point of a cross section. It also applies to some
horizontal background plots: it sets the lower left corner of a box (feld=box), the

 37

first end point of a line (feld=line), or the location of a bullet (feld=bull). Finally,
it is also used to define a vector from crsa to crsb, which may be used to define
the direction of a vector component for keywords strm, shrd, and gdir.

There are four different ways to specify location. The first is in terms of the x,y
location on the model grid. To specify location in this way, use two real values,
separated by a comma (i.e. x,y). The second way is in terms of latitude and
longitude. To specify location in this way, use two real values, each with the
words "lat" or "lon" immediately after the number, and separated by a comma.
The third way is in terms of the 5-digit WMO number for a station in North
America. To specify the location in this way, supply the WMO number as a single
integer value. The fourth way is in terms of a four-character ICAO station
identifier for a station that has such an identifier listed in the stationlist. To
specify the location in this way, supply the identifier as one string, and use only
upper case for the string. Examples follow.

x,y format: crsa=20.4,30;

lat,lon format: crsa=40.24lat,-78.1lon;

WMO format: crsa=72240;

character ID format: crsa=ORD;

An important limitation to be aware of is that, regardless of the format that is
used, the resulting locations must be greater than 1.5, and less than mjx-.5 for x
points and miy-.5 for y points.

crsb: Right cross section end point location

Expects a variety of values; defaults are 3,3; type is R.

Purpose: For vertical cross section plots, this sets the location (in the dot point
domain) of the second (right) end point of a cross section. It also applies to some
horizontal background plots: it sets the upper-right corner of a box (feld=box) or
the second end point of a line (feld=line). Finally, it is also used to define a vector
from crsa to crsb, which may be used to define the direction of a vector
component for keywords strm, shrd, and gdir.

dall: Labeled contour dash pattern

Expects 1 integer value; default is the value of dash; type is F.

Purpose: This sets the dash pattern of the labeled contours, if it is to be different
from dash.

dang: Negative contour dash pattern

Expects 1 integer value; default is the value of dash; type is F.

Purpose: This sets the dash pattern of the negative contours, if it is to be different
from dash. Also, for horizontal trajectory plots, if feld=circle is set, this dash
pattern is used for circles representing negative net height changes.

danl: Negative labeled contour dash pattern

 38

Expects 1 integer value; default is the value of dang; type is F.

Purpose: This sets the dash pattern of the negative labeled contours, if it is to be
different from dang.

dash: Dash pattern

Expects one two-digit integer value; default is 10, except if feld=map, default is
32; type is F.

Purpose: Depending on the type of plot being drawn, this sets the dash pattern for
contour lines, lat/lon lines (for maps), boxes and lines (ptyp=box or line), vertical
bars in cross sections (feld=vbar), a temperature trace in a skew-T sounding,
trajectories, swarms, or trajectory net ascent circles. The specification is based on
the idea that a segment of a contour can be broken up into 16 pieces. The first
digit of dash specifies how many solid pieces should be drawn, and the second
digit specifies how many blank pieces should be drawn. If the two digits do not
add up to 16, then the pattern is repeated until a pattern of 16 pieces is achieved.
If the two digits add up to more than 16, then the pattern is cut off at 16. The 16-
piece pattern is then used as the repeating pattern for contour lines. Again, this is
best seen by example:

Dash
value

This is what 2 repetitions of the 16-piece pattern look
like:

10

(solid)

20

(same as previous pattern)

80

(same as previous pattern)

11
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(shortest possible dash)

21 __ __ __ __ __ ___ __ __ __ __ _

32 ___ ___ ___ ____ ___ ___ _

88 ________ ________

17 _ _ _ _

You should experiment to determine the length of dash pattern that
is obtained for various settings of dash.

dazr: Zero contour dash pattern

Expects 1 integer value; default is the value of dash; type is F.

 39

Purpose: This sets the dash pattern of the zero contour, if it is to be different from
dash.

diff: Difference fields

Expects one to three values, which are either real or character, separated by a
comma(s); the order is not important; Default is no differencing; type is F.

Purpose: You can subtract from the specified field the same field at a different
time and/or in a different data set. If you want to subtract the same field at a
different time in the same data set, set diff equal to a real value, which is a time in
hours from the beginning of the forecast or analysis. The time specified will be
interpreted as an absolute time. However, if you want to specify a time relative to
the current plotted time (either positive or negative is acceptable), also include the
character string "rel" (no quotes) as an additional value for the diff keyword. If
you want to subtract the same field at the same time in a different model data set,
set diff equal to a character value, which is the prefix for the data set you want to
subtract. This should be specified as a path name relative to your current working
directory, the same as is model-data-set-name on the RIP command line. If you
want to subtract the same field at a different time and in a different data set, set
diff equal to a real and a character value separated by a comma, where the real
value is the time in hours and the character value is the name of the data set to
subtract. These can be specified in either order: time,data-set or data-set,time.

Examples:

diff=10; This would subtract the same field in the
same data set
 but at hour 10.
diff=-3,rel; This would subtract the same field in the
same data set
 but 3 h prior to the current time.
diff=data/noflux; This would subtract the same field at the
same time
 but from the data set "noflux" in the
"data" directory.
diff=rel,-6,data/dryrun; This would subtract the same field
 but from 6 h prior to the current
time, and from the
 data set "dryrun" in the "data"
directory.

fchl: Fill color for high/low label boxes in contour plots

Expects 1 character value; default is the value of fclb; type is F.

Purpose: This sets the fill color for high/low label boxes, if it is to be different
from fclb. Any color name that is defined in the color table is valid.

fclb: Fill color for label boxes in contour plots

 40

Expects 1 character value; default is '999999', which means "do not fill"; type is
F.

Purpose: This sets the fill color for label boxes. Any color name that is defined in
the color table is valid.

fclo: Fill color for low label boxes in contour plots

Expects 1 character value; default is the value of fchl; type is F.

Purpose: This sets the fill color for low label boxes, if it is to be different from
fchl. Any color name that is defined in the color table is valid.

fcnl: Fill color for negative contour label boxes in contour plots

Expects 1 character value; default is the value of fclb; type is F.

Purpose: This sets the fill color for negative contour label boxes, if it is to be
different from fclb. Any color name that is defined in the color table is valid.

fczr: Fill color for zero contour label boxes in contour plots

Expects 1 character value; default is the value of fclb; type is F.

Purpose: This sets the fill color for zero contour label boxes, if it is to be different
from fclb. Any color name that is defined in the color table is valid.

fulb: Full barb value

Expects 1 character value; default is '5mps'; type is F.

Purpose: Sets the value of a full wind barb on either horizontal wind barb plots,
vertical cross sections with horizontal wind barbs, or wind barb columns in skew-
T sounding plots. If you want to follow the convention used on standard 20th-
century (non-SI units) U.S. weather charts, the appropriate value would be '10kts'
(which refers to 10 knots). The other choices are '10mps' or '5mps' (for "10 meters
per second" of "5 meters per second", respectively). A message will appear on the
plot indicating the choice of fulb.

gdir: Direction for horizontal gradient, Laplacian, or advection calculation

Expects 1 integer value; default is 362; type is F.

Purpose: This specifies the desired direction to be used in the calculation of the
horizontal gradient (with keyword grad), Laplacian (with keyword lapl), or
advection (with keyword hadv). Values between, and including, 0 and 360, mean
that you want the component in that compass direction. A value of 361 means that
you want the magnitude of the gradient, the total Laplacian, or the total advection.
A value of 362 means that you want the component in the along-cross-section
(left to right) direction, where the cross section position is defined by the
keywords crsa and crsb. (See descriptions of keywords crsa and crsb). A value of
363 means that you want the component into the cross section. Since the
Laplacian and the advection are scalars, not vectors, use of the word "component"
above means that only velocity components and derivatives in the specified
direction are used. Thus, if a direction is specified (gdir=1-360 or gdir=362 or
gdir=363), this gives the second derivative in that direction if lapl is used, or the

 41

velocity component in that direction times the derivative of the field in that
direction if hadv is used.

grad: Calculate (and plot) the gradient of a field

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes RIP to calculate (and plot) the horizontal gradient (on a
height surface) of the field specified by the feld keyword, instead of the field
itself. Depending on the setting of the keyword gdir, either the magnitude of the
gradient will be calculated, or the component of the vector gradient in the
direction specified will be calculated.

hadv: Calculate (and plot) the horizontal advection of a field

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes RIP to calculate (and plot) the horizontal advection
(using constant-height derivatives) of the field specified by the feld keyword,
instead of the field itself. Depending on the setting of the keyword gdir, either the
total advection will be will be calculated, or the advection due only to the wind
component in the specified direction times the derivative of the field in that
direction will be calculated.

hide: Hide contours, vectors, or streamlines that are below ground.

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes contours, vectors, and streamlines to be omitted in a
grid box if the chosen vertical level is below ground at any of the four corners of
the grid box. If hide is not used, then for points where the chosen vertical level is
below ground, pressure and geopotential height are reduced hydrostatically, some
temperature-related variables are reduced with a standard lapse rate, and all other
variables are assigned the surface value. Also, if imakev5d=1, hide will cause the
height-interpolated data to be assigned the "missing" flag below ground, so that
Vis5D will show no contours, vectors, etc. below ground. If hide is not used,
values will be assigned to variables at below-ground points as described above.

hodo: Plot a hodograph.

Expects no values (logical); default is .false.; type is F.

Purpose: This flag is used in conjunction with "ptyp=sv", and has the effect of
producing a hodograph in the upper left corner of the sounding plot. If a skew-T
background is also drawn with "feld=tic; ptyp=sb" (which it almost always is
when you create a skew-T sounding), then the hodo keyword should also be
included on the plot specification line for the background, so that parts of the
background will be omitted in the area where the hodograph is drawn.

hvbr: Specify the orientation (horizontal or vertical) of the filled contour label bar.

Expects 1 integer value; default is -1 (let RIP decide); type is F.

Purpose: For color-filled contour plots, RIP creates a label bar, which shows what
values correspond to what colors. This bar may appear either as a horizontal bar

 42

on the bottom of the plot, or as a vertical bar on the right side of the plot. If hvbr
is NOT used, RIP chooses which orientation is best, based on the aspect ratio of
the plot. If you want to override RIP's choice of orientation, use hvbr=0 for a
horizontal bar on the bottom, or hvbr=1 for a vertical bar on the right.

incl: Insert (at run time) an "include" file of plot specification statements into the current
plot specification table.

Expects 1 character value; there is no default value; type is F.

Purpose: This keyword allows the user to tell RIP to insert (at run time) additional
plot specification information from another file into the plot specification table.
This capability makes it easier to repeat large sections of plot specification
information in a single input file, or to maintain a library of "canned" plot
specifications that can be easily included in different input files. The include file
is specified as incl=filename, where filename is the pathname (relative to the
current working directory) of the file to be inserted. Use of this function has the
effect of simply inserting the contents of the included file in place of the line on
which the incl keyword appears. In the original line, only the incl=filename
specification is processed. Any text prior to the incl keyword is ignored, and any
text after it is considered to be part of the file name to be included.

intv: Vector or character interval

Expects 1 integer value; default is 1; type is F.

Purpose: This specifies the plotting stride, in grid intervals. For example, if
intv=2, vectors or characters will be plotted at every other grid point. It also
specifies a spacing of streamlines for horizontal streamline plots, though the
quantitative meaning of, say, intv=3 for streamlines is unclear. For streamlines,
it's best to experiment with values from 1-10 and see what looks nice.

lapl: Calculate (and plot) the horizontal Laplacian of a field

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes RIP to calculate (and plot) the horizontal Laplacian (on
a constant-height surface) of the field specified by the feld keyword, instead of the
field itself. Depending on the setting of the keyword gdir, either the total
horizontal Laplacian will be will be calculated, or the second derivative of the
field in the specified direction will be calculated.

lcbr: Label color for filled contour label bar

Expects 1 character value; default is def.foreground; type is F.

Purpose: This sets the color of the label bar text and box perimeter. Any color
name that is defined in the color table is valid.

lchl: Label color for high/low labels

Expects 1 character value; default is the value of colr; type is F.

Purpose: For contours, this sets the color of the high/low label text and box
perimeter, if it is to be different from colr. For trajectories, this sets the color of

 43

the "L" marking the storm position for storm-relative trajectories. Any color name
that is defined in the color table is valid.

lcll: Label color for labeled contours or trajectories.

Expects 1 character value; default is the value of coll for contours, or the value of
colr for trajectories; type is F.

Purpose: For contours, this sets the color of the contour label text and box
perimeter, if it is to be different from coll. For trajectories, this sets the color of
the trajectory labels. Any color name that is defined in the color table is valid.

lclo: Label color for low labels in contour plots.

Expects 1 character value; default is the value of lchl; type is F.

Purpose: This sets the color of the low label text and box perimeter, if it is to be
different from lchl. Any color name that is defined in the color table is valid.

lcnl: Label color for negative labeled contours.

Expects 1 character value; default is the value of conl; type is F.

Purpose: This sets the color of the negative contour label text and box perimeter,
if it is to be different from conl. Any color name that is defined in the color table
is valid.

lczr: Label color for zero contour.

Expects 1 character value; default is the value of cozr; type is F.

Purpose: This sets the color of the zero contour label text and box perimeter, if it
is to be different from cozr. Any color name that is defined in the color table is
valid.

levs: Level specifier for horizontal plots.

Expects an arbitrary number of real values; default is a single value equal to the
index of the lowest model level; type is R.

Purpose: This defines the vertical levels to be plotted. The levs keyword has many
complexities to it, which are described below.

The way in which the values of levs are specified depends on the setting of vcor:

For vcor=s, levs should be specified by vertical level index (i.e. k index). When k
indices are used, you may specify them either in RIP's conventional way
(assuming top-most level is k=1 and bottom-most level is k=KMAX), or in
reverse orientation with a following "fb" to indicate "from the bottom" (bottom-
most level is k=1fb, second level above ground is k=2fb, etc.). For vcor=s, RIP
will not interpolate between model levels--only discrete values of k-index can be
specified.

For other values of vcor, RIP will interpolate to the requested level.

For vcor=p, l, or x (pressure, log pressure, or Exner function), levs should be
specified in hPa; for vcor=z (height), km; for vcor=t or e (potential temperature

 44

or equivalent potential temperature), K; for vcor=m (temperature), C; and for
vcor=q (potential vorticity), PVU.

Any number of levels can be requested, separated by commas. For example,
consider the following:

vcor=p; levs=1000,850,700,500;
vcor=s; levs=3,5,2fb,15,1fb,22;
vcor=z; levs=2.5,9.4,5;
vcor=t; levs=290,330,360;

The first example says you want plots at pressure = 1000, 850, 700, and 500 mb.
The second example says you want plots at model levels, and those levels will be
k=3, k=5, k=2nd level from the bottom, k=15, the bottom level, and k=22. The
third example says you want plots at z = 2.5, 9.4, and 5.0 km. The fourth example
says you want plots at θ = 290, 330, and 360 K.

There is a simple way to specify a range of levels without having to ask for each
one individually. This is done by use of the minus sign. If the nth levs value has a
minus sign, that means you want plots from the (n-1)th value to the (-n)th value,
with an increment of the (n+1)th value. This range specification style can be
intermixed with individual level values. This is all best understood by example.
Consider the following examples:

vcor=s; levs=15,1fb,-26,2,17,21,-2fb,3,20fb
vcor=p; levs=1000,-700,150,500,400,300,-50,50

The first example will give plots at model levels, and (if there are 34 model levels
total) those levels will be at k=15, k=34, k=32, k=30, k=28, k=26, k=17, k=21,
k=24, k=27, k=30, k=33, and k=15,

The second example will give plots at pressure = 1000, 850, 700, 500, 400, 300,
250, 200, 150, 100, and 50 mb.

How does the plotting algorithm respond to PSLs that ask for more than one
level? The way it works is that for a given frame, if any of the plots within the
frame are requested at more than one level, then the entire frame is repeated for
each of the levels requested for that plot. If more than one plot in a given frame is
requested at multiple levels, then the frame will be repeated n times, where n is
the maximum number of levels requested for any of the plots in the frame. The
frames with less than n levels requested will have the last level repeated until n
frames have been plotted. So then, consider the following unlikely, but
illustrative, example of a FSG:

===
feld=tmc; ptyp=hc; vcor=s; levs=27,-23,1
feld=wsp; ptyp=hc; vcor=p; levs=850,400,300
feld=map; ptyp=hb
feld=tic; ptyp=hb
===

 45

This example will cause the frame to repeat 5 times, with the following plots
overlaid:

1. Temp. (_C) at model level 27, Wind speed at pressure=850mb, map
background, and tick marks on the plot perimeter.

2. Temp. (_C) at model level 26, Wind speed at pressure=400mb, map
background, and tick marks on the plot perimeter.

3. Temp. (_C) at model level 25, Wind speed at pressure=300mb, map
background, and tick marks on the plot perimeter.

4. Temp. (_C) at model level 24, Wind speed at pressure=300mb, map
background, and tick marks on the plot perimeter.

5. Temp. (_C) at model level 23, Wind speed at pressure=300mb, map
background, and tick marks on the plot perimeter.

Note that the value(s) of levs are irrelevant and ignored for background plots
(maps, tick marks), vertical cross sections, soundings, or horizontal plots of 2-d
fields (sea-level pressure, ground temperature, etc.).

Also note: For character plots of 3D fields, only model levels can be used (k
indices). Interpolation to other vertical coordinates is not available for character
plots (i.e. the keyword vcor has no effect for horizontal character plots).

Vertical averaging: the levs keyword can also be used to average a 3D field in the
vertical. This only works with vcor=s, i.e. you can only average between model
levels, not between pressure levels or isentropic levels, etc. The specification is
similar to the multiple-level format for the levs keyword, except that the third
number should be a zero. The following PSL is an example:

feld=tmc; ptyp=hc; vcor=s; levs=28,27,20,-12,0,8

This would plot temperature at model levels 28 and 27, then a vertical average of
temperature from model levels 20 through 12, and then temperature at model
level 8.

Vertical differencing: the levs keyword can also be used to do model-level
differencing for a 3D field. As with averaging, this only works with model
vertical levels as the vertical coordinate (vcor=s), i.e. you can only take a
difference between model levels, not between pressure levels or isentropic levels,
etc. The specification is similar to vertical averaging, except that the third number
should be a -1. The following PSL is an example:

feld=tmc; ptyp=hc; vcor=s; levs=28,27,20,-12,-1,8

This would plot temperature at model levels 28 and 27, then a vertical difference
(temperature at model level 20 minus temperature at model level 12), and then
temperature at model level 8.

linw: Line width

Expects 1 integer value; default is 1; type is F.

 46

Purpose: This sets the line width, as a multiple of the default line width for NCAR
Graphics. Depending on plot type, the line width applies to contours, vectors,
wind barbs, streamlines, trajectories, swarms, trajectory net ascent circles, lat/lon
lines, plot perimeter and tick marks, boxes or lines on horizontal plots, skew-T
temperature trace, or skew-T background grid.

lwll: Labeled contour line width

Expects 1 integer value; default is the value of linw; type is F.

Purpose: This sets the line width of the labeled contours, if it is to be different
from linw.

lwng: Negative contour line width

Expects 1 integer value; default is the value of linw; type is F.

Purpose: This sets the line width of the negative contours, if it is to be different
from linw. Also, for horizontal trajectory plots, if feld=circle is set, this line width
is used for circles representing negative net height changes.

lwnl: Negative labeled contour line width

Expects 1 integer value; default is the value of lwng; type is F.

Purpose: This sets the line width of the negative labeled contours, if it is to be
different from lwng.

lwzr: Zero contour line width

Expects 1 integer value; default is the value of linw; type is F.

Purpose: This sets the line width of the zero contour, if it is to be different from
linw.

mand: Show mandatory levels on skew-T background plot

Expects no values (logical); default is .false.; type is F

Purpose: The normal sounding background has horizontal black lines every 100
hPa, and light gray lines at the intermediate 50 hPa levels. mand changes this to
black lines at mandatory levels, and light gray lines at all non-mandatory levels
divisible by 50 hPa.

mfco: Map fill colors

Expects 1 to 6 character values; default is no color filling of map; type is F.

Purpose: For maps, this sets the fill colors. If only one color is specified, the entire
map will be filled with that color. If two colors are specified, water areas will be
filled with the first color, and land areas will be filled with the second color. If six
colors are specified, for NCAR Graphics map backgrounds ('PS', CO', 'Earth..',
etc.), water areas will be filled with the first color, and the different land areas
(states, countries) will be filled with the other five colors, so that no adjacent land
areas are the same color; for RANGS/GSHHS backgrounds, water areas will be
filled with the first color, and lakes, islands, and ponds on islands will be filled

 47

with the next three colors, respectively. Filling is not available for custom map
backgrounds.

mjsk: Major (labeled) contour skip increment

Expects 1 integer value; default is 3; type is F.

Purpose: This specifies the number of minor (unlabeled) contours between major
(labeled) contours. A value of 3 means every fourth contour will be labeled.

mllm: Lat/lon line mask

Expects 1 character value; default is none; type is F.

Purpose: For maps, this keyword determines whether lat/lon lines will be masked
(i.e. will NOT appear) over land or water. The default value of none results in no
masking, in which lat/lon lines appear everywhere. Masking is only available with
NCAR graphics map backgrounds, not with RANGS/GSHHS or custom map
backgrounds.

mult: Multiplicative contour interval

Expects no values (logical); default is .false.; type is F

Purpose: This causes cint to be used as a contour interval multiplier rather than a
contour interval increment. Examples will clarify this:

Example 1:

cbeg=3.5; cend=6.5; cint=.5

In example 1, mult is not used. Therefore, you will get contours at 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, and 6.5.

Example 2:

mult; cbeg=2; cend=162; cint=3

In example 2, since mult is used, you will get contours at 2, 6, 18, 54, and 162.

ncon: Nice number of contours

Expects 1 integer value; default is 20; type is F.

Purpose: This specifies a nice number of contours that is used by RIP as an
approximate target number of contours for picking a value of cint, if you do not
specify cint.

nmin: Maximum number of “model info” lines to print at the bottom of the frame

Expects 1 integer value; default is 5; type is F.

Purpose: Currently, the various ripdp programs create a “.minfo” file that contains
one or more lines of information about the model run, with the first line of
information being most important, and subsequent lines being of lesser
importance. This parameter tells RIP how many of these lines should be printed at
the bottom of the frame. The default value of 5 is probably larger than the number
of lines that will ever exist, so this effectively means “print all available lines”. If

 48

set to 0, no model info will be printed. nmin only needs to be set for one plot in
the frame, and it will then apply to the entire frame.

nmin: No model info message

Expects no values (logical); default is .false.; type is F.

Purpose: By default, RIP writes a model information line at the bottom of the
frame if a .minfo file is available with the data set. If nmin is included in any of
the plots specification lines for a particular frame, the model information line is
omitted in that frame.

nmsg: No message

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the message that may appear at the bottom of plots,
which shows units, contour intervals, maximum vectors, trajectory widths, etc.

nobr: No label bar for filled contour plots

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the drawing of the label bar

nogd: No cross-hatching underground

Expects no values (logical); default is .false.; type is F.

Purpose: For vertical cross sections, RIP always shows a line that represents the
ground. For pressure- or height-level data sets, RIP also normally fills in the
below-ground region with cross hatching, to cover up the plotted contours or
vectors of fictitious data below ground. This cross-hatching can be disabled with
the nogd keyword.

nohl: No high and/or low markers

Expects either one value or no values (hybrid character/logical); default is .false.;
type is F.

Purpose: This flag suppresses the marking of highs and/or lows in contour plots.
When used as a simple logical flag (nohl;), it suppresses both high and low labels.
If set to "H" (nohl=H;), it suppreses only highs. If set to "L" (nohl=L;), it
suppresses only lows.

There are three additional values that nohl can take: Z, T, or A. These do not
suppress the labeling of extrema, but change it. nohl=Z causes highs and lows to
be labeled with "H" and "L" only, with no values shown; nohl=T causes highs and
lows to be labeled with "W" (warm) and "C" (cold) only, with no values shown;
and nohl=A causes highs and lows to be labeled with "A" (anticyclonic) and "C"
(cyclonic) only, with no values shown.

In trajectory plots, nohl should only be specified without any values, and it acts to
suppress the plotting of the storm center position with an "L" when the tjsp
keyword has been set.

nolb: No contour or trajectory labels

 49

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the labeling of contours or trajectories.

nozr: No zero contour

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the zero contour.

nsmm: No smoothing message

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the message (at the end of the plot title) indicating
the number of smoothing passes used for this plot.

nttl: No plot title

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the title that appears for each plot at the top of the
frame.

nvlb: No vertical level message

Expects no values (logical); default is .false.; type is F.

Purpose: This flag suppresses the message (in the middle of the plot title)
indicating the vertical level for this plot.

orlb: Orientation of contour labels.

Expects on integer value; default is 1; type is F.

Purpose: There are three possible values of this keyword. A value of 1 causes all
contour labels to be drawn at a horizontal orientation. A value of 2 causes all
labels to be oriented along the contour. A value of three uses the old CONREC
method of contour labeling (instead of the CONPACK method) in which the
labels are drawn with cruder character strings that are actually part of the contour
dash pattern.

ouco: Map outline color

Expects 1 character value; default is the value of colr; type is F.

Purpose: For maps, this sets the color of the map outlines. Any color name that is
defined in the color table is valid.

ouds: Map outline dot/solid flag

Expects 1 character value; default is dot; type is F.

Purpose: For maps, this keyword determines whether outlines will be dotted (dot)
or solid (solid). Only works with NCAR graphics map backgrounds, not with
RANGS/GSHHS or custom map backgrounds. Outlines are always solid with
those backgrounds.

oulw: Map outline line width or dot spacing

 50

Expects 1 integer value; default is 1 (if ouds=solid) or 12 (if ouds=dot); type is F.

Purpose: If ouds=solid, this keyword determines the map outline line width, as a
multiple of the default line width for NCAR Graphics. If ouds=dot, this keyword
determines the map outline dot spacing, as a multiple of the default dot spacing
for routine EZMAP, which is 1/4096 times the width of the plotting screen.

outy: Map outline type

Expects 1 character value; default is PS; type is F.

Purpose: For maps, this keyword determines what type of outlines will be used.
The traditional NCAR Graphics choices are NO (no outlines), CO (continental
only), US (U.S. states only), PS (continental, international, and U.S. states), or PO
(continental and international). The new NCAR Graphics "Earth.." outlines can
also be accessed by setting outy=Earth..nLm, where n should be 1, 2, or 3,
specifying the dataset, and m should be 1 through 5, specifying the "level" of
outline desired. See the NCAR Graphics EZMAP documentation for more
information. You can also access the very high-resolution RANGS/GSHHS
outline data set, as implemented in NCAR Graphics, by setting outy=RGn, where
n should be 0 through 4. n specifies the resolution desired, 0 being finest and 4
being coarsest. Again, see the NCAR Graphics EZMAP documentation for more
information. Note that use of the RANGS/GSHHS outline data set is only
available in NCAR Graphics version 4.3 or later. If n is omitted, the code will
make the choice for you based on the size of the map being drawn. Finally, you
can also draw custom-made map outlines by using custom map files. Several pre-
made files (in either .ascii or .bin format) are available from both the MM5 ftp
web site and from Mark Stoelinga's ftp site at the UW. The desired file should be
placed in a directory called ${RIP_ROOT}/custom_maps (which you need to
make). Once the desired file is in place, it can be accessed with the outy keyword.
For example, if you make a file with U.S. rivers and call it
${RIP_ROOT}/custom_maps/rivers.ascii, you could draw this map background
by requesting feld=map; and outy=rivers.ascii;. Functionally, there is no
difference between the .ascii file and the .bin file of the same name. The .bin files
have the same information except in binary, which makes them smaller and
provides faster I/O. Several examples of map definition files are provided on the
ftp site. If you want to make your own map definition file, consult the read and
format statements in subroutine hiresmap.f, to determine the format that the map
definition file should have. IMPORTANT NOTE: dotted outlines, color filling,
and masking of lat/lon lines do not work if a custom map background is used.

plrs: Make sounding background more suitable for cold atmosphere

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes the sounding background to be shifted leftward to
colder temperatures. This allows very cold soundings, e.g. in polar atmosphere, to
be better plotted. This flag must be used with all overlays in a sounding plot
[background (ptyp=sb), contour (ptyp=sc), and vector (ptyp=sv)].

pslb: Write horizontal contour plot slab data to file.

 51

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes RIP to write the contents of the 2-D slab of data to a
binary file, just prior to plotting in the horizontal contour plotting routine. The file
is written to Fortran unit 59, and will appear as "fort.59" in the working directory
when RIP execution is complete. The file will contain as many slabs of data as
there were separate horizontal contour plot overlays in the entire RIP execution.
Each slab is written in coumn-major order.

pwbr: Perimeter line width for label bar in filled contour plots

Expects 1 integer value; default is 1; type is F.

Purpose: This sets the perimeter line width for the label bar. A value of 0 indicates
that no perimeter should be drawn around the boxes in the label bar.

pwhl: Perimeter line width for high/low labels in contour plots

Expects 1 integer value; default is the value of pwlb; type is F.

Purpose: This sets the perimeter line width for high/low labels, if it is to be
different from pwlb.

pwlb: Perimeter line width for contour labels

Expects 1 integer value; default is 1; type is F.

Purpose: This sets the perimeter line width for labels, as a multiple of the default
line width for NCAR Graphics.

qgsm: Smoothing, as an intermediate step in quasigeostrophic and Sawyer-Eliassen
diagnostics.

Expects 1 integer value; default is 0; type is F.

Purpose: This specifies the number of smoothing passes to be applied to various
fields that go into the quasigeostrophic and Sawyer-Eliassen diagnostic routines.
See the description of the fields qgomg and qmomg. There are several types of
smoothers available. The specification of the type and severity of smoothing is the
same as for the plotting smoother keyword smth. See the description of keyword
smth for more information.

redo: Recalculate the field even if it is available in a file.

Expects no values (logical); default is .false.; type is F.

Purpose: Sometimes, a diagnostic field may have already been calculated and
saved to a file. RIP first checks to see if this is the case, and, if so, reads in the file
instead of recalculating the field. However, occasionally you may want RIP to
recalculate the field anyway. This flag forces RIP to do that.

rfst: Reference state

Expects 4 real values; default is 1000, 290, 50, 0.1; type is F.

Purpose: This specifies a reference state (as a function of height), and is used only
for computing the plotted fields of perturbation temperature (tpt) and perturbation

 52

pressure (ppt). The reference state should be specified by four values: sea-level
pressure (mb), sea-level temperature (K), lapse rate (dT/d[ln(p)], K), and
stratospheric temperature (K). The default values correspond roughly to the U.S.
Standard Atmosphere, with no stratospheric isothermal layer because
stratospheric temperature is set to 0.1 degree above absolute zero.

rota: Rotate the domain by increments of 90 degrees

Expects 1 real values; default is 0.; type is R.

Purpose: This causes the domain to rotate counterclockwise by the angle specified
in degrees. Possible values are -90, 0, 90, and 180. Only works for horizontal plot
types, and for data sets with polar stereographic projection.

save: Save the specified diagnostic field(s) to a file.

Expects no values (logical), though one can be provided (character); default is
.false.; type is F.

Purpose: Sometimes, a diagnostic field may take some time to calculate. It is
therefore some times desirable to save that field to a file, so that upon subsequent
requests for that field, it is simply read in rather than recalculated. The save
keyword causes RIP to save the specified field(s) to a file. The file name will
follow the same format as the standard RIP data files. The last part of the file
name will be the same as the requested field (e.g., myrun_024.00000_cap3 if
feld=cap3 was used). However, it is also possible to explicitly assign the last part
of the file name by setting the save keyword equal to a character string. This may
be useful if the field was altered by one of the keywords that affects a field after it
is calculated (e.g., addf, smcp, grad, lapl, hadv, diff, etc.)

sepa: Sawyer-Eliassen diagnosis parameters.

Expects 9 real values; defaults are as mentioned below; type is R.

Purpose: This defines several parameters that are used for solving the Sawyer-
Eliassen equation. Nine different parameters must be set, though they each have a
default value that is used if that particular parameter is not set. The parameters are
as follows:

The first five parameters are relevant for either the moist or dry S-E solver:

1. Maximum number of iterations in the over-relaxation (default is 200)
2. Minimum residual required for convergence (default is 1.0 m mb s-1)
3. Over-relaxation factor (default value is 1.6)
4. Averaging distance in the along-front (cross-section-normal) direction, in grid
spaces. This is similar to the xavg keyword that can be used for other cross section
plots; however, this parameter causes averaging to be performed on fields from
which the Sawyer-Eliassen equation terms are calculated, rather than on the final
field being plotted. The default value is 0 (no averaging).
5. Horizontal smoothing factor. This allows for horizontal smoothing of the fields
(interpolated to pressure levels) from which the Sawyer-Eliassen equation terms
are calculated. The smoothing factor is specified as a distance in grid spaces, and

 53

represents the width of a simple triangle-shaped weighting function for the
smoother. The default is 0.0, or no smoothing.

The last three parameters are relevant only for the moist S-E solver:

6. The maximum number of "big" iterations allowed for "big" iteration
convergence. "Big" iteration convergence occurs when all points have the same
sign of vertical velocity for two consecutive "big" iterations. Default is 15.
7. The threshold relative humidity (as a percent value) used to determine the type
of stability (moist or dry) used at a grid point. Default is 80.
8. Smoothing factor for effective stability. This is similar to the horizontal
smoothing factor described above, except it applies only to the effective stability
that is obtained after the moist or dry stability is chosen at each grid point. Its
purpose is to remove large stability gradients across the zero vertical velocity line
or the threshold relative humidity line. Default is 2.
9. Switch for SG (1) or QG (2) version of left hand side of S-E equation. Default
is SG (1).

If all the defaults are satisfactory, sepa need not be specified at all. However, you
will probably want to experiment with one or more of the parameters. If this is the
case, not all nine parameters need be specified, but 8 commas must always be
included, in order to define which parameters are being changed. For example, if
you want to change the minimum error for convergence to 5.0, the horizontal
smoothing factor to 2.5, and the stability smoothing factor to 3.0, you would
specify

sepa=,5,,,2.5,,,3,

sids: Station IDs

Expects an arbitrary number of character values; Default is no station IDs; type is
F.

Purpose: For horizontal background plot feld=sids, which shows requested station
locations by plotting the requested station IDs at the correct locations on the map
background, the keyword sids is used to pick the station IDs as 4-character upper-
case strings. Any number of station IDs can be requested, separated by commas.
Any station ID that is available in the stationlist file can be used.

sloc: Sounding location

Expects a variety of values; defaults are 3,3; type is R.

Purpose: This sets the location (in the dot point domain) of either a skew-T
sounding or of a vertical profile plot. For an explanation of location settings, see
the description of crsa.

smcp: Number of constant-pressure smoothing passes.

Expects 1 integer value; default is 0; type is F.

Purpose: This specifies the number of constant-pressure smoothing passes. It
works the same as smth (see below), except that the data are first interpolated to
pressure levels, then the smoothing is carried out, and then the data are

 54

interpolated back to model levels. Note: you cannot use smth and smcp at the
same time, you must choose one or the other (or neither) for any given PSL.

smth: Number of smoothing passes.

Expects 1 integer value; default is 0; type is F.

Purpose: This specifies the number of smoothing passes. There are several types
of smoothers available:

If n is between 1 and 99, then a 9-point weighted smoother is applied n times. The
smoother follows equation 11-107 in Haltiner and Williams. One pass completely
removes 2δx waves on the interior. On the outer row and column, and near
missing data points, smoothing is carried out in a manner that preserves the
domain average value of the field.

If n is between 101 and 199, then a smoother-desmoother is applied (n – 100)
times. One pass removes a large fraction of the 2δx component, but is not as harsh
on longer wavelengths as the 9-point smoother

If n is between 201 and 299, then the smoother-desmoother is applied (n – 200)
times, and, after each pass, the data field is forced to be non-negative.

If n is between 301 and 399, then a weighted smoother is applied, in which the
smoothed value is given by a weighted average of values at surrounding grid
points. The weighting function is the Cressman weighting function:

In the above, d is the distance (in grid increments) of the neighboring point to the
smoothing point, and D is the radius of influence [in grid increments, given by (n
– 300)].

If n is between 401 and 499, then the smoothing is similar for n = 301-399, except
the weighting function is the circular aperture diffraction function (following a
suggestion of Barnes et al. 1996):

If n is between 501 and 599, then the smoothing is similar for n = 301-399, except
the weighting function is the product of the rectangular aperture diffraction
function in the x and y directions (the function used in Barnes et al. 1996):

 55

sndg: Print sounding parameters.

Expects no values (logical); default is .false.; type is F.

Purpose: This flag causes a variety of sounding parameters to be calculated and
printed out in the lower left corner of a skew-T sounding. It must be used with
ptyp=sv! It will not work with ptyp=sc! Also, if a skew-T background is drawn on
a sounding for which sndg was used with a sounding vector (ptyp=sv) plot, sndg
should also be used on the plot specification line for the sounding background, so
that RIP will omit drawing skew-T background lines in the same area as that
where the sounding parameters are printed.

strm: Storm velocity

Expects 1 or 2 real values; default is 0.0; type is F.

Purpose: The storm velocity is used to plot storm-relative wind vectors, speeds, or
trajectories. The storm velocity can be specified in 2 ways. The first way is as a
speed which is assumed to be in the along-cross-section (left to right) direction,
where the cross section position is defined by the keywords crsa and crsb. (See
descriptions of keywords crsa and crsb.) The second way is by giving two values
for strm, separated by a comma, which are the x and y components of the storm
velocity. In either case, the x and/or y components of the storm motion will be
subtracted from the x and/or y components of the wind prior to plotting. This
keyword only effects the following fields: uuu, vvv, ugeo, vgeo, xptgeo, xntgeo,
bvfsq, spsq, wsp, wspk, wdir, xnt, amt, and xpt; and the five trajectory fields
arrow, ribbon, swarm, gridswarm. and circle,

titl: Plot title

Expects 1 character string; default is that RIP automatically generates the tile for
each plot overlay; type is F.

Purpose: Normally, RIP automatically generates a title for each plot overlay at the
top of the frame underneath the frame title. You can specify your own title for a
plot overlay using titl. Because blank characters are not recognized in the plot
specification table, you must use the underscore character to indicate that you
want a blank character at a particular position in your specified plot title. titl also
has another special use: it can be used to print any message at any location on the
plot by using it in conjunction with feld=bull, and it can be used to place a label
above a vertical bar (feld=vbar).

time: Time discriminator

Expects an arbitrary number of real values; default is all times in the ptimes (or
iptimes) array; type is F.

Purpose: This is a special keyword that should only appear by itself in a PSL. It
does not apply to a single plot, but rather to the entire FSG that it is in. If you
want a particular frame to be plotted only at some of the times specified in the
ptimes (or iptimes) array in the namelist, then you can include the following line
in the FSG for that frame:

 56

time=time1,time2,time3,...

where each of time1, time2, time3, etc., are times, specified as real numbers. Like
the values given for the ptimes (or iptimes) array in the namelist, the values of
time should be in hours, but do not need to be whole numbers. If a time= PSL is
included in the FSG, then RIP will only draw that frame for those model output
times that are within tacc seconds of one of the times in the ptimes (or iptimes)
array AND are within tacc seconds of one of the times in the time= setting.

tjar: Arrow widths for trajectory plots

Expects 1 or 2 real values; defaults are .003 and .035; type is F.

Purpose: arrow and ribbon trajectories in horizontal plots use variable-width
arrowheads, where the width of the arrowhead indicates the height of the
trajectory. The two values of tjar specify the widths (as a fraction of the total
screen width) that correspond to the lowest and highest (height-wise) values,
respectively, of the vertical window, as specified by vwin. For the feld=circle
trajectories, only one value is expected for tjar, and it represents the radius of a
circle corresponding to the reference net ascent specified by vwin. For trajectories
in a cross section (vertical trajectory plots), there is no variable width feature, so
only one value is expected for tjar; if no value is specified, .035 is the default.

tjen: End time (in forecast hour) of plotted trajectories.

Expects 1 real value; default is the final time of the calculated trajectory; type is
F.

Purpose: This specifies the last time (i.e. the time corresponding to the head) of
the plotted trajectory. For feld=circle trajectories, this specifies the end time for
the period during which net ascent is calculated. Note that tjen may be less than or
equal to the actual end time of the calculated trajectory.

tjfl: File name of trajectory position info.

Expects 1 character value; default is junk (i.e. a useless value); type is F.

Purpose: This specifies the name of the file containing trajectory position
information for the trajectories you want to plot. This file should already exit,
since it should have already been created by a previous RIP run in trajectory
calculation mode.

tjid: ID numbers of trajectories to be plotted.

Expects an arbitrary number of real values; default is a single value of 1.0; type is
F.

Purpose: This specifies the ID numbers of the desired trajectories. For the
trajectory fields arrow, ribbon, swarm, or circle, all desired trajectory IDs can be
listed, or IDs can be requested in a manner similar to the way the levs keyword is
set for requesting vertical levels. See the description of the keyword levs for more
details. For example, a setting of

tjid=1,3,8,9,-27,6,32;

 57

would result in the plotting of trajectory numbers 1,3,8,9,15,21,27, and 32. For a
trajectory swarm, the desired sequence of trajectory IDs for the swarm curve
should be specified in the order desired, and if a closed polygon is desired, the
first and last ID requested should be the same. For a trajectory gridswarm, it is
assumed that part or all of the trajectories in the position file were initially
arranged in a row-oriented 2-D array. In this case, instead of individually
specifying each trajectory in the swarm sequence (as is done for feld=swarm),
three values must be provided for the tjid keyword: (1) the ID number of the first
trajectory of the gridswarm; (2) the number of columns in the gridswarm array
(i.e., the direction that varies first); and (3) the number of rows in the gridswarm
array (i.e., the direction that varies second).

tjsp: Storm position for storm-relative trajectories.

Expects an arbitrary number of real values, in sets of three; default is such that
this keyword is not set to anything, disabling its effect; type is F.

Purpose: Trajectories can be plotted in a storm-relative sense. In order to do this,
RIP needs to know where the storm is. This information is provided through
either the tjsp keyword or the strm keyword. If the storm motion can be
approximated by a constant speed and direction, then using the strm keyword is
easiest. See the explanation of keyword strm. If the storm motion is more
complicated, then tjsp must be used. Each set of three values is a time (in model
forecast hours), an x value, and a y value. Use as many sets as you need to cover
the period of interest and to sufficiently resolve the storm motion. RIP linearly
interpolates in time and space to get the storm position between the provided
times. An IMPORTANT rule is that the x and y values must be relative to the
coarsest domain grid (the domain which is centered on the central lat. and lon.).
This is to accommodate the possibility that the data set you are working with is
from a moving nest. When storm-relative trajectories are plotted (by either
method) against other fields or a map background, the only point along the
trajectory that is actually where it appears to be (relative to those other fields) is
the point that corresponds to the time being plotted. If tjsp is used, RIP marks the
storm position at the time being plotted with an "L", although this feature can be
disabled with the keyword nohl.

tjst: Start time (in forecast hour) of plotted trajectories.

Expects 1 real value; default is the beginning time of the calculated trajectory;
type is F.

Purpose: This specifies the first time (i.e. the time corresponding to the tail) of the
plotted trajectory. For feld=circle trajectories, this specifies the beginning time for
the period during which net ascent is calculated. Note that tjst may be greater than
or equal to the actual start time of the calculated trajectory.

tjti: Time interval for plotted trajectories, in hours.

Expects 1 real value; default is 1 hour; type is F.

 58

Purpose: This specifies the time interval between arrow heads for arrow or ribbon
trajectories, or between swarms for swarm or gridswarm trajectories. Note that
this is typically greater than the time step used to calculate the trajectories.

tshl: Text size for high/low labels.

Expects 1 real value; default is the value of tslb; type is F.

Purpose: In contour plots, this sets the text size for high/low labels, if it is to be
different from tslb. For trajectories, this sets the text size of the "L" marking the
storm position for storm-relative trajectories.

tslb: Text size for labels

Expects 1 real value; default is .01; type is F.

Purpose: This sets the text size (i.e. character width) for labels, as a fraction of the
width of the full plotting screen. It applies to contour labels, lat/lon labels (in
maps), perimeter tick mark labels, and trajectory labels. It also sets the size of the
bullet (or text) drawn when feld=bullet, and it sets the size of the label for
feld=vbar.

tynt: Typhoon track symbol interval (hours)

Used with feld=track. Default is every forecast output time. A typhoon symbol
(and label) is plotted every tynt hours. Increasing tynt may improve legibility. tynt
does not affect the track printout.

v5nm: Variable name for Vis5D

Expects 1 character string; default is whatever was specified for feld; type is F.

Purpose: In Vis5D data set preparation mode (i.e., if imakev5d=1 in the &userin
namelist), RIP assigns to each requested variable a name that will identify that
variable when Vis5D is run. For the velocity fields, the Vis5D names are always
U, V, and W. For all other variables, the name is the same as what was requested
with the feld keyword. However, in some cases, you may want to assign a
different name. Use v5nm to do this. This keyword should only be used when RIP
is run in Vis5D data set preparation mode.

vcmx: Maximum vector value

Expects 1 real value; default is 0.; type is F.

Purpose: This specifies the magnitude of a vector that exactly reaches the tail of
the next adjacent vector. It should be specified in the same units as those of the
vector component fields, typically m s-1. If vcmx is set to zero, then RIP will
choose the maximum vector magnitude in the data as the magnitude of a vector
that reaches the tail of the next adjacent vector.

Special instructions for different plot types:

ptyp=hv or vw: If vcmx is specified as any negative number, then the vectors will
be plotted with the barb/flag convention.

 59

ptyp=sv: these vectors can only be plotted with the barb/flag convention, so vcmx
is irrelevant.

ptyp=vv: the "next adjacent vector" means the next adjacent vector in the
horizontal direction, and vcmx should be specified in units of the horizontal
components, which will probably be different from the units of the vertical
component. Some experimentation may be required to get a feel for this keyword
in vertical vector mode. These vectors can only be plotted as arrows, not as wind
barbs, because the units in the horizontal and vertical directions are different.

vcor: Vertical coordinate

Expects 1 character value of length 1; default is s; type is R.

Purpose: This defines the vertical coordinate to be used for (1) determining
plotting levels in horizontal plots; or (2) defining the vertical axis in cross section
plots; or (3) defining the variable width feature of arrow, ribbon or circle
trajectories drawn in horizontal plots. The possible choices for the different types
of plots are:

Horizontal plots or trajectory initial points:

s: model vertical level (k) index
p: pressure
z: height
t: potential temperature
e: equivalent potential temperature
m: temperature
q: potential vorticity

Vertical cross sections (excluding ptyp=vv) or horizontal trajectory plots:

s: model vertical level index
p: pressure
x: Exner function (as in pseudoadiabatic charts)
l: log pressure
z: height
t: potential temperature
e: equivalent potential temperature
m: temperature
q: potential vorticity

Vectors in the plane of a cross section (ptyp=vv):

s: model vertical level index
p: pressure
z: height

(These are the only choices for ptyp=vv because they are the only vertical
coordinates for which RIP can calculate an appropriate vertical velocity).

vvms: Minimum pressure difference between plotted vectors for cross sections and
soundings

 60

Expects 1 real value; default is 0.0; type is F.

Purpose: This specifies the minimum pressure increment between two vectors in a
column. Due to the fact that the data are not interpolated to a regular grid in the
vertical, the vectors can become crowded in the high-resolution PBL. If this
keyword is set to some non-zero value, for example 30, then RIP will not plot a
vector if it is less than 30 hPa away from the vector below it.

vvnx: Number of vectors in the x-direction

Expects 1 integer value; default is 20; type is F.

Purpose: This specifies an approximate number of vectors that are desired in the
horizontal direction. It is approximate because of the way RIP sets up the cross
section grid.

vwin: Vertical window.

Expects 1 or 2 real values; default is as shown below; type is R.

Purpose: This determines the vertical window to use for cross sections, or for the
variable width feature of trajectory arrows, ribbons, or circles in a horizontal plot.
The first value is the bottom of the window, and the second is the top. For
trajectory circles, only one value is specified, and this determines the reference
vertical displacement amount that corresponds to a circle of diameter set by tjar.
The units of the given values are assumed to be as follows:

vcor Units

Default
values for
vertical cross
sections

's' Dimensionless 1.0, 0.0

'p','l', or
'x' Mb 1050, 100

'z' Km 0.0, 15.0

't' or 'e' K 260, 400

'm' C -60, 40

'q' PVU -0.5, +5.5

For horizontal trajectory plots, the default values are the minimum and
maximum values of the trajectories being plotted during the time interval
set by tjst and tjen. For feld=circle trajectory plots, only one value of vwin
is expected, and it specifies the net ascent that corresponds to the circle
radius specified by tjar; if no value is specified, the maximum absolute net
ascent for all the trajectories requested is the default value.

wdbr: XXXXX Distance between label bar and plot for filled contour plots

 61

Expects 1 real value; default is -1; type is F.

Purpose: For color-filled contour plots, RIP creates a label bar which shows what
values correspond to what colors. wdbr sets the width of the area used for the
label bar (including labels), as a fraction of the total width of the screen. The
default value of -1 tells RIP to try to optimize the width. This is usually sufficient
for typical plots, i.e. it is large enough to allow room for tick labels and lat/lon
labels. However, in some cases, you may want to change this width, if various
messages or labels from other plots are being covered up by the label bar.

xavg: cross-section averaging distance

Expects 1 integer value; default is 0; type is F.

Purpose: Rather than plotting the value of a variable at a point on the cross
section, you may want to plot an average along a line that extends into and out of
the cross section. This may be useful for getting the average sense of quasi-2D
features such as fronts or squall lines. The averaging distance into and out of the
cross section is given by xavg in units of grid points. Hence, if the grid space is 40
km, and xavg is specified as 2, each point plotted on the cross section would
represent an average from 80 km out of the cross section to 80 km into the cross
section, or a total of 160 km.

xwin: Plotting window in the x direction

Expects 2 integer values; defaults are 1, mjx (mjx is the number of dot points in
the x (or j) direction); type is R.

Purpose: This sets the left and right limits of the desired subdomain for a
horizontal plot, specified as grid point values on the dot-point domain. If the first
value given is outside the range 1 to mjx, it is changed to 1. If the second value
given is outside the range 1 to mjx, it is changed to mjx. This can also be used to
save a reduced-size domain when creating a Vis5D data set (imakev5d=1), in
which case it should be specified only once, with the first requested variable.

ywin: Plotting window in the y direction

Expects 2 integer values; defaults are 1, miy (miy is the number of dot points in
the y (or i) direction); type is R.

Purpose: This sets the bottom and top limits of the desired subdomain for a
horizontal plot, specified as grid point values on the dot-point domain. If the first
value given is outside the range 1 to miy, it is changed to 1. If the second value
given is outside the range 1 to miy, it is changed to miy. This can also be used to
save a reduced-size domain when creating a Vis5D data set (imakev5d=1), in
which case it should be specified only once, with the first requested variable.

Appendix B. Available fields for plotting

 62

This appendix is a list of all fields that are currently available to be plotted in RIP, i.e. the
names that can be used for the feld keyword. For each field, the name is given, the field is
described, the units are given, and the dimensionality of the field (2D or 3D) is given.
Capital letters in the field name indicate a variable character for which there is more than
one choice.

a. Background fields (units and dimensionality are irrelevant):

map: Map background.

This field results in a map background being drawn in the frame. Works only if
ptyp=hb.

box: Box.

This field results in a box being drawn in the frame, the size and location of which
is determined by the keywords crsa and crsb. Works only if ptyp=hb.

line: Line.

This field results in a line being drawn in the frame, the size and location of which
is determined by the keywords crsa and crsb. Works only if ptyp=hb.

bullet: Bullet.

This field results in the drawing of a bullet (i.e., a solid circle), the location of
which is determined by the keyword crsa. It can also be used to write any text
string on the plot at the location specified by crsa. This is accomplished by setting
the titl keyword equal to the desired text string. Use the underscore character to
represent blank characters in the text string. Works only if ptyp=hb.

sids: Station IDs.

This field results in the labeling of a station or stations on the plot. Use the sids
keyword in conjunction with feld=sids to list the station(s) you want to be shown
on the plot. See the description of sids in Appendix A for more information.
Works only if ptyp=hb.

tic: Tick mark background.

This field results in the drawing of helpful markings on the plot. It works in
conjunction with the following ptyp settings:

ptyp=hb: The perimeter is marked on all four sides with tick marks and labels
denoting grid points.
ptyp=vb: The left and right perimeters are marked with tick marks and labels
denoting vertical coordinate increments. The bottom and top perimeters are
marked with tick marks and labels denoting distance along the cross section.
ptyp=sb: A standard skew-T grid is drawn and labeled, including pressure levels,
temperature contours, adiabats, pseudoadiabats, and mixing ratio contours.

vbar: Vertical bar.

 63

This field results in the drawing of a vertical bar in a vertical cross section. The
location of the vertical bar is specified with the sloc keyword, and it is drawn
where that location projects perpendicularly onto the plane of the vertical cross
section defined by the current setting of crsa and crsb. A label can be placed
above the vertical bar by using the keyword titl. Works only if ptyp=vb.

b. Model output and diagnostic fields (listed in alphabetical order):

amt: Absolute momentum, m s-1. (3D)

Absolute momentum is defined here as the horizontal wind component
normal to, and out of, the cross section (as defined by the crsa and crsb
keywords) minus f (at the middle of the cross section), all times the left-to-
right distance along the cross-section.

amtg: Geostrophic absolute momentum, m s-1. (3D)

Same as amt, but using geostrophic wind instead of the actual wind.

arrow: Trajectory arrows (see Chapter 6 for more details).

avo: Absolute vorticity (vertical component), 10-5 s-1. (3D)

bocX: Surface precipitation type probability, percent. (2D)

The precipitation type probability is calculated according to the REEP
method of Bocchieri (1980). It uses the sounding of temperature and wet
bulb temperature to determine the probabilities. Replace X with l for
probability of liquid precipitation, f for probability of freezing
precipitation, or i for probability of ice (or frozen) precipitation.

bshXU: Horizontal bulk wind shear with variable units depending on the value of U. (2D)

The bulk wind shear is defined between the surface and up to 9 km (X = 1 through
9). If X is not specified, it defaults to shear between the surface and 6 km. Units of
bsh can be m s-1 (e.g. bsh5), or knots (e.g. bsh5k).

bvfsqP: Dry Brunt-Vaisala frequency, s-2. (3D)

brnshr: Bulk Richardson number shear as in Stensrud et al. (1997), m2s-2. (2D)

bvfsqP: Dry Brunt-Vaisala frequency, s-1. (3D)

P determines the inclusion of moist physics in the calculation of the B-V
frequency: d for dry, l for liquid-only latent heating/cooling
considerations, and i for liquid and ice latent heating/cooling
considerations.

cap3: Convective available potential energy (CAPE) of parcels at all 3D grid points, J kg-

1. (3D)

In this diagnostic field, CAPE is calculated for every grid point in the entire 3D
domain, based on the lifting of a parcel starting from that grid point. It is defined

 64

as the accumulated buoyant energy from the LFC to the equilibrium level. To get
CAPE as a 2D field, showing CAPE only from the parcel in each column with
maximum θe below 3000 m AGL, use mcap.

cat: Clear-air turbulence index, s-2. (3D)

This index is based on Ellrod and Knapp (1992, W&F, March issue).

cin3: Convective inhibition (CI) of parcels at all 3D grid points, J kg-1. (3D)

In this diagnostic field, CI is calculated for every grid point in the entire 3D
domain, based on the lifting of a parcel starting from that grid point. It is defined
as the accumulated negative buoyant energy from the parcel starting point to the
LFC. To get CI as a 2D field, showing CI only from the parcel in each column
with maximum θe below 3000 m AGL, use mcin.

circle: Net ascent circles (a type of trajectory representation, see Chapter 6 for more
details).

clgX: Cloud ceiling, m. (2D)

Regardless of whether or not mixed phase microphysics were used, there
are three possibilities to choose from for the determination of the phase of
cloud and precipitation hydrometeors: Replace X with d for the 0 _Celsius
assumption, b for the Bocchieri assumption, or r for the mixed phase
assumption. See code for details of these assumptions.

condheat, condheati: Diagnosed condensational heating, K h-1. (3D)

condheat calculates the heating due to condensation in regions of explicitly
resolved saturated ascent. condheati does the same, except it adds in the latent
heat of fusion in regions that are below freezing.

cor: Coriolis factor, s-1. (2D)

ctt: Cloud-top temperature, _C. (2D)

Note: cloud-top temperature is calculated by interpolating the temperature
to the level of unit optical depth into the cloud (starting at the model top).
Expressions for absorption cross-section for cloud ice and cloud water are
obtained from Dudhia (1989).

dbzXXXY: Simulated equivalent radar reflectivity factor, dBZ. (3D)

This field calculates a simulated equivalent radar reflectivity factor, based on the
mixing ratios of rain, snow, and graupel (if available). The formulas that relate
mixing ratios of rain, snow, and graupel to reflectivity factor were derived
assuming spherical particles of constant density, with exponential size
distributions (consistent with what is used in MM5's Reisner-2 bulk microphysical
scheme). If X is set to "0" (or omitted), then the simulated reflectivity is calculated
using constant values of the intercept parameters for the size distributions of rain,
snow, and graupel, as in early versions of Reisner-2 (this is equivalent to the field
dbzc used in older RIP4 versions). If X is set to "1", then variable intercepts are

 65

used, as in more recent versions of Reisner-2 (this is equivalent to the field dbzv
used in older RIP4 versions). IF Y is set to “1” (0 is default), frozen particles that
are at a temperature above freezing are assumed to scatter as a liquid particle. See
comments in routine "dbzcalc.f" for more details.

div: Divergence (of horizontal wind), s-1. (3D)

dmap: Map factor on dot points, dimensionless. (2D)

dpbhAAABBB: Pressure difference between height levels, hPa. (2D)

This field is similar to thickness, except it is the pressure difference
between height surfaces, rather than the height difference between
pressure surfaces. The two height levels are specified as three-digit
integers in units of hectometers (hm). For example, feld=dpbh015120
would give the pressure at 1.5 km AMSL minus the pressure at 12.0 km
AMSL.

dthtedz: Convective (or potential) instability, expressed as the partial derivative of θe with
respect to height, K km-1. (3D)

ehi: Energy-helicity index, dimensionless. (3D)

eth: Equivalent potential temperature, K. (3D)

ethmx: Maximum value of equivalent potential temperature below 3000 m AGL, K. (2D)

extXY: Surface extinction coefficient due to hydrometeors, km-1. (2D)

Regardless of whether or not mixed phase microphysics were used, there
are three possibilities to choose from for the determination of the phase of
cloud and precipitation hydrometeors: Replace X with d for the 0 _Celsius
assumption, b for the Bocchieri assumption, or r for the mixed phase
assumption. See code for details of these assumptions. The extinction
coefficient is calculated for only one of the four hydrometeor types at a
time: Replace Y with c for extinction due to cloud water, r for extinction
due to rain, i for extinction due to cloud ice, or s for extinction due to
snow.

fregWX: Flight regulation. (2D)

This field will assign a number from 1 to 4 to each grid point. It should therefore
be plotted with the setting of ptyp=hh. The numbers correspond to the following
flight regulation categories:

1: Visual Flight Regulation (VFR)
2: Marginal Visual Flight Regulation (MVFR)
3: Instrument Flight Regulation (IFR)
4: Low Instrument Flight Regulation (LIFR)

It can be calculated based on model-diagnosed ceiling, visibility, or both. Replace
W with c for ceiling only, v for visibility only, or b for both.

 66

Regardless of whether or not mixed phase microphysics were used, there are three
possibilities to choose from for the determination of the phase of cloud and
precipitation hydrometeors: Replace X with d for the 0 _Celsius assumption, b for
the Bocchieri assumption, or r for the mixed phase assumption. See code for
details of these assumptions.

frgmXXX: Frontogenesis, Miller form, K (100 km h)-1. (3D)

The Miller form of frontogenesis is the Lagrangian time rate of change of the
absolute value of the horizontal gradient of potential temperature. XXX specifies
which term on the RHS of the Miller frontogenesis equation is desired:

div: divergence term
def: deformation term
dia: diabatic term
til: titling term

The diabatic term uses a diagnosis of condensational heating assuming
maintenance of 100% RH with respect to liquid water in regions of explicitly
resolved saturated ascent. It does not include evaporative, sublimational, or melt
cooling; fusional or depositional heating; or any diabatic results of either the
cumulus or PBL parameterization schemes.

You can also request the horizontal or vertical advective terms (i.e., the advection
of the absolute value of the horizontal gradient of potential temperature) by
specifying XXX as either had or vad.

frg2dXXX: Frontogenesis, 2D frontal zone form, K (100 km h)-1. (3D)

The 2D form of frontogenesis examines the Lagrangian time rate of change of the
along-cross-section component of the horizontal gradient of potential temperature.
Regardless of whether you want to display the result in a cross section or in a
horizontal plot, use crsa and crsb to define the endpoints of a cross section (and,
thus, the along-cross-section direction). XXX specifies which term on the RHS of
the uni-directional frontogenesis equation is desired:

cnf: confluence term
shr: shear term
dia: diabatic term
til: titling term

The diabatic term uses a diagnosis of condensational heating assuming
maintenance of 100% RH with respect to liquid water in regions of explicitly
resolved saturated ascent. It does not include evaporative, sublimational, or melt
cooling; fusional or depositional heating; or any diabatic results of either the
cumulus or PBL parameterization schemes.

You can also request the advective terms (i.e., the advection of the along-cross-
section component of the horizontal gradient of potential temperature) by
specifying XXX as either aad, iad, or or vad. These refer to the advection along
the cross section, the advection into the cross section, and the vertical advection,
respectively. For the two horizontal advective terms, you can specify a wind

 67

speed and direction with the strm keyword so that relative winds will be used in
the advective calculation.

Finally, all of the fields that are used to calculate the above terms can be
smoothed on constant-pressure surfaces prior to the computing of products in the
nonlinear terms, by using the qgsm keyword.

ght: Geopotential height above mean sea level, m. (3D)

ghtagl: Geopotential height above ground level, m. (3D)

gridswarm: Trajectory gridswarm (see Chapter 6 for more details).

intcld: Column-integrated cloud hydrometeors, mm. (2D)

This is the column-integrated value of the field qcl (i.e., the sum of the fields qcl
and qci).

intclq: Column-integrated cloud liquid water, mm. (2D)

This is the column-integrated value of the field qcw.

intpcp: Column-integrated precipitation mass, mm. (2D)

This is the column-integrated value of the field qpr (i.e., the sum of the fields qra,
qsn, and qgr).

k-index: k-index of the grid points, dimensionless. (3D)

This field can be used to show where the model levels are in a vertical cross
section, or in a horizontal plot interpolated to an alternate vertical coordinate.

lcl: Lifted condensation level (LCL), m (AGL). (2D)

This is the LCL for the parcel in each column with maximum θe below 3000 m
AGL.

lfc: Level of free convection (LFC), m (AGL). (2D)

This is the LFC for the parcel in each column with maximum θe below 3000 m
AGL.

maxdbzX: Maximum simulated equivalent radar reflectivity factor in a column, dBZ.
(2D)

The definition of simulated equivalent radar reflectivity factor and X are the same
as for dbzX.

mcap: Maximum convective available potential energy (MCAPE), J kg-1. (2D)

This is the CAPE for the parcel in each column with maximum θe below 3000 m
AGL.

mcin: Convective inhibition (CI) for MCAPE parcel, J kg-1. (2D)

This is the CI for the parcel in each column with maximum θe below 3000 m
AGL.

omg: Omega (dp/dt), µ bar s-1. (3D)

 68

pcptw: Precipitable total water, mm. (2D)

This is the column-integrated total water (vapor plus all hydrometeors).

pcpwv: Precipitable water vapor, mm. (2D)

This is the column-integrated water vapor only.

phydpNN: Hydrostatic pressure perturbation, mb. (3D)

This is the same as ppt (below), except it is the perturbation of the
hydrostatic pressure (not the total pressure) with respect to the reference
state, as defined by the keyword rfst. A model vertical level must be
chosen at which hydrostatic pressure is defined to be equal to full
pressure. This level is specified as a k-index with NN

ppt: Pressure perturbation, mb. (3D)

The perturbation is with respect to the reference state, as defined by the keyword
rfst.

prs: Pressure, mb. (3D)

pvm: Moist potential vorticity (hydrostatic form), PVU. (3D)

pvo: Potential vorticity (hydrostatic form), PVU. (3D)

qci: Cloud ice mixing ratio, g kg-1. (3D)

Note: If non-mixed-phase microphysics was used, this field contains the
model output cloud water only where T < 0 _C, and is zero where T > 0
_C.

qcl: Total cloud mixing ratio, g kg-1. (3D)

Note: This is just qcw + qci.

qcw: Cloud water mixing ratio, g kg-1. (3D)

Note: If non-mixed-phase microphysics was used, this field contains the model
output cloud water where T > 0 _C, and is zero where T < 0 _C.

qgomfNNN: Full omega (subjected to same processing as QG omega), µ bar s-1. (3D)

This field is, in principle, the same as feld=omg, except it subjects the full omega
(i.e., dp/dt) field to the same processing as the input fields to QG omega, thus
allowing for a meaningful comparison between full omega and QG omega. The
actions that qgomf are subjected to are an interpolation to a pressure-level grid, a
smoothing on that grid (as determined by the value of the keyword qgsm---see the
explanation for qgomg below and the explanation for qgsm in Appendix A), and
an interpolation back to the model vertical levels.

qgomgNNN or qmomgNNNRR: Quasi-geostrophic omega, µ bar s-1. (3D)

This field is calculated by means of a 3-D inversion (using over-relaxation) of the
Q-vector form of the quasigeostrophic omega equation, using the domain average
Coriolis parameter and vertical stability profile. It is performed on a pressure-

 69

level grid, with an irregular lower boundary that matches (as closely as possible)
the model topography. The lower boundary condition includes both a topographic
BC and an Ekman BC. The three N’s correspond to the Q-vector forcing, the
topographic boundary condition, and the Ekman boundary condition, respectively.
Each of the N’s should be replaced with either a 1 or 0, to indicate that the
corresponding forcing is included or excluded in the omega equation inversion.
For example, feld=qgomg101 would request QG omega calculated from the Q-
vector forcing, including the Ekman boundary condition but not the topographic
boundary condition. The difference between ‘qg’ and ‘qm’ is that in the former
case, the dry static stability is used everywhere, whereas in the latter case, the
moist static stability is used where the relative humidity exceeds a threshold
value. The threshold value is specified by replacing ‘RR’ with a two digit percent
value ranging from 00 to 99.

Note: The first step that RIP takes in calculating this field is the interpolation of
geopotential height and specific volume to pressure levels. Following that step,
but prior to calculating the Q-vector, it is likely that you'll want to have those
fields smoothed, so that they represent synoptic or meso-alpha scales. This cannot
be accomplished by using smth or smcp, because the smoothing must occur prior
to the Q-vector calculation. A special capability has been set up to do this
intermediate smoothing. It is accomplished by setting the value of the keyword
qgsm to a value that indicates the desired number of smoothing passes, as
described for the keyword smth. So, for example, if you want the intermediate
pressure-level fields to be smoothed with 4 passes of the smoother-desmoother,
then use qgsm=104.

qgr: Graupel mixing ratio (if available as a separate RIP data file), g kg-1. (3D)

qpr: Total precipitation hydrometeor mixing ratio, g kg-1. (3D)

Note: This is just qra + qsn (+ qgr if available).

qra: Rain water mixing ratio, g kg-1. (3D)

Note: If non-mixed-phase microphysics was used, this field contains the model
output rain water only where T > 0 _C., and is zero where T < 0 _C.

qsn: Snow mixing ratio, g kg-1. (3D)

Note: If non-mixed-phase microphysics was used, this field contains the model
output rain water only where T < 0 _C, and is zero where T > 0 _C.

qvdiv: Divergence of the Q-vector, 10-12 s-3 mb-1. (3D)

Note: See the note on intermediate smoothing under the description of the field
qgomg, above.

qvp: Water vapor mixing ratio, g kg-1. (3D)

qvx: x-component of the Q-vector, 10-6 m s-3 mb-1. (3D)

Note: See the note on intermediate smoothing under the description of the
field qgomg, above.

 70

qvy: y-component of the Q-vector, 10-6 m s-3 mb-1. (3D)

Note: See the note on intermediate smoothing under the description of the field
qgomg, above.

rSSST: Accumulated rainfall (or more generally, precipitation), mm. (2D)

SSS determines the source of the precipitation you're interested in: cum for
cumulus parameterization precipitation, exp for explicitly resolved precipitation,
and tot for the sum of cumulus and explicit. T (which will actually be two or more
characters in length) determines the desired accumulation time period. If it is of
the form Nh, where N is a time period in hours specified either as an integer or as
a real number, then RIP will interpret this as "in the past N hours". If it is of the
form shN, then RIP will interpret this as "since hour N". An important
consideration is that the time that is implied by the specification of T must be
available in your RIP data set, or else RIP will not be able to access the
precipitation file(s) at that time to perform the subtraction. If the time implied by
T is negative (for example, if you're trying to plot 6-h precipitation accumulation
at forecast hour 3), RIP will use the hour-0 data for the subtraction. Here are some
examples:

feld=rcum3h -> gives cumulus precip in past 3 h
feld=rtotsh0 -> gives total (cumulus + explicit) precip since hour 0
feld=rexpsh12.5 -> gives explicit precip since hour 12.5
feld=rtot24h -> gives total (cumulus + explicit) in past 24 h; but if plotted
before hour 24, gives total precip since hour 0

rhi: Relative humidity with respect to ice, percent. (3D)

rho: Density, kg m-3. (3D)

rhu: Relative humidity with respect to liquid water, percent. (3D)

rib: Near-surface Richardson number, as used in high-resolution PBL scheme, s-2. (2D)

ribbon: Trajectory ribbons (see Chapter 6 for more details).

richnPSSS: Richardson number, dimensionless number. (3D)

P determines the inclusion of moist physics in the calculation of the B-V
frequency: d for dry, l for liquid-only latent heating/cooling
considerations, and i for liquid and ice latent heating/cooling
considerations. SSS determines the number of horizontal smoothing passes
(on model vertical levels) for the velocity prior to calculation of Rich.
num. The SSS value can be omitted if no smoothing is desired, i.e.
feld=richnd000 is the same as feld=richnd. For an explanation of the
smoothing routine, see the description of the keyword smth in Appendix
A. The component of the wind used for the shear calculation is the along-
cross-section (left-to-right) component, where the cross section endpoints
are determined by the crsa and crsb keywords.

sateth: Saturation equivalent potential temperature, K. (3D)

 71

This is the value of equivalent potential temperature a parcel would have if
it were brought to saturation without change in temperature or pressure.

sdpU: Surface dewpoint temperature, units determined by U. (3D)

This field is intended to represent the surface dewpoint temperature as measured
by a surface meteorological station (at ~10 m height AGL). From terrain-
following data sets, it is calculated with surface pressure, and water vapor mixing
ratio at the lowest model level. From pressure- or height-level output, it is
calculated from surface pressure, and from a surface water vapor analysis that RIP
looks for in a file ending in tmk_sfan. Units can be either in Celsius, Kelvin, or
Fahrenheit, depending on whether U is set to c, k, or f.

seFFFNNNNN or smFFFNNNNN: Various fields derived from inversion of the Sawyer-
Eliassen equation, units are variable. (3D)

FFF is either psi (Sawyer-Eliassen streamfunction, mb m s-1), vab (balanced
ageostrophic wind in the plane of the cross section, m s-1), vtb (geostrophic plus
balanced ageostrophic wind in the plane of the cross section, m s-1), or omb
(balanced vertical velocity, µ bar s-1). The five N’s correspond to five different
forcings that can be included in the inversion of the Sawyer-Eliassen equation.
They are the confluent frontogenesis term on the RHS, the shear frontogenesis
term on the RHS, a topographic boundary condition, an Ekman boundary
condition, and a side boundary condition that approximately relates the vertical
derivative of ψ to the actual ageostrophic wind along the sides of the cross
section. Each of the Ns should be set to 1 or 0 to indicate that the corresponding
forcing is included or excluded in the Sawyer-Eliassen inversion. The difference
between ‘se’ and ‘sm’ is that in the former case, the dry static stability is used
everywhere, whereas in the latter case, the moist static stability is used where
vertical velocity is upward and the relative humidity exceeds a threshold value.
The moist version is solved "double-iteratively", that is to say, the relaxation is
carried out to convergence several times, with each of the "big" iterations using
the vertical velocity obtained from the previous "big" iteration in order to choose
between moist and dry stability at each grid point in the cross section.

A variety of parameters can be adjusted in running the Sawyer-Eliassen diagnosis.
These are specified through the keyword sepa, which is described in detail in
Appendix A.

Note: The Sawyer-Eliassen fields can only be plotted in a vertical cross section
with pressure as the vertical coordinate.

sfp: Surface pressure, mb. (2D)

slp: Sea-level pressure inspired by Benjamin and Miller (1990), mb. (2D)

snf: Frozen fraction of precipitation hydrometeor mixing ratios, dimensionless number
between 0.0 and 1.0. (3D)

Note: This is just [qsn (+ qgr if available)] / qpr. If qpr is less than .0001 g kg-1,
then snf is set to 0.5. This can be used to give a nice depiction of the "rain/snow
line" if mixed phase microphysics are used.

 72

sno: Snow cover (if available as a separate RIP data file). (2D)

spsqTPSSS: Scorer parameter squared, m-2. (3D)

T determines which terms to include: a for N2/(u-c)2, b for uzz/(u-c), or t for total
(a + b). P determines the inclusion of moist physics in the calculation of the B-V
frequency: d for dry, l for liquid-only latent heating/cooling considerations, and i
for liquid and ice latent heating/cooling considerations. SSS determines the
number of horizontal smoothing passes (on model vertical levels) for the velocity
prior to calculation of Scorer parameter. The SSS value can be omitted if no
smoothing is desired, i.e. feld=spsqtd000 is the same as feld=spsqtd. For an
explanation of the smoothing routine, see the description of the smth keyword in
Appendix A. The component of the wind used for the shear calculation is the
along-cross-section (left-to-right) component, where the cross section endpoints
are determined by the crsa and crsb keywords. The phase speed in terms a and b
can be provided with the strm keyword. See the description of the strm keyword
in Appendix A.

sr9: Storm-relative flow at 9 km AGL, m s-1. (2D)

sreh: Storm-relative environmental helicity, m2 s-2. (2D)

Assumes a supercell storm moves at 75% of the magnitude of, and 30_ to
the right of, the mean wind vector between 3 and 10 km AGL.

srfh: Storm-relative flow at high levels (~9 km), m2 s-2. (2D)

Assumes a supercell storm moves at 75% of the magnitude of, and 30_ to the
right of, the mean wind vector between 3 and 10 km AGL.

srfl: Storm-relative flow at low levels (~2 km), m2 s-2. (2D)

Assumes a supercell storm moves at 75% of the magnitude of, and 30_ to the
right of, the mean wind vector between 3 and 10 km AGL.

stb: Static stability [-dθ/dp], K hPa-1. (3D)

stbe: Potential or convective stability [-dθe/dp], K hPa-1. (3D)

stbz: Static stability [dθ/dz], K km-1. (3D)

swarm: Trajectory swarm (see Chapter 6 for more details).

tdd: Dew point depression, _C. (3D)

tdf: Dew point temperature, _F. (3D)

tdk: Dew point temperature, Κ. (3D)

tdp: Dew point temperature, _C. (3D)

tdsfU: Surface dew point temperature, units are variable depending on the value of U.
(2D)

 73

It is computed using 2 m water vapor mixing ratio if available. Otherwise it uses
the moisture field from the lowest model level. Units of tdsfU can be either in
Celsius, Kelvin, or Fahrenheit, depending on whether U is set to c, k, or f.

ter: Terrain height, m. (2D)

tfp: Frost point temperature, _C. (3D)

tgc: Ground temperature, _C. (2D)

tgk: Ground temperature, K. (2D)

thckMMMNNN: Thickness, decameters (or dam). (2D)

MMM and NNN are the lower and upper pressure levels, respectively,
expressed in kPa with leading zeros included, so that the total number of
digits is always 6. For example:

thck100050 -> This gives the 1000 to 500 hPa thickness.
thck050005 -> This gives the 500 to 50 hPa thickness.

the: Potential temperature, K. (3D)

thsf: Surface air potential temperature, K. (2D)

This is intended to represent the surface air potential temperature as measured by
a surface meteorological station (at ~10 m height AGL). The surface air
temperature is first calculated, as described for field tsfU. It is then converted to
potential temperature.

thv: Virtual potential temperature, K. (3D)

thvhm: Virtual potential temperature, with hydrometeor effect included, K. (3D)

This is the same as thv, except it is virtual potential temperature including
the negative effects of hydrometeors.

tmc: Temperature, _C. (3D)

tmclKK: Temperature of a lifted parcel, _C. (3D)

The level from which parcels are to be lifted is the model level that is the
KKth level from the bottom (always use two digits). Therefore, this field is
only defined for model levels at or above that level. This field is most
useful for plotting in a sounding, to give a sense of the CAPE.

tmf: Temperature, _F. (3D)

tmk: Temperature, K. (3D)

tpt: Temperature perturbation, _C (or K). (3D)

The perturbation is with respect to the reference state, as defined by the
keyword rfst.

tptslr: Temperature perturbation with respect to the U.S. Standard Atmosphere, _C. (or
K) (3D)

 74

track: Typhoon track

Objectively-determined typhoon track including central pressures. The
default code is able to track five storms simultaneously. The track is
plotted using all times in the .xtimes file, regardless of the value of ptimes.
The typhoon symbol and central pressure locations are plotted based on
the keyword tynt. The typhoon location, central pressure, and maximum
surface wind speed is printed out at each forecast output time. While the
track algorithm is designed for use with any model grid spacing,
performance for any particular delta-x may be improved by tuning the
algorithm. Additional documentation is included in the source code
(including a sample plspec entry).

tsfU: Surface air temperature, units are variable depending on the value of U. (2D)

If 2 m temperature is available from the dataset, this is that temperature.
Otherwise, this temperature is intended to represent the surface air
temperature as measured by a surface meteorological station (at ~10 m
height AGL). From terrain-following data sets, it is calculated with a
crude application of similarity theory: if the air temperature at the lowest
model layer (TLML) is warmer than the ground temperature, tsfc is equal to
TLML; if TLML is colder than the ground temperature, tsfc is equal to the
average of the ground temperature and TLML. From pressure- or height-
level output, it looks for the surface air temperature analysis that is stored
in the file ending in tmk_sfan. Units of tsfU can be either in Celsius,
Kelvin, or Fahrenheit, depending on whether U is set to c, k, or f.

tvc: Virtual temperature, _C. (3D)

tvclKK: Virtual temperature of a lifted parcel, _C. (3D)

This is the same as tmcl, except it gives the virtual temperature of a lifted parcel.
When plotted alongside tvc on a skew-T sounding, this gives a more accurate
graphical representation of CAPE than does tmcl plotted alongside tmc.

tvk: Virtual temperature, K. (3D)

tvp: Virtual temperature perturbation, _C (or K). (3D)

This is the same as tpt, except it is the perturbation of virtual temperature
with respect to the reference state, as defined by the keyword rfst.

tvphm: Virtual temperature perturbation, with hydrometeor effect included, _C (or K).
(3D)

This is the same as tvp, except it is the perturbation of virtual temperature
including the negative effects of hydrometeors on virtual temperature.

twb: Wet bulb temperature, _C. (3D)

uageo: Horizontal ageostrophic wind speed in the x (or j-index) direction, m s-1. (3D)

ugeo: Horizontal geostrophic wind speed in the x (or j-index) direction, m s-1. (3D)

 75

unor: Westerly horizontal wind component, m s-1. (3D)

uubs: 0-6 km shear (x-component), m s-1. (2D)

uusr: Supercell motion vector following Bukers et al (1999) (x-component), m s-1. (2D)

uuu: Horizontal wind speed in the x (or j-index) direction, m s-1. (3D)

vadvtheta: Vertical advection of potential temperature, K h-1. (3D)

This calculates the local change in potential temperature due to vertical advection.
The vertical velocity and potential temperature fields can be smoothed on
constant-pressure surfaces prior to the computing of the product in this nonlinear
quantity, by using the qgsm keyword.

vageo: Horizontal ageostrophic wind speed in the y (or i-index) direction, m s-1. (3D)

vgeo: Horizontal geostrophic wind speed in the y (or i-index) direction, m s-1. (3D)

vgp: Vorticity generation potential, m s-2. (2D)

This is the 0 to 3 km AGL total shear (i.e., the length of the 0-3 km AGL
hodograph divided by 3000 m) times the square root of CAPE of the
parcel with maximum θe below 3 km AGL.

visX: Surface visibility due to hydrometeors, km. (2D)

Regardless of whether mixed phase microphysics were used, there are three
possibilities to choose from for the determination of the phase of cloud and
precipitation hydrometeors: Replace X with d for the 0 _Celsius assumption, b for
the Bocchieri assumption, or r for the mixed phase assumption. See code for
details of these assumptions.

vnor: Southerly horizontal wind component, m s-1. (3D)

vor: Relative vorticity (vertical component), 10-5 s-1. (3D)

vox: x-component of vorticity, 10-5 s-1. (3D)

voy: y-component of vorticity, 10-5 s-1. (3D)

vvbs: 0-6 km shear (y-component), m s-1. (2D)

vvsr: Supercell motion vector following Bukers et al (1999) (y-component), m s-1. (2D)

vvv: Horizontal wind speed in the y (or i-index) direction, m s-1. (3D)

wdr: Horizontal wind direction (compass direction that wind is blowing from), degrees.
(3D)

wsp: Horizontal wind speed, m s-1. (3D)

www: Vertical velocity (dz/dt), cm s-1. (3D)

xlat: Latitude (if available as a separate RIP data file). (2D)

xlon: Longitude (if available as a separate RIP data file). (2D)

xlus: Land use category (if available as a separate RIP data file). (2D)

 76

xmap: Map factor, dimensionless number. (2D)

xnt: Horizontal wind component normal to the cross section, m s-1. (3D)

Note: The normal wind component is calculated using the cross section end points
defined by the crsa and crsb keywords. Positive is assumed to be into the cross
section.

xntageo: Horizontal ageostrophic wind component normal to the cross section, m s-1.
(3D)

Note: The normal wind component is calculated using the cross section end points
defined by the crsa and crsb keywords. Positive is assumed to be into the cross
section.

xntgeo: Horizontal geostrophic wind component normal to the cross section, m s-1. (3D)

Note: The normal wind component is calculated using the cross section end points
defined by the crsa and crsb keywords. Positive is assumed to be into the cross
section.

xpt: Horizontal wind component parallel to the cross section, m s-1. (3D)

Note: The parallel wind component is calculated using the cross section end
points defined by the crsa and crsb keywords. Positive is assumed to be from left
to right.

xptageo: Horizontal ageostrophic wind component parallel to the cross section, m s-1.
(3D)

Note: The parallel wind component is calculated using the cross section end
points defined by the crsa and crsb keywords. Positive is assumed to be from left
to right.

xptgeo: Horizontal geostrophic wind component parallel to the cross section, m s-1. (3D)

Note: The parallel wind component is calculated using the cross section end
points defined by the crsa and crsb keywords. Positive is assumed to be from left
to right.

Appendix C. Format of RIP data files

When RIPDP is executed, it produces a large number of data files. This appendix
describes the naming convention and format of RIP data files.

a. The .xtimes file

A text file is created, with the name model-data-set-name.xtimes, where
model-data-set-name is as defined in Section 3. On the first line of the file is the
total number of times available in the RIP data set. Beneath the first line is a list of those

 77

times (one time per line). Each time is expressed as a forecast hour with four digits left of
the decimal and five to the right.

b. The .minfo file

A text file is created, with the name model-data-set-name.minfo. This file
contains one or more lines of textual information about the model run, which can be read
in by RIP and plotted at the bottom of each plot produced by RIP, to give the viewer
some basic information about the model run.

c. The data files

The data files are named with the following convention:

model-data-set-name _ HHHH.HHHHH _ variable

model-data-set-name is as defined in Section 3. HHHH.HHHHH is the forecast
time in hours (four digits left of the decimal and five to the right). variable is the
name of the variable that is contained in the file. These three pieces of the file name are
separated by underscore characters.

The format of the file is perhaps best described by showing the Fortran 77 code with
which it can be written:

c
c Declare RIP header variables
c
 integer ihrip(32)
 real rhrip(32)
 character chrip(64)*64,vardesc*64,plchun*24
c
c Declare 3D and 2D (horizontal slab) data arrays
c
 real data3(maxiy,maxjx,maxkz), data2(maxiy,maxjx)
c
c Open the file, write header and data, close the file
c
 open
(unit=10,file=<filename>,form=’unformatted’,status=’new’)
 write (10) vardesc,plchun,ihrip,rhrip,chrip
 write (10) data3
c or write (10) data2 for a 2D field
 close (10)

maxiy and maxjx are the dimensions of the dot-point gird, regardless of whether the
variable is defined on dot points or cross points. maxkz is the number of vertical levels.
All 3D variables in a RIP data set must be defined on the same vertical levels. For

 78

example, in the MM5 vertical coordinate system, most of the variables are defined on the
staggered “half-sigma” levels, but vertical velocity is defined on the “full-sigma” levels.
To adhere to the “same vertical levels” requirement, ripdp_mm5 interpolates the vertical
velocities to the “half-sigma” levels. maxkz would then be equal to the number of half-
sigma levels.

vardesc is a character string, 64 characters maximum length, that contains a brief
verbal description of the variable. It may also include units, although the representation
of units is limited to the ASCII character set.

plchun is a character string, 24 characters maximum length, that contains the units of
the variable, in NCAR Graphics PLOTCHAR code. This code can be used by the NCAR
Graphics code in RIP to display the units of the variable on a plot, including special
characters (e.g., Greek symbols) and exponents.

ihrip and rhrip are integer and real header arrays (respectively) contain information
about model dimensions, start time and date, and map background, as well as information
about the variable such as a brief description and units. The chrip array contains a text
description, 64 characters maximum length, of each of the elements of the ihrip and
rhrip arrays. Elements 1-32 of chrip correspond to the 32 elements of ihrip, and
elements 33-64 of chrip correspond to the 32 elements or rhrip. Note that not all of
the elements of ihrip and rhrip are used. A list of all the currently defined elements
of ihrip and rhrip, as well as the text description in the corresponding element of
chrip, are shown in the table below:

Header
Array

Element
Description

ihrip(1) chrip(1)='map projection (0: none/ideal, 1: LC, 2: PS, 3:
ME, 4: SRCE)'

ihrip(2) chrip(2)='number of dot points in the y-direction (coarse
domain)'

ihrip(3) chrip(3)='number of dot points in the x-direction (coarse
domain) '

ihrip(4) chrip(4)='number of dot points in the y-direction (this
domain) '

ihrip(5) chrip(5)='number of dot points in the x-direction (this
domain) '

ihrip(6) chrip(6)='number of dimensions of this variable (2 or 3) '
ihrip(7) chrip(7)='grid of this variable (1: cross point dom., 0: dot

point dom.) '
ihrip(9) chrip(9)='number of vertical levels in the data'
ihrip(10) chrip(10)='mdateb: YYMMDDHH (truncated hour) of hour-0 for

this dataset'
ihrip(11) chrip(11)='mdate: YYMMDDHH (truncated hour) of this time'
ihrip(12) chrip(12)='ice physics (1: sep. arrays for ice fields, 0: no

sep. arrays) '
ihrip(13) chrip(13)='ver. coord. type: <or=3: hgt. or prs.; >or=4:

terrain-following '
ihrip(14) chrip(14)='landuse dataset (1: old, 13-cat; 2: USGS, 24-cat;

 79

3: SiB, 16) '
rhrip(1) chrip(33)='first true latitude (deg.) '
rhrip(2) chrip(34)='second true latitude (deg.) '
rhrip(3) chrip(35)='central latitude of coarse domain (deg.) '
rhrip(4) chrip(36)='central longitude of coarse domain(deg.) '
rhrip(5) chrip(37)='grid distance of coarse domain (km) '
rhrip(6) chrip(38)='grid distance of this domain (km) '
rhrip(7) chrip(39)='coarse dom. y-position of lower left corner of

this domain '
rhrip(8) chrip(40)='coarse dom. x-position of lower left corner of

this domain '
rhrip(13) chrip(45)='rhourb: diff (in h) between exact time and mdate

of hour-0 '
rhrip(14) chrip(46)='rhour: diff (in h) between exact time and mdate of

this data '
rhrip(15) chrip(47)='xtime: exact time of this data relative to exact

hour-0 (in h) '

If you want to create a version of RIPDP that converts output from a given model into a
RIP data set, there are certain rules that apply to the variable that RIPDP can or should
create, and the variables expected by RIP. The data variables can be classified into three
different categories:

1) Required variables
2) Optional variables
3) Unexpected variables

Required variables are fundamental variables that RIP expects to find at every time
period that will be processed. If it does not, it will abort. Therefore, RIPDP should create
these variables exactly as shown in the table below, particularly in terms of variable
name, dimensionality, and grid (cross or dot-point).

Table of Required Variables

Variable
Dimensions
[ihrip(6)]

Grid
[ihrip(7)]

Description of variable
(vardesc)

Units of
variable in
PLOTCHAR

code
(plchun)

uuu 3 0
Horizontal wind (y-
comp.), m/s

m s~S~-1~N~

vvv 3 0
Horizontal wind (y-
comp.), m/s

m s~S~-1~N~

tmk 3 1 Temperature, K K
ght 3 1 Geopotential height, m m
prs 3 1 Pressure, hPa hPa
ter 2 1 Terrain height AMSL, m m

 80

sfp 2 1 Surface pressure, hPa hPa

xmap 2 1
Map factor on cross
points

none

dmap 2 0 Map factor on dot points none
cor 2 1 Coriolis parameter, per s s~S~-1~N~

Optional variables are variables that RIP might expect to find depending on the field(s)
requested in the user input file. However, they are not required for RIP to run. If any of
these variables is requested directly, or if a field is requested that requires one of the
optional variables, in some cases the variable will be assumed to be zero, and in other
cases RIP will abort. If you are creating a version of RIPDP for your model, it is a good
idea to have it create these optional variables if they are available, and to make sure they
agree with the attributes shown in the table below. This will improve the functionality of
RIP. For example, there is a field in RIP called qpr, which is the sum of all the
precipitation mixing ratio fields. When this field is calculated, RIP specifically looks for
files with variable names qra, qsn, and qgr. If they do not exist, or if they exist but are
named something else, then the qpr field will not work.

Table of Optional Variables

Variable
Dimensions
[ihrip(6)]

Grid
[ihrip(7)]

Description of variable
(vardesc)

Units of
variable in
PLOTCHAR

code
(plchun)

qvp 3 1
Water vapor mixing ratio,
g/kg

g kg~S~-
1~N~

www 3 1 Vertical velocity, cm/s
cm s~S~-
1~N~

qcw 3 1
Cloud water mixing ratio,
g/kg

g kg~S~-
1~N~

qra 3 1
Rain water mixing ratio,
g/kg

g kg~S~-
1~N~

qci 3 1
Cloud ice mixing ratio,
g/kg

g kg~S~-
1~N~

qsn 3 1 Snow mixing ratio, g/kg
g kg~S~-
1~N~

qgr 3 1
Graupel mixing ratio,
g/kg

g kg~S~-
1~N~

rtc 2 1
Cumulus precip. since h
0, mm

Mm

rte 2 1
Explicit precip. since h
0, mm

Mm

tgk 2 1
Ground/sea-surface
temperature, K

K

tmk_sfan 2 1
Temperature (sfc. anal.),
K

K

qvp_sfan 2 1
Water vapor mixing ratio
(sfc. anal.), g/kg

g kg~S~-
1~N~

xlat 2 1 Latitude, degrees degrees

 81

xlon 2 1 Longitude, degrees degrees
xlus 2 1 Land use category none

Finally, an unexpected variable is a variable that RIPDP does not specifically expect to
find in the model output, but upon encountering it, processes it and creates a data file.
The variable name, dimensionality, grid, description, and units are determined from
metadata in the model output file. These variables can be plotted by RIP by using the
automatically determined variable name in the feld= plot specifier.

